❶ 面部表情是指通过 、 和 肌肉的变化来表现各种情绪状态。
面部表情(facial expression)是指通过眼部肌肉、颜面肌肉和口部肌肉的变化来表现各种情绪状态。比如眼睛不但可以传情还可以交流思想,面部表情是一种十分重要的非语言交往手段。艺术家们往往会通过对人物面部表情的描绘,来表现人物内心的情绪和情感,栩栩如生地展现人物的精神风貌。人们也可以用面部表情与人沟通。一个有趣的例子是模仿。人们(和猩猩)在外表上模仿其他人的反应是常见的行为。尤其是当人们感受到他人的忧伤时,自己也会表现出忧伤的样子,这一点曾经被达尔文指出过。这种模仿可能是为了表示同情———我们都体验到了痛苦经历带来的忧伤。
情分类
面部表情可以分为八类:感兴趣—兴奋;高兴—喜欢;惊奇—惊讶;伤心—痛苦;害怕—恐惧;害羞—羞辱;轻蔑—厌恶;生气—愤怒。一般来说,眼睛和口腔附近的肌肉群是面部表情最丰富的部分。
研究案例
面部表情
心理学家埃克曼钻研面部表情与内心真相的关系40年,成绩斐然,学界封他为“人面教皇”,加拿大心理学家多易居说,地球上大概没有比他更高明的识谎专家了。
艾克曼和同僚拍摄了数千个主题的面部表情与内心感情不一的影片,然后精确地分析各个主题人物面部哪些肌肉挤压在一起,挤压的激烈程度如何,次序为何,为时又多久,再一一与内心感情对照,结果发现许多微妙的征象,例如仅仅微笑他就可分为50种类,每一种混杂哪些感情他都有办法分辨出来。
❷ 人脸识别的算法
1、人体面貌识别技术的内容
人体面貌识别技术包含三个部分:
(1) 人体面貌检测
面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:
①参考模板法
首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸;
②人脸规则法
由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸;
③样品学习法
这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器;
④肤色模型法
这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。
⑤特征子脸法
这种方法是将所有面像集合视为一个面像子空间,并基于检测样品与其在子孔间的投影之间的距离判断是否存在面像。
值得提出的是,上述5种方法在实际检测系统中也可综合采用。
(2)人体面貌跟踪
面貌跟踪是指对被检测到的面貌进行动态目标跟踪。具体采用基于模型的方法或基于运动与模型相结合的方法。
此外,利用肤色模型跟踪也不失为一种简单而有效的手段。
(3)人体面貌比对
面貌比对是对被检测到的面貌像进行身份确认或在面像库中进行目标搜索。这实际上就是说,将采样到的面像与库存的面像依次进行比对,并找出最佳的匹配对象。所以,面像的描述决定了面像识别的具体方法与性能。目前主要采用特征向量与面纹模板两种描述方法:
①特征向量法
该方法是先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离等属性,然后再计算出它们的几何特征量,而这些特征量形成一描述该面像的特征向量。
②面纹模板法
该方法是在库中存贮若干标准面像模板或面像器官模板,在进行比对时,将采样面像所有象素与库中所有模板采用归一化相关量度量进行匹配。
此外,还有采用模式识别的自相关网络或特征与模板相结合的方法。
人体面貌识别技术的核心实际为“局部人体特征分析”和“图形/神经识别算法。”这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。一般要求判断时间低于1秒。
2、人体面貌的识别过程
一般分三步:
(1)首先建立人体面貌的面像档案。即用摄像机采集单位人员的人体面貌的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹(Faceprint)编码贮存起来。
(2)获取当前的人体面像
即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。
(3)用当前的面纹编码与档案库存的比对
即将当前的面像的面纹编码与档案库存中的面纹编码进行检索比对。上述的“面纹编码”方式是根据人体面貌脸部的本质特征和开头来工作的。这种面纹编码可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,从而使它可以从百万人中精确地辩认出某个人。
人体面貌的识别过程,利用普通的图像处理设备就能自动、连续、实时地完成。
❸ 可鉴别的多特征联合稀疏表示人脸表情识别方法
中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2015)25-0137-03
