① 决策树算法原理
决策树是通过一系列规则对数据进行分类的过程。它提供一种在什么条件下会得到什么值的类似规则的方法。决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。
如果不考虑效率等,那么样本所有特征的判断级联起来终会将某一个样本分到一个类终止块上。实际上,样本所有特征中有一些特征在分类时起到决定性作用,决策树的构造过程就是找到这些具有决定性作用的特征,根据其决定性程度来构造一个倒立的树--决定性作用最大的那个特征作为根节点,然后递归找到各分支下子数据集中次大的决定性特征,直至子数据集中所有数据都属于同一类。所以,构造决策树的过程本质上就是根据数据特征将数据集分类的递归过程,我们需要解决的第一个问题就是,当前数据集上哪个特征在划分数据分类时起决定性作用。
一棵决策树的生成过程主要分为以下3个部分:
特征选择:特征选择是指从训练数据中众多的特征中选择一个特征作为当前节点的分裂标准,如何选择特征有着很多不同量化评估标准标准,从而衍生出不同的决策树算法。
决策树生成: 根据选择的特征评估标准,从上至下递归地生成子节点,直到数据集不可分则停止决策树停止生长。 树结构来说,递归结构是最容易理解的方式。
剪枝:决策树容易过拟合,一般来需要剪枝,缩小树结构规模、缓解过拟合。剪枝技术有预剪枝和后剪枝两种。
划分数据集的最大原则是:使无序的数据变的有序。如果一个训练数据中有20个特征,那么选取哪个做划分依据?这就必须采用量化的方法来判断,量化划分方法有多重,其中一项就是“信息论度量信息分类”。基于信息论的决策树算法有ID3、CART和C4.5等算法,其中C4.5和CART两种算法从ID3算法中衍生而来。
CART和C4.5支持数据特征为连续分布时的处理,主要通过使用二元切分来处理连续型变量,即求一个特定的值-分裂值:特征值大于分裂值就走左子树,或者就走右子树。这个分裂值的选取的原则是使得划分后的子树中的“混乱程度”降低,具体到C4.5和CART算法则有不同的定义方式。
ID3算法由Ross Quinlan发明,建立在“奥卡姆剃刀”的基础上:越是小型的决策树越优于大的决策树(be simple简单理论)。ID3算法中根据信息论的信息增益评估和选择特征,每次选择信息增益最大的特征做判断模块。ID3算法可用于划分标称型数据集,没有剪枝的过程,为了去除过度数据匹配的问题,可通过裁剪合并相邻的无法产生大量信息增益的叶子节点(例如设置信息增益阀值)。使用信息增益的话其实是有一个缺点,那就是它偏向于具有大量值的属性--就是说在训练集中,某个属性所取的不同值的个数越多,那么越有可能拿它来作为分裂属性,而这样做有时候是没有意义的,另外ID3不能处理连续分布的数据特征,于是就有了C4.5算法。CART算法也支持连续分布的数据特征。
C4.5是ID3的一个改进算法,继承了ID3算法的优点。C4.5算法用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足在树构造过程中进行剪枝;能够完成对连续属性的离散化处理;能够对不完整数据进行处理。C4.5算法产生的分类规则易于理解、准确率较高;但效率低,因树构造过程中,需要对数据集进行多次的顺序扫描和排序。也是因为必须多次数据集扫描,C4.5只适合于能够驻留于内存的数据集。
CART算法的全称是Classification And Regression Tree,采用的是Gini指数(选Gini指数最小的特征s)作为分裂标准,同时它也是包含后剪枝操作。ID3算法和C4.5算法虽然在对训练样本集的学习中可以尽可能多地挖掘信息,但其生成的决策树分支较大,规模较大。为了简化决策树的规模,提高生成决策树的效率,就出现了根据GINI系数来选择测试属性的决策树算法CART。
决策树算法的优点:
(1)便于理解和解释,树的结构可以可视化出来
(2)基本不需要预处理,不需要提前归一化,处理缺失值
(3)使用决策树预测的代价是O(log2m),m为样本数
(4)能够处理数值型数据和分类数据
(5)可以处理多维度输出的分类问题
(6)可以通过数值统计测试来验证该模型,这使解释验证该模型的可靠性成为可能
(7)即使该模型假设的结果与真实模型所提供的数据有些违反,其表现依旧良好
决策树算法的缺点:
(1)决策树模型容易产生一个过于复杂的模型,这样的模型对数据的泛化性能会很差。这就是所谓的过拟合.一些策略像剪枝、设置叶节点所需的最小样本数或设置数的最大深度是避免出现该问题最为有效地方法。
(2)决策树可能是不稳定的,因为数据中的微小变化可能会导致完全不同的树生成。这个问题可以通过决策树的集成来得到缓解。
(3)在多方面性能最优和简单化概念的要求下,学习一棵最优决策树通常是一个NP难问题。因此,实际的决策树学习算法是基于启发式算法,例如在每个节点进行局部最优决策的贪心算法。这样的算法不能保证返回全局最优决策树。这个问题可以通过集成学习来训练多棵决策树来缓解,这多棵决策树一般通过对特征和样本有放回的随机采样来生成。
(4)有些概念很难被决策树学习到,因为决策树很难清楚的表述这些概念。例如XOR,奇偶或者复用器的问题。
(5)如果某些类在问题中占主导地位会使得创建的决策树有偏差。因此,我们建议在拟合前先对数据集进行平衡。
(1)当数据的特征维度很高而数据量又很少的时候,这样的数据在构建决策树的时候往往会过拟合。所以我们要控制样本数量和特征的之间正确的比率;
(2)在构建决策树之前,可以考虑预先执行降维技术(如PCA,ICA或特征选择),以使我们生成的树更有可能找到具有辨别力的特征;
(3)在训练一棵树的时候,可以先设置max_depth=3来将树可视化出来,以便我们找到树是怎样拟合我们数据的感觉,然后在增加我们树的深度;
(4)树每增加一层,填充所需的样本数量是原来的2倍,比如我们设置了最小叶节点的样本数量,当我们的树层数增加一层的时候,所需的样本数量就会翻倍,所以我们要控制好树的最大深度,防止过拟合;
(5)使用min_samples_split(节点可以切分时拥有的最小样本数) 和 min_samples_leaf(最小叶节点数)来控制叶节点的样本数量。这两个值设置的很小通常意味着我们的树过拟合了,而设置的很大意味着我们树预测的精度又会降低。通常设置min_samples_leaf=5;
(6)当树的类比不平衡的时候,在训练之前一定要先平很数据集,防止一些类别大的类主宰了决策树。可以通过采样的方法将各个类别的样本数量到大致相等,或者最好是将每个类的样本权重之和(sample_weight)规范化为相同的值。另请注意,基于权重的预剪枝标准(如min_weight_fraction_leaf)将比不知道样本权重的标准(如min_samples_leaf)更少偏向主导类别。
