导航:首页 > 源码编译 > java虚拟机标记算法

java虚拟机标记算法

发布时间:2023-01-28 19:46:41

A. 压缩指针

java虚拟机中每个Java对象都有一个对象头,对象头由标记字段和类型指针构成。其中标记字段用以存储Java虚拟机有关对象的运行数据,如哈希码、GC信息及锁信息,而指针类型指向该对象的类。

在64位的虚拟机中,对象头的标记字段占64位,而类型指针又占64位。也就是说一个对象额外占用的字节就是16个字节。以Integer对象为例,它仅有一个int类型的私有字段,占4个字节。因此,每个Integer的额外开销至少400%,这也就是Java为什么要引入基本数据类型的原因之一。为了减少内存开销,64位Java虚拟机引入了压缩指针概念(对应虚拟机选项 -XX:+UseCompressedOops,默认开启),将堆中原本64位的Java对象指针压缩成32位的。
这样一来,对象头的类型指针也会被压缩成32位,使得对象头大小从16字节降低为12字节。压缩指针不仅可以作用对象头的类型指针,还可以作用引用类型的字段,引用类型的数组。

默认情况下,Java虚拟机中对象的起始地址需要对齐至8的倍数(这个概念我们称之为内存对齐(对应虚拟机选项 -XX:ObjectAlignmentInBytes,默认值为 8)。如果一个对象用不到8N字节,那么空白的那部分空间就白白浪费掉了。这些浪费掉的空间我们称之为对象之间的填充。默认情况下,Java虚拟机中32位的指针可以寻址到2的35次方,也就是32GB的内存空间(超过32位会关闭压缩指针)。在对压缩指针解引用时,我们需要将其左移3位,再加上一个固定的偏移量,便可以寻址到32GB地址空间伪64位指针了。

此外,我们可以配置刚刚提到的内存对齐选项(-XX:ObjectAlignmentInBytes)来进一步提升内存寻址范围。但是,这也可能增加对象填充,导致压缩指针没有打到节省空间效果。

就算关闭了压缩指针,Java虚拟机也会进行内存对齐。内存对齐不仅在于对象和对象之间,也存在于对象的各个字段之间。比如说,Java虚拟机中的long字段、double字段,以及非压缩指针状态下的引用字段为8的倍数。

内存对齐的一个原因是让字段出现在同一CPU的缓存中。如果字段不对齐,那么就有可能出现跨缓存行的字段。也就是说,该字段的读取的读取可能需要跨两个缓存行,而改字段的存储也可能同时污染两个缓存行。这种情况对程序的执行效率是不利的。

B. 深入理解Java虚拟机:JVM高级特性与最佳实践的内容简介

作为一位java程序员,你是否也曾经想深入理解java虚拟机,但是却被它的复杂和深奥拒之门外?没关系,《深入理解java虚拟机:jvm高级特性与最佳实践》极尽化繁为简之妙,能带领你在轻松中领略java虚拟机的奥秘。《深入理解java虚拟机:jvm高级特性与最佳实践》是近年来国内出版的唯一一本与java虚拟机相关的专着,也是唯一一本同时从核心理论和实际运用这两个角度去探讨java虚拟机的着作,不仅理论分析得透彻,而且书中包含的典型案例和最佳实践也极具现实指导意义。
全书共分为五大部分。第一部分从宏观的角度介绍了整个java技术体系的过去、现在和未来,以及如何独立地编译一个openjdk7,这对理解后面的内容很有帮助。第二部分讲解了jvm的自动内存管理,包括虚拟机内存区域的划分原理以及各种内存溢出异常产生的原因;常见的垃圾收集算法以及垃圾收集器的特点和工作原理;常见的虚拟机的监控与调试工具的原理和使用方法。第三部分分析了虚拟机的执行子系统,包括class的文件结构以及如何存储和访问class中的数据;虚拟机的类创建机制以及类加载器的工作原理和它对虚拟机的意义;虚拟机字节码的执行引擎以及它在实行代码时涉及的内存结构。第四部分讲解了程序的编译与代码的优化,阐述了泛型、自动装箱拆箱、条件编译等语法糖的原理;讲解了虚拟机的热点探测方法、hotspot的即时编译器、编译触发条件,以及如何从虚拟机外部观察和分析jit编译的数据和结果。第五部分探讨了java实现高效并发的原理,包括jvm内存模型的结构和操作;原子性、可见性和有序性在java内存模型中的体现;先行发生原则的规则和使用;线程在java语言中的实现原理;虚拟机实现高效并发所做的一系列锁优化措施。
《深入理解java虚拟机:jvm高级特性与最佳实践》适合所有java程序员、系统调优师和系统架构师阅读。