人脸的表情包含了人体行为的情感信息和心理信息,这是人们在进行非语言的交流时所采取最有效的手段。人们可以根据表情来充分地将自己的思想以及情感表达出来,同时根据人脸表情来对对方内心世界和对方的态度来加以了解,所以说人脸的表情在日常生活当中扮演着极为重要的角色。表情能够将很多的语言以及声音不能够表达出来的信息给表达出来,其在医疗和语言学以及相关的服务行业中都在发挥着极为重要的作用。
1 人脸表情识别的技术现状
1.1 提取人脸表情特征
由于提取人脸表情特征采取的图像类型不一样,对此我们可以将其分成静态表情的图像特征进行提取以及序列表情的图像特征进行提取这两种。第一种提取的是表情静止时的特征,第二种提取的是表情在运动过程中的特征,对于第一种的提取方法一般为Gabor小波,主成份分析(PCA)以及线性的判断分析(LDA)等的方法;而针对与第二种的提取方法有特征点跟踪,查分图像法以及光流法等。
1)提取静态的表情特征的常用方法
PCA主要是用在抽取原始特征以及降维,这种方法运算的中心思想是把二维的图像转为一维向量,根据从大到小的排列顺序对特征值以及特征向量加以调整,并且通过K-L的变换投影获得正交基,对其加以取舍进而得到人脸的表情特征其子空间。其实际上识别表情的过程就是把测试的样本进行比较投影进表情特征的子空间里,之后再将其跟测试的样本加以比较判定出它的表情类别。Gabor小波这种方法是现在我们比较常用的一种表示特征的方法,它能够有效地将环境噪音加以清除,使提取的图像特征有效加强,主要是通过图像在不同方向不同尺度上的频率信息对图像的特征加以表明。
2)提取变动的表情特征常用的方法
对于序列图像特征加以提取的代表性方法就是光流法。这种方法在1981年被第一次提出,主要是根据对视频图像里的表情特征光流加以计算进而得到每一个特征点的运动情况,这就是表情特征。
第一种提取特征的方法它采集较方便,计算更快捷,但是不能够对更大时间和空间信息加以探知。而第二种提取特征的方法虽可以对运动的表情信息加以提取,进而使得到的识别效果较好,但这种方法其计算的数据量较庞大,且具有很高的重复率,实际的操作当中比较困难。因此从目前来看,提取表情特征应该朝着将各种提取方法相互融合来对信息加以特征提取。
1.2传统的人脸表情识别系统中存在的问题
对于人类表情识别的研究中可以依据人类对不同的表情加以区别上获得启发,但运用计算机的视觉技术准确地对人脸表情进行识别的系统,实际运用中还有很多难题。
1) 不容易建立起理想的人脸表情相关模型
因为人脸是比较柔的,所以把人的表情和情感进行分类,在此基础上再建立一个模型,把人类的表情特征以及情感信息再相对应这就显得十分的困难。
2)表情数据库不完善
现在很多研究的实验结果都是在各自研究团队里研发出来的表情数据库的基础上得到的,我们知道每一个表情库由于噪音或者是光照等环境方面的影响都各不相同,再加上每个表情库里的人脸图像在文化,种族当中都存在着比较大的区别,所以实验的结果应该多次加以重复验证,增加推广能力。
3)学科方法和技术有自身的局限性
尽管我们在对人脸识别的系统中研究工作正在逐步加深,得到了很大的进步,但因为很多的研究者都是自己展开工作,在新技术和新方法将优点充分发挥出来的同时也不可避免地有着自身的局限性,多种技术相互融合上面的工作开展得还比较慢。
2 提取改进LBP的人脸表情特征
局部二元模式(LBP)指的是一个能描述算子的有效图像纹理特征,根据存在于图像中的任意一点和它相邻那点的灰度值中发生的大小关系来判定图像中部分纹理空间构造,从这方面上来看,它有旋转和抗亮度变化的能力。
2.1 原始的LBP算子
LBP一开始先将图像中各个像素点之间的灰度值加以计算,将在各个像素点和跟她相邻的点存在于灰度值上的二值关系加以计算,根据计算后得出的二指关系根据相应规则来形成局部二值的模式,同时将多区域的直方图序列当做这个图像的一个二值模式。
图1 基本的LBP算子计算的过程
一个基本的LBP算子应该是上图1所示那样,将其定义成3*3的窗口,有8个邻域的像素点,把窗口中心点的灰度值对窗口内的像素点其灰度值执行二值化,再依据不同的像素点位置来加权求和,进而得到这个窗口LBP编码值。
2.2 改进的LBP算子
从上面我们可以知道原始的算法自身纹理描述力是很强的,但在特定的局域内,原始LBP算子只考虑到了存在于中心像素点跟邻域的像素点之间灰度值的差异,把中心像素点作用以及邻域像素点其灰度值之间的互相关系忽略掉了,因而造成在某些情况下把局部的结构特点信息有所忽略。如下图2就是某种特定的情况。图2 原始的LBP算子在特定情形中的编码
图2中所产生的11111111主要是对暗点以及会读平坦的区域进行检测,可以说是特征检测器。我们在此基础上,对原始的LBP算子进行改进,根据使一位二值编码增加的方式来加以扩展,提出了多重心化的二值模式也就是MLBP,具体的改进过程如图3所示。
图3 改进的LBP算子计算的过程(P=8、R=1)