(7)如果样本是带权重的,使用基于权重的预剪枝标准将更简单的去优化树结构,如mn_weight_fraction_leaf,这确保了叶节点至少包含了样本权值总体总和的一小部分;
(8)在sklearn中所有决策树使用的数据都是np.float32类型的内部数组。如果训练数据不是这种格式,则将复制数据集,这样会浪费计算机资源。
(9)如果输入矩阵X非常稀疏,建议在调用fit函数和稀疏csr_matrix之前转换为稀疏csc_matrix,然后再调用predict。 当特征在大多数样本中具有零值时,与密集矩阵相比,稀疏矩阵输入的训练时间可以快几个数量级。
② 5.10 决策树与ID3算法
https://blog.csdn.net/dorisi_h_n_q/article/details/82787295
决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。决策过程是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。
决策树的关键步骤是分裂属性。就是在某节点处按某一特征属性的不同划分构造不同的分支,目标是让各个分裂子集尽可能地“纯”。即让一个分裂子集中待分类项属于同一类别。
简而言之,决策树的划分原则就是:将无序的数据变得更加有序
分裂属性分为三种不同的情况 :
构造决策树的关键性内容是进行属性选择度量,属性选择度量(找一种计算方式来衡量怎么划分更划算)是一种选择分裂准则,它决定了拓扑结构及分裂点split_point的选择。
属性选择度量算法有很多,一般使用自顶向下递归分治法,并采用不回溯的贪心策略。这里介绍常用的ID3算法。
贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,所做出的是在某种意义上的局部最优解。
此概念最早起源于物理学,是用来度量一个热力学系统的无序程度。
而在信息学里面,熵是对不确定性的度量。
在1948年,香农引入了信息熵,将其定义为离散随机事件出现的概率,一个系统越是有序,信息熵就越低,反之一个系统越是混乱,它的信息熵就越高。所以信息熵可以被认为是系统有序化程度的一个度量。
熵定义为信息的期望值,在明晰这个概念之前,我们必须知道信息的定义。如果待分类的事务可能划分在多个分类之中,则符号x的信息定义为:
在划分数据集之前之后信息发生的变化称为信息增益。
知道如何计算信息增益,就可计算每个特征值划分数据集获得的信息增益,获得信息增益最高的特征就是最好的选择。
条件熵 表示在已知随机变量的条件下随机变量的不确定性,随机变量X给定的条件下随机变量Y的条
件熵(conditional entropy) ,定义X给定条件下Y的条件概率分布的熵对X的数学期望:
根据上面公式,我们假设将训练集D按属性A进行划分,则A对D划分的期望信息为
则信息增益为如下两者的差值
ID3算法就是在每次需要分裂时,计算每个属性的增益率,然后选择增益率最大的属性进行分裂
步骤:1. 对当前样本集合,计算所有属性的信息增益;
是最原始的决策树分类算法,基本流程是,从一棵空数出发,不断的从决策表选取属性加入数的生长过程中,直到决策树可以满足分类要求为止。CLS算法存在的主要问题是在新增属性选取时有很大的随机性。ID3算法是对CLS算法的改进,主要是摒弃了属性选择的随机性。
基于ID3算法的改进,主要包括:使用信息增益比替换了信息增益下降度作为属性选择的标准;在决策树构造的同时进行剪枝操作;避免了树的过度拟合情况;可以对不完整属性和连续型数据进行处理;使用k交叉验证降低了计算复杂度;针对数据构成形式,提升了算法的普适性。
信息增益值的大小相对于训练数据集而言的,并没有绝对意义,在分类问题困难时,也就是说在训练数据集经验熵大的时候,信息增益值会偏大,反之信息增益值会偏小,使用信息增益比可以对这个问题进行校正,这是特征选择
的另一个标准。
特征对训练数据集的信息增益比定义为其信息增益gR( D,A) 与训练数据集的经验熵g(D,A)之比 :
gR(D,A) = g(D,A) / H(D)
sklearn的决策树模型就是一个CART树。是一种二分递归分割技术,把当前样本划分为两个子样本,使得生成的每个非叶子节点都有两个分支,因此,CART算法生成的决策树是结构简洁的二叉树。
分类回归树算法(Classification and Regression Trees,简称CART算法)是一种基于二分递归分割技术的算法。该算法是将当前的样本集,分为两个样本子集,这样做就使得每一个非叶子节点最多只有两个分支。因此,使用CART
算法所建立的决策树是一棵二叉树,树的结构简单,与其它决策树算法相比,由该算法生成的决策树模型分类规则较少。
CART分类算法的基本思想是:对训练样本集进行递归划分自变量空间,并依次建立决策树模型,然后采用验证数据的方法进行树枝修剪,从而得到一颗符合要求的决策树分类模型。
CART分类算法和C4.5算法一样既可以处理离散型数据,也可以处理连续型数据。CART分类算法是根据基尼(gini)系
数来选择测试属性,gini系数的值越小,划分效果越好。设样本集合为T,则T的gini系数值可由下式计算:
CART算法优点:除了具有一般决策树的高准确性、高效性、模式简单等特点外,还具有一些自身的特点。
如,CART算法对目标变量和预测变量在概率分布上没有要求,这样就避免了因目标变量与预测变量概率分布的不同造成的结果;CART算法能够处理空缺值,这样就避免了因空缺值造成的偏差;CART算法能够处理孤立的叶子结点,这样可以避免因为数据集中与其它数据集具有不同的属性的数据对进一步分支产生影响;CART算法使用的是二元分支,能够充分地运用数据集中的全部数据,进而发现全部树的结构;比其它模型更容易理解,从模型中得到的规则能获得非常直观的解释。
CART算法缺点:CART算法是一种大容量样本集挖掘算法,当样本集比较小时不够稳定;要求被选择的属性只能产生两个子结点,当类别过多时,错误可能增加得比较快。
sklearn.tree.DecisionTreeClassifier
1.安装graphviz.msi , 一路next即可
ID3算法就是在每次需要分裂时,计算每个属性的增益率,然后选择增益率最大的属性进行分裂
按照好友密度划分的信息增益:
按照是否使用真实头像H划分的信息增益
**所以,按先按好友密度划分的信息增益比按真实头像划分的大。应先按好友密度划分。
③ 决策树(Decision Tree)
通俗来说,决策树分类的思想类似于找对象。现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话:
女儿:多大年纪了?