C. java虚拟机的数据类型

Java虚拟机支持Java语言的基本数据类型有8种,注意String不是基本数据类型如下:
boolean://1字节有符号整数的补码
byte://1字节有符号整数的补码
short://2字节有符号整数的补码
int://4字节有符号整数的补码
long://8字节有符号整数的补码
float://4字节IEEE754单精度浮点数
double://8字节IEEE754双精度浮点数
char://2字节无符号Unicode字符
几乎所有的Java类型检查都是在编译时完成的。上面列出的原始数据类型的数据在Java执行时不需要用硬件标记。操作这些原始数据类型数据的字节码(指令)本身就已经指出了操作数的数据类型,例如iadd、ladd、fadd和dadd指令都是把两个数相加,其操作数类型别是int、long、float和double。虚拟机没有给boolean(布尔)类型设置单独的指令。boolean型的数据是由integer指令,包括integer返回来处理的。boolean型的数组则是用byte数组来处理的。虚拟机使用IEEE754格式的浮点数。不支持IEEE格式的较旧的计算机,在运行Java数值计算程序时,可能会非常慢。
虚拟机支持的其它数据类型包括:
object//对一个Javaobject(对象)的4字节引用
returnAddress//4字节,用于jsr/ret/jsr-w/ret-w指令
注:Java数组被当作object处理。
虚拟机的规范对于object内部的结构没有任何特殊的要求。在Sun公司的实现中,对object的引用是一个句柄,其中包含一对指针:一个指针指向该object的方法表,另一个指向该object的数据。用Java虚拟机的字节码表示的程序应该遵守类型规定。Java虚拟机的实现应拒绝执行违反了类型规定的字节码程序。Java虚拟机由于字节码定义的限制似乎只能运行于32位地址空间的机器上。但是可以创建一个Java虚拟机,它自动地把字节码转换成64位的形式。从Java虚拟机支持的数据类型可以看出,Java对数据类型的内部格式进行了严格规定,这样使得各种Java虚拟机的实现对数据的解释是相同的,从而保证了Java的与平台无关性和可移植性。

D. 什么是 Java 虚拟机

您好,提问者:

Java虚拟机简称JVM,它的作用如下:

1、其实Java不可跨平台,真正实现跨平台的是JVM虚拟机。

2、JVM其实就是一个编译java、运行class的一个跟操作系统的一个软件。

3、JVM的作用只针对于Java,而系统中的东西与它无关。

4、其实说白了就是一个软件,就像VMware一样。

Java虚拟机


一、什么是Java虚拟机


Java虚拟机是一个想象中的机器,在实际的计算机上通过软件模拟来实现。Java虚拟机有自己想象中的硬件,如处理器、堆栈、寄存器等,还具有相应的指令系统。


  1. 为什么要使用Java虚拟机

Java语言的一个非常重要的特点就是与平台的无关性。而使用Java虚拟机是实现这一特点的关键。一般的高级语言如果要在不同的平台上运行,至少需要编译成不同的目标代码。而引入Java语言虚拟机后,Java语言在不同平台上运行时不需要重新编译。Java语言使用模式Java虚拟机屏蔽了与具体平台相关的信息,使得Java语言编译程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台上不加修改地运行。Java虚拟机在执行字节码时,把字节码解释成具体平台上的机器指令执行。


2.谁需要了解Java虚拟机


Java虚拟机是Java语言底层实现的基础,对Java语言感兴趣的人都应对Java虚拟机有个大概的了解。这有助于理解Java语言的一些性质,也有助于使用Java语言。对于要在特定平台上实现Java虚拟机的软件人员,Java语言的编译器作者以及要用硬件芯片实现Java虚拟机的人来说,则必须深刻理解Java虚拟机的规范。另外,如果你想扩展Java语言,或是把其它语言编译成Java语言的字节码,你也需要深入地了解Java虚拟机。


3.Java虚拟机支持的数据类型


Java虚拟机支持Java语言的基本数据类型如下:


byte://1字节有符号整数的补码

short://2字节有符号整数的补码

int://4字节有符号整数的补码

long://8字节有符号整数的补码

float://4字节IEEE754单精度浮点数

double://8字节IEEE754双精度浮点数

char://2字节无符号Unicode字符


几乎所有的Java类型检查都是在编译时完成的。上面列出的原始数据类型的数据在Java执行时不需要用硬件标记。操作这些原始数据类型数据的字节码(指令)本身就已经指出了操作数的数据类型,例如iadd、ladd、fadd和dadd指令都是把两个数相加,其操作数类型别是int、long、float和double。虚拟机没有给boolean(布尔)类型设置单独的指令。boolean型的数据是由integer指令,包括integer返回来处理的。boolean型的数组则是用byte数组来处理的。虚拟机使用IEEE754格式的浮点数。不支持IEEE格式的较旧的计算机,在运行Java数值计算程序时,可能会非常慢。


