1. 算法的时间复杂度取决于什么
算法的时间复杂度取决于问题的规模,待处理数据的初态。
一个语句的频度是指该语句在算法中被重复执行的次数。算法中所有语句的频度之和记为T(n),它是该算法问题规模n的函数,时间复杂度主要分析T(n)的数量级。算法中基本运算(最深层循环内的语句)的频度与Tn)同数量级,因此通常采用算法中基本运算的频度fn)来分析算法的时间复杂度3。
算法的时间复杂度记为:T(n)= O(fn))式中,О 的含义是T(n)的数量级,其严格的数学定义是:若T(n)和fn)是定义在正整数集合上的两个函数,则存在正常数C和n,使得当n≥no时,都满足0≤T(n)≤Cfn)。
算法的时间复杂度不仅依赖于问题的规模n,也取决于待输入数据的性质(如输入数据元素的初始状态)。
2. 算法时间复杂度指的是什么
时间复杂性,又称时间复杂度,算法的时间复杂度是一个函数,它定性描述该算法的运行时间。这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐进的,亦即考察输入值大小趋近无穷时的情况。
空间复杂性介绍
空间复杂性是指计算所需的存储单元数量。隶属于计算复杂性(计算复杂性由空间复杂性和时间复杂性两部分组成)。算法的复杂性是算法运行所需要的计算机资源的量,需要时间资源量称为时间复杂性,需要空间资源的量成为空间复杂性。
一个算法的空间复杂度S(n)定义为该算法所耗费的存储空间,它也是问题规模n的函数。渐近空间复杂度也常常简称为空间复杂度。算法的时间复杂度和空间复杂度合称为算法的复杂度。
3. O(n)是什么
O(n)不是算法,它是一个函数,是一个表征算法时间复杂度的一个函数。
计算机科学中,算法的时间复杂度是一个函数,它定性描述了该算法的运行时间。这是一个关于代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。
使用这种方式时,时间复杂度可被称为是渐近的,它考察当输入值大小趋近无穷时的情况。
(3)算法时间复杂度的表征扩展阅读:
算法复杂度分为时间复杂度和空间复杂度。
其作用: 时间复杂度是指执行算法所需要的计算工作量;
而空间复杂度是指执行这个算法所需要的内存空间。(算法的复杂性体现在运行该算法时的计算机所需资源的多少上,计算机资源最重要的是时间和空间(即寄存器)资源,因此复杂度分为时间和空间复杂度)。
计算方法:
1、一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得T(n)/f(n)的极限值(当n趋近于无穷大时)为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
分析:随着模块n的增大,算法执行的时间的增长率和 f(n) 的增长率成正比,所以 f(n) 越小,算法的时间复杂度越低,算法的效率越高。
2、在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出 T(n) 的同数量级,找出后,f(n) = 该数量级,若 T(n)/f(n) 求极限可得到一常数c,则时间复杂度T(n) = O(f(n))。
则该算法的时间复杂度:T(n) = O(n^3) 注:n^3即是n的3次方。
3、在pascal中比较容易理解,容易计算的方法是:看看有几重for循环,只有一重则时间复杂度为O(n),二重则为O(n^2),依此类推,如果有二分则为O(logn),二分例如快速幂、二分查找,如果一个for循环套一个二分,那么时间复杂度则为O(nlogn)。
4. 算法的时间复杂度是什么
执行一个算法所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。一个算法花费的时间与算法中语句的执行次数成正比例,算法中哪个语句的执行次数多,它花费的时间就多。
1.语句频度在算法中一个语句的执行次数称为语句频度或时间频度,记为T(n)。
2)算法的渐进时间复杂度一般情况下,算法的执行时间T是问题规模n的函数,记作T(n)。要精确地表示算法的运行时间函数常常是很困难的,即使能够给出,也可能是个相当复杂的函数,函数的求解本身也是相当复杂的。为了客观地反映一个算法的执行时间,可以用算法中基本语句的执行次数的数量级来度量算法的工作量,称作算法的渐进时间复杂度,简称时间复杂度,通常用O来表示。
5. 算法的时间复杂度是什么
算法的时间复杂度,是一个用于度量一个算法的运算时间的一个描述,本质是一个函数。
根据这个函数能在不用具体的测试数据来测试的情况下,粗略地估计算法的执行效率,换句话讲时间复杂度表示的只是代码执行时间随数据规模增长的变化趋势。
常用大O来表述,这个函数描述了算法执行所要时间的增长速度,记作f(n)。算法需要执行的运算次数(用函数表示)记作T(n)。存在常数 c 和函数 f(n),使得当 n >= c 时 T(n) <= f(n),记作 T(n) = O(f(n)),其中,n代表数据规模也就是输入的数据。
时间复杂度如何计算
1、常量阶:只要代码的执行时间不随 n 的增大而增长,这样代码的时间复杂度都记作 O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。
2、线性阶、n方阶:一般情况下,如果循环体内循环控制变量为线性增长,那么包含该循环的算法的时间复杂度为O(n),线性阶嵌套线性阶的算法时间复杂度为O(nⁿ),涉及下文乘法法则。
3、线性对数阶:当一个线性阶代码段法嵌套一个对数阶代码段,该算法的时间复杂度为O(nlogn)。
4、指数阶和阶乘阶:根据函数,随着n的增加,运行时间会无限急剧增加,因此效率非常低下。
6. 算法的时间复杂度是指什么
时间复杂性,又称时间复杂度,算法的时间复杂度是一个函数,它定性描述该算法的运行时间。
这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐进的,亦即考察输入值大小趋近无穷时的情况。
相关介绍:
时间复杂度是同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。
空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度,记做S(n)=O(f(n))。比如直接插入排序的时间复杂度是O(n^2),空间复杂度是O(1) 。而一般的递归算法就要有O(n)的空间复杂度了,因为每次递归都要存储返回信息。一个算法的优劣主要从算法的执行时间和所需要占用的存储空间两个方面衡量。
算法的复杂性体现在运行该算法时的计算机所需资源的多少上,计算机资源最重要的是时间和空间(即寄存器)资源,因此复杂度分为时间和空间复杂度。
7. 算法的时间复杂度是指什么
算法的时间复杂度是指:执行程序所需的时间。
一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近无穷大时。
T(n)/f(n)的极限值为不等于零的常数,则称为f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度,简称时间复杂度。比如:
在 T(n)=4nn-2n+2 中,就有f(n)=nn,使得T(n)/f(n)的极限值为4,那么O(f(n)),也就是时间复杂度为O(n*n)。
时间复杂度中大O阶推导是:
推导大O阶就是将算法的所有步骤转换为代数项,然后排除不会对问题的整体复杂度产生较大影响的较低阶常数和系数。
有条理的说,推导大O阶,按照下面的三个规则来推导,得到的结果就是大O表示法:运行时间中所有的加减法常数用常数1代替。只保留最高阶项去除最高项常数。
其他常见复杂度是:
f(n)=nlogn时,时间复杂度为O(nlogn),可以称为nlogn阶。
f(n)=n³时,时间复杂度为O(n³),可以称为立方阶。
f(n)=2ⁿ时,时间复杂度为O(2ⁿ),可以称为指数阶。
f(n)=n!时,时间复杂度为O(n!),可以称为阶乘阶。
f(n)=(√n时,时间复杂度为O(√n),可以称为平方根阶。