母亲:26。
女儿:长的帅不帅?
母亲:挺帅的。
女儿:收入高不?
母亲:不算很高,中等情况。
女儿:是公务员不?
母亲:是,在税务局上班呢。
女儿:那好,我去见见。
这个女孩的决策过程就是典型的分类树决策。相当于通过年龄、长相、收入和是否公务员对将男人分为两个类别:见和不见。假设这个女孩对男人的要求是:30岁以下、长相中等以上并且是高收入者或中等以上收入的公务员,图1表示了女孩的决策逻辑。
如果你作为一个女生,你会优先考虑哪个条件:长相?收入?还是年龄。在考虑年龄条件时使用25岁为划分点,还是35岁为划分点。有这么多条件,用哪个条件特征先做if,哪个条件特征后做if比较优呢?还有怎么确定用特征中的哪个数值作为划分的标准。这就是决策树机器学习算法的关键了。
首先,我们需要熟悉信息论中熵的概念。熵度量了事物的不确定性,越不确定的事物,它的熵就越大。具体的,随机变量X的熵的表达式如下:
如抛一枚硬币为事件 , , ,
掷一枚骰子为事件 , ,
,显然掷骰子的不确定性比投硬币的不确定性要高。
熟悉了单一变量的熵,很容易推广到多个个变量的联合熵,这里给出两个变量X和Y的联合熵表达式:
有了联合熵,又可以得到条件熵的表达式H(X|Y),条件熵类似于条件概率,它度量了我们在知道Y以后X剩下的不确定性。表达式:
我们刚才提到 度量了 的不确定性,条件熵 度量了我们在知道 以后 剩下的不确定性,那么 呢?它度量了 在知道 以后不确定性减少程度,这个度量我们在信息论中称为互信息,记为 。
信息熵 ,联合熵 ,条件熵 ,互信息 之间的关系由图2所示:
在决策树的ID3算法中,互信息 被称为信息增益。ID3算法就是用信息增益来判断当前节点应该用什么特征来构建决策树。信息增益大,则越适合用来分类。
下面我们用SNS社区中不真实账号检测的例子说明如何使用ID3算法构造决策树。为了简单起见,我们假设训练集合包含10个元素:
设L、F、H和D表示日志密度、好友密度、是否使用真实头像和账号是否真实,下面计算各属性的信息增益:
因此日志密度的信息增益是0.276。用同样方法得到H和F的信息增益分别为0.033和0.553。因为F具有最大的信息增益,所以第一次分裂选择F为分裂属性,分裂后的结果图3表示:
在上图的基础上,再递归使用这个方法计算子节点的分裂属性,最终就可以得到整个决策树。
但是ID3算法中还存在着一些不足之处:
1.ID3没有考虑连续特征,比如长度,密度都是连续值,无法在ID3运用。这大大限制了ID3的用途。
2.ID3采用信息增益大的特征优先建立决策树的节点。很快就被人发现,在相同条件下,取值比较多的特征比取值少的特征信息增益大。比如一个变量有2个值,各为 ,另一个变量为3个值,各为 ,其实他们都是完全不确定的变量,但是取3个值的比取2个值的信息增益大。(信息增益反映的给定一个条件以后不确定性减少的程度,必然是分得越细的数据集确定性更高,也就是条件熵越小,信息增益越大)如河校正这个问题呢?为了解决这些问题我们有了C4.5算法。
对于第一个问题,不能处理连续特征, C4.5的思路是将连续的特征离散化。比如m个样本的连续特征A有m个,从小到大排列为 。则C4.5取相邻两样本值的平均数,一共取得m-1个划分点,其中第i个划分点 表示为: 。对于这m-1个点,分别计算以该点作为二元分类点时的信息增益。选择信息增益最大的点作为该连续特征的二元离散分类点。比如取到的增益最大的点为 ,取大于 为类别1,小于 为类别2。这样我们就做到了连续特征的离散化。
对于第二个问题,信息增益作为标准容易偏向于取值较多的特征。C4.5中提出了信息增益比:
即特征 的对数据集 的信息增益与特征 信息熵的比,信息增益比越大的特征和划分点,分类效果越好。某特征中值得种类越多,特征对应的特征熵越大,它作为分母,可以校正信息增益导致的问题。
回到上面的例子:
同样可得: , 。
因为F具有最大的信息增益比,所以第一次分裂选择F为分裂属性,分裂后的结果图3表示。
再递归使用这个方法计算子节点的分裂属性,最终就可以得到整个决策树。
看完上述材料,我们知道在ID3算法中我们使用了信息增益来选择特征,信息增益大的优先选择。在C4.5算法中,采用了信息增益比来选择特征,以减少信息增益容易选择特征值种类多的特征的问题。但是无论是ID3还是C4.5,都是基于信息论的熵模型的,这里面会涉及大量的对数运算。能不能简化模型同时也不至于完全丢失熵模型的优点呢?有!CART分类树算法使用基尼系数来代替信息增益比,基尼系数代表了模型的不纯度,基尼系数越小,则不纯度越低,特征越好。这和信息增益(比)是相反的。
在分类问题中,假设有 个类别,第 个类别的概率为 ,则基尼系数为:
对于给定的样本 ,假设有 个类别,第 个类别的数量为 ,则样本的基尼系数为:
特别的,对于样本D,如果根据特征A的某个值a,把D分成D1和D2两部分,则在特征A的条件下,D的基尼系数为:
回到上面的例子:
同理得: , 。
因为L具有最小的基尼系数,所以第一次分裂选择L为分裂属性。
再递归使用这个方法计算子节点的分裂属性,最终就可以得到整个决策树。
小伙伴们如果觉得文章还行的请点个赞呦!!同时觉得文章哪里有问题的可以评论一下 谢谢你!