虚拟机支持的其它数据类型包括:

object//对一个Javaobject(对象)的4字节引用

returnAddress//4字节,用于jsr/ret/jsr-w/ret-w指令

注:Java数组被当作object处理。


虚拟机的规范对于object内部的结构没有任何特殊的要求。在Sun公司的实现中,对object的引用是一个句柄,其中包含一对指针:一个指针指向该object的方法表,另一个指向该object的数据。用Java虚拟机的字节码表示的程序应该遵守类型规定。Java虚拟机的实现应拒绝执行违反了类型规定的字节码程序。Java虚拟机由于字节码定义的限制似乎只能运行于32位地址空间的机器上。但是可以创建一个Java虚拟机,它自动地把字节码转换成64位的形式。从Java虚拟机支持的数据类型可以看出,Java对数据类型的内部格式进行了严格规定,这样使得各种Java虚拟机的实现对数据的解释是相同的,从而保证了Java的与平台无关性和可

移植性。


二、Java虚拟机体系结构


Java虚拟机由五个部分组成:一组指令集、一组寄存器、一个栈、一个无用单元收集堆(Garbage-collected-heap)、一个方法区域。这五部分是Java虚拟机的逻辑成份,不依赖任何实现技术或组织方式,但它们的功能必须在真实机器上以某种方式实现。


  1. Java指令集

Java虚拟机支持大约248个字节码。每个字节码执行一种基本的CPU运算,例如,把一个整数加到寄存器,子程序转移等。Java指令集相当于Java程序的汇编语言。

Java指令集中的指令包含一个单字节的操作符,用于指定要执行的操作,还有0个或多个操作数,提供操作所需的参数或数据。许多指令没有操作数,仅由一个单字节的操作符构成。


虚拟机的内层循环的执行过程如下:


do{

取一个操作符字节;

根据操作符的值执行一个动作;

}while(程序未结束)


由于指令系统的简单性,使得虚拟机执行的过程十分简单,从而有利于提高执行的效率。指令中操作数的数量和大小是由操作符决定的。如果操作数比一个字节大,那么它存储的顺序是高位字节优先。例如,一个16位的参数存放时占用两个字节,其值为:


第一个字节*256+第二个字节字节码指令流一般只是字节对齐的。指令tabltch和lookup是例外,在这两条指令内部要求强制的4字节边界对齐。


2.寄存器


Java虚拟机的寄存器用于保存机器的运行状态,与微处理器中的某些专用寄存器类似。


Java虚拟机的寄存器有四种:

pc:Java程序计数器。

optop:指向操作数栈顶端的指针。

frame:指向当前执行方法的执行环境的指针。

vars:指向当前执行方法的局部变量区第一个变量的指针。


Java虚拟机


Java虚拟机是栈式的,它不定义或使用寄存器来传递或接受参数,其目的是为了保证指令集的简洁性和实现时的高效性(特别是对于寄存器数目不多的处理器)。

所有寄存器都是32位的。


3.栈


Java虚拟机的栈有三个区域:局部变量区、运行环境区、操作数区。


(1)局部变量区 每个Java方法使用一个固定大小的局部变量集。它们按照与vars寄存器的字偏移量来寻址。局部变量都是32位的。长整数和双精度浮点数占据了两个局部变量的空间,却按照第一个局部变量的索引来寻址。(例如,一个具有索引n的局部变量,如果是一个双精度浮点数,那么它实际占据了索引n和n+1所代表的存储空间。)虚拟机规范并不要求在局部变量中的64位的值是64位对齐的。虚拟机提供了把局部变量中的值装载到操作数栈的指令,也提供了把操作数栈中的值写入局部变量的指令。


(2)运行环境区 在运行环境中包含的信息用于动态链接,正常的方法返回以及异常传播。


·动态链接

运行环境包括对指向当前类和当前方法的解释器符号表的指针,用于支持方法代码的动态链接。方法的class文件代码在引用要调用的方法和要访问的变量时使用符号。动态链接把符号形式的方法调用翻译成实际方法调用,装载必要的类以解释还没有定义的符号,并把变量访问翻译成与这些变量运行时的存储结构相应的偏移地址。动态链接方法和变量使得方法中使用的其它类的变化不会影响到本程序的代码。


·正常的方法返回

如果当前方法正常地结束了,在执行了一条具有正确类型的返回指令时,调用的方法会得到一个返回值。执行环境在正常返回的情况下用于恢复调用者的寄存器,并把调用者的程序计数器增加一个恰当的数值,以跳过已执行过的方法调用指令,然后在调用者的执行环境中继续执行下去。


·异常和错误传播

异常情况在Java中被称作Error(错误)或Exception(异常),是Throwable类的子类,在程序中的原因是:①动态链接错,如无法找到所需的class文件。②运行时错,如对一个空指针的引用


·程序使用了throw语句。

当异常发生时,Java虚拟机采取如下措施:

·检查与当前方法相联系的catch子句表。每个catch子句包含其有效指令范围,能够处理的异常类型,以及处理异常的代码块地址。

·与异常相匹配的catch子句应该符合下面的条件:造成异常的指令在其指令范围之内,发生的异常类型是其能处理的异常类型的子类型。如果找到了匹配的catch子句,那么系统转移到指定的异常处理块处执行;如果没有找到异常处理块,重复寻找匹配的catch子句的过程,直到当前方法的所有嵌套的catch子句都被检查过。