④ 决策树算法
决策树算法的算法理论和应用场景
算法理论:
我了解的决策树算法,主要有三种,最早期的ID3,再到后来的C4.5和CART这三种算法。
这三种算法的大致框架近似。
决策树的学习过程
1.特征选择
在训练数据中 众多X中选择一个特征作为当前节点分裂的标准。如何选择特征有着很多不同量化评估标准,从而衍生出不同的决策树算法。
2.决策树生成
根据选择的特征评估标准,从上至下递归生成子节点,直到数据集不可分或者最小节点满足阈值,此时决策树停止生长。
3.剪枝
决策树极其容易过拟合,一般需要通过剪枝,缩小树结构规模、缓解过拟合。剪枝技术有前剪枝和后剪枝两种。
有些算法用剪枝过程,有些没有,如ID3。
预剪枝:对每个结点划分前先进行估计,若当前结点的划分不能带来决策树的泛化性能的提升,则停止划分,并标记为叶结点。
后剪枝:现从训练集生成一棵完整的决策树,然后自底向上对非叶子结点进行考察,若该结点对应的子树用叶结点能带来决策树泛化性能的提升,则将该子树替换为叶结点。
但不管是预剪枝还是后剪枝都是用验证集的数据进行评估。
ID3算法是最早成型的决策树算法。ID3的算法核心是在决策树各个节点上应用信息增益准则来选择特征,递归构建决策树。缺点是,在选择分裂变量时容易选择分类多的特征,如ID值【值越多、分叉越多,子节点的不纯度就越小,信息增益就越大】。
ID3之所以无法 处理缺失值、无法处理连续值、不剪纸等情况,主要是当时的重点并不是这些。
C4.5算法与ID3近似,只是分裂标准从 信息增益 转变成 信息增益率。可以处理连续值,含剪枝,可以处理缺失值,这里的做法多是 概率权重。
CART:1.可以处理连续值 2.可以进行缺失值处理 3.支持剪枝 4.可以分类可以回归。
缺失值的处理是 作为一个单独的类别进行分类。
建立CART树
我们的算法从根节点开始,用训练集递归的建立CART树。
1) 对于当前节点的数据集为D,如果样本个数小于阈值或者没有特征,则返回决策子树,当前节点停止递归。
2) 计算样本集D的基尼系数, 如果基尼系数小于阈值 (说明已经很纯了!!不需要再分了!!),则返回决策树子树,当前节点停止递归。
3) 计算当前节点现有的各个特征的各个特征值对数据集D的基尼系数。
4) 在计算出来的各个特征的各个特征值对数据集D的基尼系数中,选择 基尼系数最小的特征A和对应的特征值a。根据这个最优特征和最优特征值,把数据集划分成两部分D1和D2,同时建立当前节点的左右节点,做节点的数据集D为D1,右节点的数据集D为D2。 (注:注意是二叉树,故这里的D1和D2是有集合关系的,D2=D-D1)
5) 对左右的子节点递归的调用1-4步,生成决策树。
CART采用的办法是后剪枝法,即先生成决策树,然后产生所有可能的剪枝后的CART树,然后使用交叉验证来检验各种剪枝的效果,选择泛化能力最好的剪枝策略。
应用场景
比如欺诈问题中,通过决策树算法简单分类,默认是CART的分类树,默认不剪枝。然后在出图后,自行选择合适的叶节点进行拒绝操作。
这个不剪枝是因为欺诈问题的特殊性,欺诈问题一般而言较少,如数据的万几水平,即正样本少,而整个欺诈问题需要解决的速度较快。此时只能根据业务要求,迅速针对已有的正样本情况,在控制准确率的前提下,尽可能提高召回率。这种情况下,可以使用决策树来简单应用,这个可以替代原本手工选择特征及特征阈值的情况。
⑤ 为什么id3树不能处理连续性属性
ID3算法是决策树的一个经典的构造算法,在一段时期内曾是同类研究工作的比较对象,但通过近些年国内外学者的研究,ID3算法也暴露出一些问题,具体如下:
(1)信息增益的计算依赖于特征数目较多的特征,而属性取值最多的属性并不一定最优。
(2)ID3是非递增算法。
(3)ID3是单变量决策树(在分枝节点上只考虑单个属性),许多复杂概念的表达困难,属性相互关系强调不够,容易导致决策树中子树的重复或有些属性在决策树的某一路径上被检验多次。
(4)抗噪性差,训练例子中正例和反例的比例较难控制。
于是Quilan改进了ID3,提出了C4.5算法。C4.5算法现在已经成为最经典的决策树构造算法,排名数据挖掘十大经典算法之首,下一篇文章将重点讨论。
决策树的经典构造算法——C4.5(WEKA中称J48)
由于ID3算法在实际应用中存在一些问题,于是Quilan提出了C4.5算法,严格上说C4.5只能是ID3的一个改进算法。
C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:
1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;
2) 在树构造过程中进行剪枝;
3) 能够完成对连续属性的离散化处理;
4) 能够对不完整数据进行处理。
C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。此外,C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。
另外,无论是ID3还是C4.5最好在小数据集上使用,决策树分类一般只试用于小数据。当属性取值很多时最好选择C4.5算法,ID3得出的效果会非常差。
⑥ 常见决策树分类算法都有哪些
在机器学习中,有一个体系叫做决策树,决策树能够解决很多问题。在决策树中,也有很多需要我们去学习的算法,要知道,在决策树中,每一个算法都是实用的算法,所以了解决策树中的算法对我们是有很大的帮助的。在这篇文章中我们就给大家介绍一下关于决策树分类的算法,希望能够帮助大家更好地去理解决策树。
1.C4.5算法
C4.5算法就是基于ID3算法的改进,这种算法主要包括的内容就是使用信息增益率替换了信息增益下降度作为属性选择的标准;在决策树构造的同时进行剪枝操作;避免了树的过度拟合情况;可以对不完整属性和连续型数据进行处理;使用k交叉验证降低了计算复杂度;针对数据构成形式,提升了算法的普适性等内容,这种算法是一个十分使用的算法。
2.CLS算法
CLS算法就是最原始的决策树分类算法,基本流程是,从一棵空数出发,不断的从决策表选取属性加入数的生长过程中,直到决策树可以满足分类要求为止。CLS算法存在的主要问题是在新增属性选取时有很大的随机性。
3.ID3算法
ID3算法就是对CLS算法的最大改进是摒弃了属性选择的随机性,利用信息熵的下降速度作为属性选择的度量。ID3是一种基于信息熵的决策树分类学习算法,以信息增益和信息熵,作为对象分类的衡量标准。ID3算法结构简单、学习能力强、分类速度快适合大规模数据分类。但同时由于信息增益的不稳定性,容易倾向于众数属性导致过度拟合,算法抗干扰能力差。
3.1.ID3算法的优缺点
ID3算法的优点就是方法简单、计算量小、理论清晰、学习能力较强、比较适用于处理规模较大的学习问题。缺点就是倾向于选择那些属性取值比较多的属性,在实际的应用中往往取值比较多的属性对分类没有太大价值、不能对连续属性进行处理、对噪声数据比较敏感、需计算每一个属性的信息增益值、计算代价较高。
3.2.ID3算法的核心思想
根据样本子集属性取值的信息增益值的大小来选择决策属性,并根据该属性的不同取值生成决策树的分支,再对子集进行递归调用该方法,当所有子集的数据都只包含于同一个类别时结束。最后,根据生成的决策树模型,对新的、未知类别的数据对象进行分类。
在这篇文章中我们给大家介绍了决策树分类算法的具体内容,包括有很多种算法。从中我们不难发现决策树的算法都是经过不不断的改造趋于成熟的。所以说,机器学习的发展在某种程度上就是由于这些算法的进步而来的。
⑦ 决策树之ID3算法及其python实现
决策树之ID3算法及其Python实现
1. 决策树背景知识
??决策树是数据挖掘中最重要且最常用的方法之一,主要应用于数据挖掘中的分类和预测。决策树是知识的一种呈现方式,决策树中从顶点到每个结点的路径都是一条分类规则。决策树算法最先基于信息论发展起来,经过几十年发展,目前常用的算法有:ID3、C4.5、CART算法等。
2. 决策树一般构建过程
??构建决策树是一个自顶向下的过程。树的生长过程是一个不断把数据进行切分细分的过程,每一次切分都会产生一个数据子集对应的节点。从包含所有数据的根节点开始,根据选取分裂属性的属性值把训练集划分成不同的数据子集,生成由每个训练数据子集对应新的非叶子节点。对生成的非叶子节点再重复以上过程,直到满足特定的终止条件,停止对数据子集划分,生成数据子集对应的叶子节点,即所需类别。测试集在决策树构建完成后检验其性能。如果性能不达标,我们需要对决策树算法进行改善,直到达到预期的性能指标。
??注:分裂属性的选取是决策树生产过程中的关键,它决定了生成的决策树的性能、结构。分裂属性选择的评判标准是决策树算法之间的根本区别。
3. ID3算法分裂属性的选择——信息增益
??属性的选择是决策树算法中的核心。是对决策树的结构、性能起到决定性的作用。ID3算法基于信息增益的分裂属性选择。基于信息增益的属性选择是指以信息熵的下降速度作为选择属性的方法。它以的信息论为基础,选择具有最高信息增益的属性作为当前节点的分裂属性。选择该属性作为分裂属性后,使得分裂后的样本的信息量最大,不确定性最小,即熵最小。
??信息增益的定义为变化前后熵的差值,而熵的定义为信息的期望值,因此在了解熵和信息增益之前,我们需要了解信息的定义。
??信息:分类标签xi 在样本集 S 中出现的频率记为 p(xi),则 xi 的信息定义为:?log2p(xi) 。
??分裂之前样本集的熵:E(S)=?∑Ni=1p(xi)log2p(xi),其中 N 为分类标签的个数。
??通过属性A分裂之后样本集的熵:EA(S)=?∑mj=1|Sj||S|E(Sj),其中 m 代表原始样本集通过属性A的属性值划分为 m 个子样本集,|Sj| 表示第j个子样本集中样本数量,|S| 表示分裂之前数据集中样本总数量。
??通过属性A分裂之后样本集的信息增益:InfoGain(S,A)=E(S)?EA(S)
??注:分裂属性的选择标准为:分裂前后信息增益越大越好,即分裂后的熵越小越好。
4. ID3算法
??ID3算法是一种基于信息增益属性选择的决策树学习方法。核心思想是:通过计算属性的信息增益来选择决策树各级节点上的分裂属性,使得在每一个非叶子节点进行测试时,获得关于被测试样本最大的类别信息。基本方法是:计算所有的属性,选择信息增益最大的属性分裂产生决策树节点,基于该属性的不同属性值建立各分支,再对各分支的子集递归调用该方法建立子节点的分支,直到所有子集仅包括同一类别或没有可分裂的属性为止。由此得到一棵决策树,可用来对新样本数据进行分类。
ID3算法流程:
(1) 创建一个初始节点。如果该节点中的样本都在同一类别,则算法终止,把该节点标记为叶节点,并用该类别标记。
(2) 否则,依据算法选取信息增益最大的属性,该属性作为该节点的分裂属性。
(3) 对该分裂属性中的每一个值,延伸相应的一个分支,并依据属性值划分样本。
(4) 使用同样的过程,自顶向下的递归,直到满足下面三个条件中的一个时就停止递归。
??A、待分裂节点的所有样本同属于一类。
??B、训练样本集中所有样本均完成分类。
??C、所有属性均被作为分裂属性执行一次。若此时,叶子结点中仍有属于不同类别的样本时,选取叶子结点中包含样本最多的类别,作为该叶子结点的分类。
ID3算法优缺点分析
优点:构建决策树的速度比较快,算法实现简单,生成的规则容易理解。
缺点:在属性选择时,倾向于选择那些拥有多个属性值的属性作为分裂属性,而这些属性不一定是最佳分裂属性;不能处理属性值连续的属性;无修剪过程,无法对决策树进行优化,生成的决策树可能存在过度拟合的情况。
⑧ 什么是ID3算法
ID3算法是由Quinlan首先提出的。该算法是以信息论为基础,以信息熵和信息增益度为衡量标准,从而实现对数据的归纳分类。以下是一些信息论的基本概念:
定义1:若存在n个相同概率的消息,则每个消息的概率p是1/n,一个消息传递的信息量为-Log2(1/n)
定义2:若有n个消息,其给定概率分布为P=(p1,p2…pn),则由该分布传递的信息量称为P的熵,记为
。
定义3:若一个记录集合T根据类别属性的值被分成互相独立的类C1C2..Ck,则识别T的一个元素所属哪个类所需要的信息量为Info(T)=I(p),其中P为C1C2…Ck的概率分布,即P=(|C1|/|T|,…..|Ck|/|T|)
定义4:若我们先根据非类别属性X的值将T分成集合T1,T2…Tn,则确定T中一个元素类的信息量可通过确定Ti的加权平均值来得到,即Info(Ti)的加权平均值为:
Info(X, T)=(i=1 to n 求和)((|Ti|/|T|)Info(Ti))
定义5:信息增益度是两个信息量之间的差值,其中一个信息量是需确定T的一个元素的信息量,另一个信息量是在已得到的属性X的值后需确定的T一个元素的信息量,信息增益度公式为:
Gain(X, T)=Info(T)-Info(X, T)
ID3算法计算每个属性的信息增益,并选取具有最高增益的属性作为给定集合的测试属性。对被选取的测试属性创建一个节点,并以该节点的属性标记,对该属性的每个值创建一个分支据此划分样本.