·由于虚拟机从第一个匹配的catch子句处继续执行,所以catch子句表中的顺序是很重要的。因为Java代码是结构化的,因此总可以把某个方法的所有的异常处理器都按序排列到一个表中,对任意可能的程序计数器的值,都可以用线性的顺序找到合适的异常处理块,以处理在该程序计数器值下发生的异常情况。

·如果找不到匹配的catch子句,那么当前方法得到一个"未截获异常"的结果并返回到当前方法的调用者,好像异常刚刚在其调用者中发生一样。如果在调用者中仍然没有找到相应的异常处理块,那么这种错误传播将被继续下去。如果错误被传播到最顶层,那么系统将调用一个缺省的异常处理块。

(3)操作数栈区 机器指令只从操作数栈中取操作数,对它们进行操作,并把结果返回到栈中。选择栈结构的原因是:在只有少量寄存器或非通用寄存器的机器(如Intel486)上,也能够高效地模拟虚拟机的行为。操作数栈是32位的。它用于给方法传递参数,并从方法接收结果,也用于支持操作的参数,并保存操作的结果。例如,iadd指令将两个整数相加。相加的两个整数应该是操作数栈顶的两个字。这两个字是由先前的指令压进堆栈的。这两个整数将从堆栈弹出、相加,并把结果压回到操作数栈中。


每个原始数据类型都有专门的指令对它们进行必须的操作。每个操作数在栈中需要一个存储位置,除了long和double型,它们需要两个位置。操作数只能被适用于其类型的操作符所操作。例如,压入两个int类型的数,如果把它们当作是一个long类型的数则是非法的。在Sun的虚拟机实现中,这个限制由字节码验证器强制实行。但是,有少数操作(操作符pe和swap),用于对运行时数据区进行操作时是不考虑类型的。


4.无用单元收集堆


Java的堆是一个运行时数据区,类的实例(对象)从中分配空间。Java语言具有无用单元收集能力:它不给程序员显式释放对象的能力。Java不规定具体使用的无用单元收集算法,可以根据系统的需求使用各种各样的算法。


5.方法区


方法区与传统语言中的编译后代码或是Unix进程中的正文段类似。它保存方法代码(编译后的java代码)和符号表。在当前的Java实现中,方法代码不包括在无用单元收集堆中,但计划在将来的版本中实现。每个类文件包含了一个Java类或一个Java界面的编译后的代码。可以说类文件是Java语言的执行代码文件。为了保证类文件的平台无关性,Java虚拟机规范中对类文件的格式也作了详细的说明。其具体细节请参考Sun公司的Java虚拟机规范。

E. JVM垃圾回收的“三色标记算法”实现,内容太干

三色标记法是一种垃圾回收法,它可以让JVM不发生或仅短时间发生STW(Stop The World),从而达到清除JVM内存垃圾的目的。JVM中的 CMS、G1垃圾回收器 所使用垃圾回收算法即为三色标记法。

三色标记法将对象的颜色分为了黑、灰、白,三种颜色。

白色 :该对象没有被标记过。(对象垃圾)

灰色 :该对象已经被标记过了,但该对象下的属性没有全被标记完。(GC需要从此对象中去寻找垃圾)

黑色 :该对象已经被标记过了,且该对象下的属性也全部都被标记过了。(程序所需要的对象)

从我们main方法的根对象(JVM中称为GC Root)开始沿着他们的对象向下查找,用黑灰白的规则,标记出所有跟GC Root相连接的对象,扫描一遍结束后,一般需要进行一次短暂的STW(Stop The World),再次进行扫描,此时因为黑色对象的属性都也已经被标记过了,所以只需找出灰色对象并顺着继续往下标记(且因为大部分的标记工作已经在第一次并发的时候发生了,所以灰色对象数量会很少,标记时间也会短很多), 此时程序继续执行,GC线程扫描所有的内存,找出扫描之后依旧被标记为白色的对象(垃圾),清除。

具体流程:

在JVM虚拟机中有两种常见垃圾回收器使用了该算法:CMS(Concurrent Mark Sweep)、G1(Garbage First) ,为了解决三色标记法对对象漏标问题各自有各自的法:

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网网站或者基于浏览器的B/S系统的服务端上,这类应用通常都会较为关注服务的响应速度,希望系统停顿时间尽可能短,以给用户带来良好的交互体验。CMS收集器就非常符合这类应用的需求(但是实际由于某些问题,很少有使用CMS作为主要垃圾回收器的)。

从名字(包含“Mark Sweep”)上就可以看出CMS收集器是基于标记-清除算法实现的,它的运作过程相对于前面几种收集器来说要更复杂一些,整个过程分为四个步骤,包括:1)初始标记(CMS initial mark) 2)并发标记(CMS concurrent mark) 3)重新标记(CMS remark) 4)并发清除(CMS concurrent sweep)