数据描述
所使用的样本数据有一定的要求,ID3是:
描述-属性-值相同的属性必须描述每个例子和有固定数量的价值观。
预定义类-实例的属性必须已经定义的,也就是说,他们不是学习的ID3。
离散类-类必须是尖锐的鲜明。连续类分解成模糊范畴(如金属被“努力,很困难的,灵活的,温柔的,很软”都是不可信的。
足够的例子——因为归纳概括用于(即不可查明)必须选择足够多的测试用例来区分有效模式并消除特殊巧合因素的影响。
属性选择
ID3决定哪些属性如何是最好的。一个统计特性,被称为信息增益,使用熵得到给定属性衡量培训例子带入目标类分开。信息增益最高的信息(信息是最有益的分类)被选择。为了明确增益,我们首先从信息论借用一个定义,叫做熵。每个属性都有一个熵。
⑨ 用python实现红酒数据集的ID3,C4.5和CART算法
ID3算法介绍
ID3算法全称为迭代二叉树3代算法(Iterative Dichotomiser 3)
该算法要先进行特征选择,再生成决策树,其中特征选择是基于“信息增益”最大的原则进行的。
但由于决策树完全基于训练集生成的,有可能对训练集过于“依赖”,即产生过拟合现象。因此在生成决策树后,需要对决策树进行剪枝。剪枝有两种形式,分别为前剪枝(Pre-Pruning)和后剪枝(Post-Pruning),一般采用后剪枝。
信息熵、条件熵和信息增益
信息熵:来自于香农定理,表示信息集合所含信息的平均不确定性。信息熵越大,表示不确定性越大,所含的信息量也就越大。
设x 1 , x 2 , x 3 , . . . x n {x_1, x_2, x_3, ...x_n}x
1
,x
2
,x
3
,...x
n
为信息集合X的n个取值,则x i x_ix
i
的概率:
P ( X = i ) = p i , i = 1 , 2 , 3 , . . . , n P(X=i) = p_i, i=1,2,3,...,n
P(X=i)=p
i
,i=1,2,3,...,n
信息集合X的信息熵为:
H ( X ) = − ∑ i = 1 n p i log p i H(X) =- \sum_{i=1}^{n}{p_i}\log{p_i}
H(X)=−
i=1
∑
n
p
i
logp
i
条件熵:指已知某个随机变量的情况下,信息集合的信息熵。
设信息集合X中有y 1 , y 2 , y 3 , . . . y m {y_1, y_2, y_3, ...y_m}y
1
,y
2
,y
3
,...y
m
组成的随机变量集合Y,则随机变量(X,Y)的联合概率分布为
P ( x = i , y = j ) = p i j P(x=i,y=j) = p_{ij}
P(x=i,y=j)=p
ij
条件熵:
H ( X ∣ Y ) = ∑ j = 1 m p ( y j ) H ( X ∣ y j ) H(X|Y) = \sum_{j=1}^m{p(y_j)H(X|y_j)}
H(X∣Y)=
j=1
∑
m
p(y
j
)H(X∣y
j
)
由
H ( X ∣ y j ) = − ∑ j = 1 m p ( y j ) ∑ i = 1 n p ( x i ∣ y j ) log p ( x i ∣ y j ) H(X|y_j) = - \sum_{j=1}^m{p(y_j)}\sum_{i=1}^n{p(x_i|y_j)}\log{p(x_i|y_j)}
H(X∣y
j
)=−
j=1
∑
m
p(y
j
)
i=1
∑
n
p(x
i
∣y
j
)logp(x
i
∣y
j
)
和贝叶斯公式:
p ( x i y j ) = p ( x i ∣ y j ) p ( y j ) p(x_iy_j) = p(x_i|y_j)p(y_j)
p(x
i
y
j
)=p(x
i
∣y
j
)p(y
j
)
可以化简条件熵的计算公式为:
H ( X ∣ Y ) = ∑ j = 1 m ∑ i = 1 n p ( x i , y j ) log p ( x i ) p ( x i , y j ) H(X|Y) = \sum_{j=1}^m \sum_{i=1}^n{p(x_i, y_j)\log\frac{p(x_i)}{p(x_i, y_j)}}
H(X∣Y)=
j=1
∑
m
i=1
∑
n
p(x
i
,y
j
)log
p(x
i
,y
j
)
p(x
i
)
信息增益:信息熵-条件熵,用于衡量在知道已知随机变量后,信息不确定性减小越大。
d ( X , Y ) = H ( X ) − H ( X ∣ Y ) d(X,Y) = H(X) - H(X|Y)
d(X,Y)=H(X)−H(X∣Y)
python代码实现
import numpy as np
import math
def calShannonEnt(dataSet):
""" 计算信息熵 """
labelCountDict = {}
for d in dataSet:
label = d[-1]
if label not in labelCountDict.keys():
labelCountDict[label] = 1
else:
labelCountDict[label] += 1
entropy = 0.0
for l, c in labelCountDict.items():
p = 1.0 * c / len(dataSet)
entropy -= p * math.log(p, 2)
return entropy
def filterSubDataSet(dataSet, colIndex, value):
"""返回colIndex特征列label等于value,并且过滤掉改特征列的数据集"""
subDataSetList = []
for r in dataSet:
if r[colIndex] == value:
newR = r[:colIndex]
newR = np.append(newR, (r[colIndex + 1:]))
subDataSetList.append(newR)
return np.array(subDataSetList)
def chooseFeature(dataSet):
""" 通过计算信息增益选择最合适的特征"""
featureNum = dataSet.shape[1] - 1
entropy = calShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeatureIndex = -1
for i in range(featureNum):
uniqueValues = np.unique(dataSet[:, i])
condition_entropy = 0.0
for v in uniqueValues: #计算条件熵
subDataSet = filterSubDataSet(dataSet, i, v)
p = 1.0 * len(subDataSet) / len(dataSet)
condition_entropy += p * calShannonEnt(subDataSet)
infoGain = entropy - condition_entropy #计算信息增益
if infoGain >= bestInfoGain: #选择最大信息增益
bestInfoGain = infoGain
bestFeatureIndex = i
return bestFeatureIndex
def creatDecisionTree(dataSet, featNames):
""" 通过训练集生成决策树 """
featureName = featNames[:] # 拷贝featNames,此处不能直接用赋值操作,否则新变量会指向旧变量的地址
classList = list(dataSet[:, -1])
if len(set(classList)) == 1: # 只有一个类别
return classList[0]
if dataSet.shape[1] == 1: #当所有特征属性都利用完仍然无法判断样本属于哪一类,此时归为该数据集中数量最多的那一类
return max(set(classList), key=classList.count)
bestFeatureIndex = chooseFeature(dataSet) #选择特征
bestFeatureName = featNames[bestFeatureIndex]
del featureName[bestFeatureIndex] #移除已选特征列
decisionTree = {bestFeatureName: {}}
featureValueUnique = sorted(set(dataSet[:, bestFeatureIndex])) #已选特征列所包含的类别, 通过递归生成决策树
for v in featureValueUnique:
FeatureName = featureName[:]
subDataSet = filterSubDataSet(dataSet, bestFeatureIndex, v)
decisionTree[bestFeatureName][v] = creatDecisionTree(subDataSet, FeatureName)
return decisionTree
def classify(decisionTree, featnames, featList):
""" 使用训练所得的决策树进行分类 """
classLabel = None
root = decisionTree.keys()[0]
firstGenDict = decisionTree[root]
featIndex = featnames.index(root)
for k in firstGenDict.keys():
if featList[featIndex] == k:
if isinstance(firstGenDict[k], dict): #若子节点仍是树,则递归查找
classLabel = classify(firstGenDict[k], featnames, featList)
else:
classLabel = firstGenDict[k]
return classLabel
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
下面用鸢尾花数据集对该算法进行测试。由于ID3算法只能用于标称型数据,因此用在对连续型的数值数据上时,还需要对数据进行离散化,离散化的方法稍后说明,此处为了简化,先使用每一种特征所有连续性数值的中值作为分界点,小于中值的标记为1,大于中值的标记为0。训练1000次,统计准确率均值。
from sklearn import datasets
from sklearn.model_selection import train_test_split
iris = datasets.load_iris()
data = np.c_[iris.data, iris.target]
scoreL = []
for i in range(1000): #对该过程进行10000次
trainData, testData = train_test_split(data) #区分测试集和训练集
featNames = iris.feature_names[:]
for i in range(trainData.shape[1] - 1): #对训练集每个特征,以中值为分界点进行离散化
splitPoint = np.mean(trainData[:, i])
featNames[i] = featNames[i]+'<='+'{:.3f}'.format(splitPoint)
trainData[:, i] = [1 if x <= splitPoint else 0 for x in trainData[:, i]]
testData[:, i] = [1 if x <= splitPoint else 0 for x in testData[:, i]]
decisionTree = creatDecisionTree(trainData, featNames)
classifyLable = [classify(decisionTree, featNames, td) for td in testData]
scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))
print 'score: ', np.mean(scoreL)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
输出结果为:score: 0.7335,即准确率有73%。每次训练和预测的准确率分布如下:
数据离散化
然而,在上例中对特征值离散化的划分点实际上过于“野蛮”,此处介绍一种通过信息增益最大的标准来对数据进行离散化。原理很简单,当信息增益最大时,说明用该点划分能最大程度降低数据集的不确定性。
具体步骤如下:
对每个特征所包含的数值型特征值排序
对相邻两个特征值取均值,这些均值就是待选的划分点
用每一个待选点把该特征的特征值划分成两类,小于该特征点置为1, 大于该特征点置为0,计算此时的条件熵,并计算出信息增益
选择信息使信息增益最大的划分点进行特征离散化
实现代码如下:
def filterRawData(dataSet, colIndex, value, tag):
""" 用于把每个特征的连续值按照区分点分成两类,加入tag参数,可用于标记筛选的是哪一部分数据"""
filterDataList = []
for r in dataSet:
if (tag and r[colIndex] <= value) or ((not tag) and r[colIndex] > value):
newR = r[:colIndex]
newR = np.append(newR, (r[colIndex + 1:]))
filterDataList.append(newR)
return np.array(filterDataList)
def dataDiscretization(dataSet, featName):
""" 对数据每个特征的数值型特征值进行离散化 """
featureNum = dataSet.shape[1] - 1
entropy = calShannonEnt(dataSet)
for featIndex in range(featureNum): #对于每一个特征
uniqueValues = sorted(np.unique(dataSet[:, featIndex]))
meanPoint = []
for i in range(len(uniqueValues) - 1): # 求出相邻两个值的平均值
meanPoint.append(float(uniqueValues[i+1] + uniqueValues[i]) / 2.0)
bestInfoGain = 0.0
bestMeanPoint = -1
for mp in meanPoint: #对于每个划分点
subEntropy = 0.0 #计算该划分点的信息熵
for tag in range(2): #分别划分为两类
subDataSet = filterRawData(dataSet, featIndex, mp, tag)
p = 1.0 * len(subDataSet) / len(dataSet)
subEntropy += p * calShannonEnt(subDataSet)
## 计算信息增益
infoGain = entropy - subEntropy
## 选择最大信息增益
if infoGain >= bestInfoGain:
bestInfoGain = infoGain