其中初始标记、重新标记这两个步骤仍然需要“Stop The World”。初始标记仅仅只是标记一下GCRoots能直接关联到的对象,速度很快;

并发标记阶段就是从GC Roots的直接关联对象开始遍历整个对象图的过程,这个过程耗时较长但是不需要停顿用户线程,可以与垃圾收集线程一起并发运行;

重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间通常会比初始标记阶段稍长一些,但也远比并发标记阶段的时间短;

最后是并发清除阶段,清理删除掉标记阶段判断的已经死亡的对象,由于不需要移动存活对象,所以这个阶段也是可以与用户线程同时并发的。由于在整个过程中耗时最长的并发标记和并发清除阶段中,垃圾收集器线程都可以与用户线程一起工作,所以从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。

在应对漏标问题时,CMS使用了增量更新(Increment Update)方法来做:

在一个未被标记的对象(白色对象)被重新引用后, 引用它的对象若为黑色则要变成灰色,在下次二次标记时让GC线程继续标记它的属性对象

但是就算是这样,其仍然是存在漏标的问题:

G1(Garbage First)物理内存不再分代,而是由一块一块的Region组成,但是逻辑分代仍然存在。G1不再坚持固定大小以及固定数量的分代区域划分,而是把连续的Java堆划分为多个大小相等的独立区域(Region),每一个Region都可以根据需要,扮演新生代的Eden空间、Survivor空间,或者老年代空间。收集器能够对扮演不同角色的Region采用不同的策略去处理,这样无论是新创建的对象还是已经存活了一段时间、熬过多次收集的旧对象都能获取很好的收集效果。

Region中还有一类特殊的Humongous区域,专门用来存储大对象。G1认为只要大小超过了一个Region容量一半的对象即可判定为大对象。每个Region的大小可以通过参数-XX:G1HeapRegionSize设定,取值范围为1MB~32MB,且应为2的N次幂。而对于那些超过了整个Region容量的超级大对象,将会被存放在N个连续的Humongous Region之中,G1的大多数行为都把Humongous Region作为老年代的一部分来进行看待,如图所示

Card Table(多种垃圾回收器均具备)

RSet(Remembered Set)

是辅助GC过程的一种结构,典型的空间换时间工具,和Card Table有些类似。

后面说到的CSet(Collection Set)也是辅助GC的,它记录了GC要收集的Region集合,集合里的Region可以是任意年代的。

在GC的时候,对于old->young和old->old的跨代对象引用,只要扫描对应的CSet中的RSet即可。逻辑上说每个Region都有一个RSet,RSet记录了其他Region中的对象引用本Region中对象的关系,属于points-into结构(谁引用了我的对象)。

而Card Table则是一种points-out(我引用了谁的对象)的结构,每个Card 覆盖一定范围的Heap(一般为512Bytes)。G1的RSet是在Card Table的基础上实现的:每个Region会记录下别的Region有指向自己的指针,并标记这些指针分别在哪些Card的范围内。这个RSet其实是一个Hash Table,Key是别的Region的起始地址,Value是一个集合,里面的元素是Card Table的Index。每个Region中都有一个RSet,记录其他Region到本Region的引用信息;使得垃圾回收器不需要扫描整个堆找到谁引用当前分区中的对象,只需要扫描RSet即可。

CSet(Collection Set)

一组可被回收的分区Region的集合, 是多个对象的集合内存区域。

新生代与老年代的比例

5% - 60%,一般不使用手工指定,因为这是G1预测停顿时间的基准,这地方简要说明一下,G1可以指定一个预期的停顿时间,然后G1会根据你设定的时间来动态调整年轻代的比例,例如时间长,就将年轻代比例调小,让YGC尽早行。

SATB(Snapshot At The Beginning), 在应对漏标问题时,G1使用了SATB方法来做,具体流程:

因为SATB在重新标记环节只需要去重新扫描那些被推到堆栈中的引用,并配合Rset来判断当前对象是否被引用来进行回收;

并且在最后G1并不会选择回收所有垃圾对象,而是根据Region的垃圾多少来判断与预估回收价值(指回收的垃圾与回收的STW时间的一个预估值),将一个或者多个Region放到CSet中,最后将这些Region中的存活对象压缩并复制到新的Region中,清空原来的Region。

会,当内存满了的时候就会进行Full GC;且JDK10之前的Full GC,为单线程的,所以使用G1需要避免Full GC的产生。

解决方案:

F. java为什么不提供类似c的析构函数和delete

回收机制有分代复制垃圾回收和标记垃圾回收,增量垃圾回收。
一.谁在做Garbage Collection?