bestMeanPoint = mp
featName[featIndex] = featName[featIndex] + "<=" + "{:.3f}".format(bestMeanPoint)
dataSet[:, featIndex] = [1 if x <= bestMeanPoint else 0 for x in dataSet[:, featIndex]]
return dataSet, featName
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
重新对数据进行离散化,并重复该步骤1000次,同时用sklearn中的DecisionTreeClassifier对相同数据进行分类,分别统计平均准确率。运行代码如下:
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
scoreL = []
scoreL_sk = []
for i in range(1000): #对该过程进行1000次
featNames = iris.feature_names[:]
trainData, testData = train_test_split(data) #区分测试集和训练集
trainData_tmp = .(trainData)
testData_tmp = .(testData)
discritizationData, discritizationFeatName= dataDiscretization(trainData, featNames) #根据信息增益离散化
for i in range(testData.shape[1]-1): #根据测试集的区分点离散化训练集
splitPoint = float(discritizationFeatName[i].split('<=')[-1])
testData[:, i] = [1 if x<=splitPoint else 0 for x in testData[:, i]]
decisionTree = creatDecisionTree(trainData, featNames)
classifyLable = [classify(decisionTree, featNames, td) for td in testData]
scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))
clf = DecisionTreeClassifier('entropy')
clf.fit(trainData[:, :-1], trainData[:, -1])
clf.predict(testData[:, :-1])
scoreL_sk.append(clf.score(testData[:, :-1], testData[:, -1]))
print 'score: ', np.mean(scoreL)
print 'score-sk: ', np.mean(scoreL_sk)
fig = plt.figure(figsize=(10, 4))
plt.subplot(1,2,1)
pd.Series(scoreL).hist(grid=False, bins=10)
plt.subplot(1,2,2)
pd.Series(scoreL_sk).hist(grid=False, bins=10)
plt.show()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
两者准确率分别为:
score: 0.7037894736842105
score-sk: 0.7044736842105263
准确率分布如下:
两者的结果非常一样。
(但是。。为什么根据信息熵离散化得到的准确率比直接用均值离散化的准确率还要低啊??哇的哭出声。。)
最后一次决策树图形如下:
决策树剪枝
由于决策树是完全依照训练集生成的,有可能会有过拟合现象,因此一般会对生成的决策树进行剪枝。常用的是通过决策树损失函数剪枝,决策树损失函数表示为:
C a ( T ) = ∑ t = 1 T N t H t ( T ) + α ∣ T ∣ C_a(T) = \sum_{t=1}^TN_tH_t(T) +\alpha|T|
C
a
(T)=
t=1
∑
T
N
t
H
t
(T)+α∣T∣
其中,H t ( T ) H_t(T)H
t
(T)表示叶子节点t的熵值,T表示决策树的深度。前项∑ t = 1 T N t H t ( T ) \sum_{t=1}^TN_tH_t(T)∑
t=1
T
N
t
H
t
(T)是决策树的经验损失函数当随着T的增加,该节点被不停的划分的时候,熵值可以达到最小,然而T的增加会使后项的值增大。决策树损失函数要做的就是在两者之间进行平衡,使得该值最小。
对于决策树损失函数的理解,如何理解决策树的损失函数? - 陶轻松的回答 - 知乎这个回答写得挺好,可以按照答主的思路理解一下
C4.5算法
ID3算法通过信息增益来进行特征选择会有一个比较明显的缺点:即在选择的过程中该算法会优先选择类别较多的属性(这些属性的不确定性小,条件熵小,因此信息增益会大),另外,ID3算法无法解决当每个特征属性中每个分类都只有一个样本的情况(此时每个属性的条件熵都为0)。
C4.5算法ID3算法的改进,它不是依据信息增益进行特征选择,而是依据信息增益率,它添加了特征分裂信息作为惩罚项。定义分裂信息:
S p l i t I n f o ( X , Y ) = − ∑ i n ∣ X i ∣ ∣ X ∣ log ∣ X i ∣ ∣ X ∣ SplitInfo(X, Y) =-\sum_i^n\frac{|X_i|}{|X|}\log\frac{|X_i|}{|X|}
SplitInfo(X,Y)=−
i
∑
n
∣X∣
∣X
i
∣
log
∣X∣
∣X
i
∣
则信息增益率为:
G a i n R a t i o ( X , Y ) = d ( X , Y ) S p l i t I n f o ( X , Y ) GainRatio(X,Y)=\frac{d(X,Y)}{SplitInfo(X, Y)}
GainRatio(X,Y)=
SplitInfo(X,Y)
d(X,Y)
关于ID3和C4.5算法
在学习分类回归决策树算法时,看了不少的资料和博客。关于这两个算法,ID3算法是最早的分类算法,这个算法刚出生的时候其实带有很多缺陷:
无法处理连续性特征数据
特征选取会倾向于分类较多的特征
没有解决过拟合的问题
没有解决缺失值的问题
即该算法出生时是没有带有连续特征离散化、剪枝等步骤的。C4.5作为ID3的改进版本弥补列ID3算法不少的缺陷:
通过信息最大增益的标准离散化连续的特征数据
在选择特征是标准从“最大信息增益”改为“最大信息增益率”
通过加入正则项系数对决策树进行剪枝
对缺失值的处理体现在两个方面:特征选择和生成决策树。初始条件下对每个样本的权重置为1。
特征选择:在选取最优特征时,计算出每个特征的信息增益后,需要乘以一个**“非缺失值样本权重占总样本权重的比例”**作为系数来对比每个特征信息增益的大小
生成决策树:在生成决策树时,对于缺失的样本我们按照一定比例把它归属到每个特征值中,比例为该特征每一个特征值占非缺失数据的比重
关于C4.5和CART回归树
作为ID3的改进版本,C4.5克服了许多缺陷,但是它自身还是存在不少问题:
C4.5的熵运算中涉及了对数运算,在数据量大的时候效率非常低。
C4.5的剪枝过于简单
C4.5只能用于分类运算不能用于回归
当特征有多个特征值是C4.5生成多叉树会使树的深度加深
————————————————
版权声明:本文为CSDN博主“Sarah Huang”的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_44794704/article/details/89406612