一种流行的说法:在C++里,是系统在做垃圾回收;而在Java里,是Java自身在做。
在C++里,释放内存是手动处理的,要用delete运算符来释放分配的内存。这是流行的说法。确切地说,是应用认为不需要某实体时,就需用delete告诉系统,可以回收这块空间了。这个要求,对编码者来说,是件很麻烦、很难做到的事。随便上哪个BBS,在C/C++版块里总是有一大堆关于内存泄漏的话题。
Java采用一种不同的,很方便的方法:Garbage Collection。垃圾回收机制放在JVM里。JVM完全负责垃圾回收事宜,应用只在需要时申请空间,而在抛弃对象时不必关心空间回收问题。

二.对象在啥时被丢弃?

在C++里,当对象离开其作用域时,该对象即被应用抛弃。
在Java里,对象的生命期不再与其作用域有关,而仅仅与引用有关。
Java的垃圾回收机制一般包含近十种算法。对这些算法中的多数,我们不必予以关心。只有其中最简单的一个:引用计数法,与编码有关。
一个对象,可以有一个或多个引用变量指向它。当一个对象不再有任何一个引用变量指向它时,这个对象就被应用抛弃了。或者说,这个对象可以被垃圾回收机制回收了。这就是说,当不存在对某对象的任何引用时,就意味着,应用告诉JVM:我不要这个对象,你可以回收了。
JVM的垃圾回收机制对堆空间做实时检测。当发现某对象的引用计数为0时,就将该对象列入待回收列表中。但是,并不是马上予以销毁。

三.丢弃就被回收?

该对象被认定为没有存在的必要了,那么它所占用的内存就可以被释放。被回收的内存可以用于后续的再分配。
但是,并不是对象被抛弃后当即被回收的。JVM进程做空间回收有较大的系统开销。如果每当某应用进程丢弃一个对象,就立即回收它的空间,势必会使整个系统的运转效率非常低下。前面说过,JVM的垃圾回收机制有多个算法。除了引用计数法是用来判断对象是否已被抛弃外,其它算法是用来确定何时及如何做回收。JVM的垃圾回收机制要在时间和空间之间做个平衡。
因此,为了提高系统效率,垃圾回收器通常只在满足两个条件时才运行:即有对象要回收且系统需要回收。切记垃圾回收要占用时间,因此,Java运行时系统只在需要的时候才使用它。因此你无法知道垃圾回收发生的精确时间。

四.没有引用变量指向的对象有用吗?

前面说了,没挂上引用变量的对象是被应用丢弃的,这意味着,它在堆空间里是个垃圾,随时可能被JVM回收。不过,这里有个不是例外的例外。对于一次性使用的对象(有些书称之为临时对象),可以不用引用变量指向它。举个最简单也最常见的例子:System.out.println(“I am Java!”);就是创建了一个字符串对象后,直接传递给println()方法。

五.应用能干预垃圾回收吗?

许多人对Java的垃圾回收不放心,希望在应用代码里控制JVM的垃圾回收运作。这是不可能的事。对垃圾回收机制来说,应用只有两个途径发消息给JVM。第一个前面已经说了,就是将指向某对象的所有引用变量全部移走。这就相当于向JVM发了一个消息:这个对象不要了。第二个是调用库方法System.gc(),多数书里说调用它让Java做垃圾回收。
第一个是一个告知,而调用System.gc()也仅仅是一个请求。JVM接受这个消息后,并不是立即做垃圾回收,而只是对几个垃圾回收算法做了加权,使垃圾回收操作容易发生,或提早发生,或回收较多而已。
希望JVM及时回收垃圾,是一种需求。其实,还有相反的一种需要:在某段时间内最好不要回收垃圾。要求运行速度最快的实时系统,特别是嵌入式系统,往往希望如此。
Java的垃圾回收机制是为所有Java应用进程服务的,而不是为某个特定的进程服务的。因此,任何一个进程都不能命令垃圾回收机制做什么、怎么做或做多少。

六.对象被回收时要做的事

一个对象在运行时,可能会有一些东西与其关连。因此,当对象即将被销毁时,有时需要做一些善后工作。可以把这些操作写在finalize()方法(常称之为终止器)里。

protectedvoidfinalize()
{
//finalization code here
}
这个终止器的用途类似于C++里的析构函数,而且都是自动调用的。但是,两者的调用时机不一样,使两者的表现行为有重大区别。C++的析构函数总是当对象离开作用域时被调用。这就是说,C++析构函数的调用时机是确定的,且是可被应用判知的。但是,Java终止器却是在对象被销毁时调用。一旦垃圾收集器准备好释放无用对象占用的存储空间,它首先调用那些对象的finalize()方法,然后才真正回收对象的内存。由上所知,被丢弃的对象何时被销毁,应用是无法获知的。而且,对于大多数场合,被丢弃对象在应用终止后仍未销毁。
在编码时,考虑到这一点。譬如,某对象在运作时打开了某个文件,在对象被丢弃时不关闭它,而是把文件关闭语句写在终止器里。这样做对文件操作会造成问题。如果文件是独占打开的,则其它对象将无法访问这个文件。如果文件是共享打开的,则另一访问该文件的对象直至应用终结仍不能读到被丢弃对象写入该文件的新内容。
至少对于文件操作,编码者应认清Java终止器与C++析构函数之间的差异。
那么,当应用终止,会不会执行应用中的所有finalize()呢?据Bruce Eckel在Thinking in Java里的观点:“到程序结束的时候,并非所有收尾模块都会得到调用”。这还仅仅是指应用正常终止的场合,非正常终止呢?因此,哪些收尾操作可以放在finalize()里,是需要酌酎的。七.Thinking ing java 一书中也对垃圾回收做了一些小结

java垃圾回收,主要是靠一个低优先级的进程负责回收,注意,不是后台的进程,他的优点是边回收,边调整堆使其紧凑。
主要有以下几种算法:
1.引用计数该算法在java虚拟机没被使用过,主要是循环引用问题,因为计数并不记录谁指向他,无法发现这些交互自引用对象。
怎么计数?
当引用连接到对象时,对象计数加1
当引用离开作用域或被置为null时减1
怎么回收?
遍历对象列表,计数为0就释放有什么问题?
循环引用问题。
2.标记算法标记算法的思想是从堆栈和静态存储区的对象开始,遍历所有引用,标记活得对象
对于标记后有两种处理方式
(1)停止-复制
所谓停止,就是停止在运行的程序,进行垃圾回收所谓复制,就是将活得对象复制到另外一个堆上,以使内存更紧凑优点在于,当大块内存释放时,有利于整个内存的重分配有什么问题?
一、停止,干扰程序的正常运行,二,复制,明显耗费大量时间,三,如果程序比较稳定,垃圾比较少,那么每次重新复制量是非常大的,非常不合算什么时候启动停止-复制?
内存数量较低时,具体多低我也不知道
(2)清除
也称标记-清除算法
也就是将标记为非活得对象释放,也必须暂停程序运行优点就是在程序比较稳定,垃圾比较少的时候,速度比较快有什么问题?
很显然停止程序运行是一个问题,只清除也会造成很对内存碎片。
为什么这2个算法都要暂停程序运行?
这是因为,如果不暂停,刚才的标记会被运行的程序弄乱,
(3)分代收集
分代收集是利用程序有大量临时对象的特点,对象每被引用一次,代数就增加,代数小的小型对象会被回收整理,大对象只会代数增加,不会被整理。
优点在于对于处理大量临时的变量很有帮助
(4)自适应
jvm会监测垃圾回收的效率,在(1),(2)算法之间切换。
3.增量收集,增量回收的主要算法还是分代(Young Objects 回收)与Train算法(Mature Object回收),所谓增量回收的关键问题是如何实现有序的增量回收而不会导致混乱(引用及其的增加与减少),分代可以逐代回收,Train算法可以逐个车厢回收,这样每次一代或每次一厢可以实现短停顿回收。

G. Java虚拟机怎么判断对象没被引用从而回收,什么时候会回收,什么时候会销毁

1. 引用计数器算法
解释
系统给每个对象添加一个引用计数器,每当有一个地方引用这个对象的时候,计数器就加1,当引用失效的时候,计数器就减1,在任何一个时刻计数器为0的对象就是不可能被使用的对象,因为没有任何地方持有这个引用,这时这个对象就被视为内存垃圾,等待被虚拟机回收
优点
客观的说,引用计数器算法,他的实现很简单,判定的效率很高,在大部分情况下这都是相当不错的算法
其实,很多案例中都使用了这种算法,比如 IOS 的Object-C , 微软的COM技术(用于给window开发驱动,.net里面的技术几乎都是建立在COM上的),Python语言等.
缺陷
无法解决循环引用的问题.
这就好像是悬崖边的人采集草药的人, 想要活下去就必须要有一根绳子绑在悬崖上. 如果有两个人, 甲的手拉着悬崖, 乙的手拉着甲, 那么这两个人都能活, 但是, 如果甲的手拉着乙, 乙的手也拉着甲, 虽然这两个人都认为自己被别人拉着, 但是一样会掉下悬崖.
比如说 A对象的一个属性引用B,B对象的一个属性同时引用A A.b = B() B.a = A(); 这个A,B对象的计数器都是1,可是,如果没有其他任何地方引用A,B对象的时候,A,B对象其实在系统中是无法发挥任何作用的,既然无法发挥作用,那就应该被视作内存垃圾予以清理掉,可是因为此时A,B的计数器的值都是1,虚拟机就无法回收A,B对象,这样就会造成内存浪费,这在计算机系统中是不可容忍的.
解决办法
在语言层面处理, 例如Object-C 就使用强弱引用类型来解决问题.强引用计数器加1 ,弱引用不增加
Java中也有强弱引用
2. 可达性分析算法
解释
这种算法通过一系列成为 "GC Roots " 的对象作为起始点,从这些节点开始向下搜索所有走过的路径成为引用链(Reference Chain) , 当一个对象GC Roots没有任何引用链相连(用图论的话来说就是从GC Roots到这个对象不可达),则证明此对象是不可用的
优点
这个算法可以轻松的解决循环引用的问题
大部分的主流java虚拟机使用的都是这种算法
3. Java语言中的GC Roots
在虚拟机栈(其实是栈帧中的本地变量表)中引用的对象
在方法区中的类静态属性引用对象
在方法区中的常量引用的对象
在本地方法栈中JNI(即一般说的Native方法)的引用对象

H. java有哪些垃圾回收算法

常用的垃圾回收算法有:
(1).引用计数算法:
给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1;当引用失效时,计数器值就减1;任何时刻计数器都为0的对象就是不再被使用的,垃圾收集器将回收该对象使用的内存。
引用计数算法实现简单,效率很高,微软的COM技术、ActionScript、Python等都使用了引用计数算法进行内存管理,但是引用计数算法对于对象之间相互循环引用问题难以解决,因此java并没有使用引用计数算法。
(2).根搜索算法:
通过一系列的名为“GC Root”的对象作为起点,从这些节点向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Root没有任何引用链相连时,则该对象不可达,该对象是不可使用的,垃圾收集器将回收其所占的内存。
主流的商用程序语言C#、java和Lisp都使用根搜素算法进行内存管理。
在java语言中,可作为GC Root的对象包括以下几种对象:
a. java虚拟机栈(栈帧中的本地变量表)中的引用的对象。
b.方法区中的类静态属性引用的对象。
c.方法区中的常量引用的对象。
d.本地方法栈中JNI本地方法的引用对象。
java方法区在Sun HotSpot虚拟机中被称为永久代,很多人认为该部分的内存是不用回收的,java虚拟机规范也没有对该部分内存的垃圾收集做规定,但是方法区中的废弃常量和无用的类还是需要回收以保证永久代不会发生内存溢出。
判断废弃常量的方法:如果常量池中的某个常量没有被任何引用所引用,则该常量是废弃常量。
判断无用的类:
(1).该类的所有实例都已经被回收,即java堆中不存在该类的实例对象。
(2).加载该类的类加载器已经被回收。
(3).该类所对应的java.lang.Class对象没有任何地方被引用,无法在任何地方通过反射机制访问该类的方法。
Java中常用的垃圾收集算法:
(1).标记-清除算法:
最基础的垃圾收集算法,算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成之后统一回收掉所有被标记的对象。
标记-清除算法的缺点有两个:首先,效率问题,标记和清除效率都不高。其次,标记清除之后会产生大量的不连续的内存碎片,空间碎片太多会导致当程序需要为较大对象分配内存时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。
(2).复制算法:
将可用内存按容量分成大小相等的两块,每次只使用其中一块,当这块内存使用完了,就将还存活的对象复制到另一块内存上去,然后把使用过的内存空间一次清理掉。这样使得每次都是对其中一块内存进行回收,内存分配时不用考虑内存碎片等复杂情况,只需要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。
复制算法的缺点显而易见,可使用的内存降为原来一半。
(3).标记-整理算法:
标记-整理算法在标记-清除算法基础上做了改进,标记阶段是相同的标记出所有需要回收的对象,在标记完成之后不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,在移动过程中清理掉可回收的对象,这个过程叫做整理。
标记-整理算法相比标记-清除算法的优点是内存被整理以后不会产生大量不连续内存碎片问题。
复制算法在对象存活率高的情况下就要执行较多的复制操作,效率将会变低,而在对象存活率高的情况下使用标记-整理算法效率会大大提高。
(4).分代收集算法:
根据内存中对象的存活周期不同,将内存划分为几块,java的虚拟机中一般把内存划分为新生代和年老代,当新创建对象时一般在新生代中分配内存空间,当新生代垃圾收集器回收几次之后仍然存活的对象会被移动到年老代内存中,当大对象在新生代中无法找到足够的连续内存时也直接在年老代中创建。

阅读全文

与java虚拟机标记算法相关的资料

热点内容
如何用本机登陆远程服务器地址 浏览:680
黄小鸭解压文具盒 浏览:670
女程序员的转行方法 浏览:881
东风启辰车联网安装文件夹 浏览:524
华为怎么设置app时间锁 浏览:660
后宫app视频怎么下载 浏览:525
如何把图片转换从PDF格式 浏览:259
重写和重载的区别java 浏览:233
expressvpnandroid 浏览:84
储存卡被加密怎么解除 浏览:169
地球怎么压缩直径 浏览:780
金铲铲之战服务器爆满怎么进 浏览:160
同仁堂pdf 浏览:935
如何编译原理课程教材 浏览:730
单片机控制显示器 浏览:776
顶好花app下载怎么找不到 浏览:989
手机命令大全 浏览:808
怎么下邮政银行app 浏览:250
不背单词app单词怎么学习 浏览:481
程序员日常操作搞笑 浏览:382