由图3中获得的两个8位子编码将其当做独立的两 个MLBP的自编码,继而对所有模式直方图加以计算,根据这个直方图来加以分类或者是识别。LBP具体的算法公式如下:
在这当中,N,R分别表示的是临域点的个数和半径,gc表示的是像素点,gn表示的是它的临域点。根据这个改进的MLBP算子我们可以看出,它根据使一位二值的编码增加的形式,在将原始LBP算子的优势得到保持前提下,将中心像素点作用和邻域像素点二者间灰度值的关系又加以利用。跟原始的相比,改进的算子并没有时特征模式有所增加,而且还可以将原始的算子中没有考虑到的中心像素点和邻域像素点灰度值间关系产生的结构特点提取出来,让其鉴别能力得到提高。
3 人脸识别系统的设计
3.1 系统构成
该系统主要是被硬件平台以及软件开发的平台这两部分构成。硬件平台指的就是那些采集图像的设备和计算机系统,而软件开发的平台就是本文中所描述到的在上述所说的算法中改进开发出来的一种人脸识别的系统。
3.2 系统软件
系统软件的构造。系统软件可以划分成以下两个部分。首先是获取图像,当进入到主界面中时,点击打开图像或者是打开视频,系统初始化的硬件设备能够根据直接打开的静态表情图像或者是视频等,来对人脸表情图像进行获取并将图像显示出来,之后再对人脸开始进行检测和定位。其次,就是提取相应的表情特征并对其进行识别。
下面为了对该系统在进行识别表情时的效果进行验证,本文进行了几组对比实验。先将Gabor跟采样降维相结合的特征提取方式下得出的不同分类器效果加以比较,再将该系统下的分类跟其他的分类器效果进行比较。具体如下图4所示。
图4 不同的分类器下表情识别比较图
在图4中,横坐标1-7分别表示的是生气、厌恶、恐惧、高兴和瓶颈、伤心以及惊奇,数字8表示的是所有的表情。
结论:
根据图4我们可看出,在特征提取条件相同情况下,整体实验数据中稀疏表示明显比另两种分类型的性能要好,而且BP神经网络分类效果也非常良好,但是最近邻之间的分类器的精准度没有前两种表现得好。
该文中运用的这种提取特征方法的效果明显比Gabor跟采样降维相结合的方法效果要好。
上面进行的对比实验,充分验证了本文中的分类系统的优越感。下面跟文献中已经有的方案进行对比,具体如下图5所示。
[不同人脸表情识别方法\&识别率\&Gabor+弹性模板匹配[5]\&80%\&特征块PCA+最近邻分析器[8]\&75.45%\&本文方法\&85.71%\&]
图5 跟文献中含有的方案进行比较效果
根据图5所示,我们可以看出,跟其他文献中采用的方法来看,本文采用的方法在表情识别上有着明显的优势。具体的我们还可以从下图6的人脸表情识别界面中看到本文中设计的人脸识别系统具体应用情况。
图6 人脸表情识别的界面
3.3简析人脸识别算法
1)优点
这种算法将以前在迭代过程中的迭矩阵计算大大简化,而且在识别的速度上也得到了有效的提升,能跟随光照的变化进行有效的识别,对人脸进行识别的主要困难就是遮挡、单样本等这些问题,而稀疏表示在这些问题的前提下仍然能具备潜在的发展力,我们可以进一步对其加以研究,这也是现在研究的一个重点方向。
2) 缺点
在上面实验中我们发现其分类器表现出了良好的使用效果,但这种算法也存在着一些不足之处,由于数据量不断地增加,稀疏表示分类需要的时间也会随之而增加。此外,这种表示方法虽然在速度上明显优于其他,但是其产生的识别率并不是很高,也就是说不能准确地对表情进行有效识别。
4 展望人脸表情识别的系统
这种新型的对人脸表情加以识别的系统利于将人们的生活品质提高。当人们一旦从比较寒冷的地方或者是比较炎热的地方回到室内时,可以根据这个表情识别的系统快速地把人们面部表情与最佳温度中人脸表情相对比,进而让空调自动把室内的温度调转至最佳。此外,在医疗行业中,可以将表情识别运用到电子护士护理中来。尤其是对于那些重症病人,在对其进行治疗的过程中可以根据这个具有表情分析能力的机器人护士对病人实行实时的看管护理。除以上几点外,在对儿童实行教育时也可以将其应用其中,可以根据儿童在某种情形下所产生的表情以及行为进行具体分析和观察,有效挖掘他们潜在的气质和能力,引导我们更好地对儿童实行教育,促进儿童的健康成长。
5 结语
综上所述,对人脸表情加以识别是具有很大挑战的新兴课题,笔者主要对存在于人脸表情识别算法中的问题进行了简要的分析,并在此基础上提出了改进的算法进而提出了对人脸表情加以识别的系统。但从目前来看,我国关于人脸识别的系统研究当中还存在着一些问题,因此,对于我们来说将更加智能化的关于人脸表情识别的系统加以实现还是一个十分艰巨的任务,还需要我们不断的努力。
参考文献:
[1] 赵晓龙. 安防系统中的基于稀疏表示的人脸识别研究[D].西北大学,2014.
[2] 朱可. 基于稀疏表示的人脸表情识别[D].西北大学,2013.
[3] 万川. 基于动态序列图像的人脸表情识别系统理论与方法研究[D].吉林大学,2013.
[4] 欧阳琰. 面部表情识别方法的研究[D].华中科技大学,2013.
[5] 王哲伟. 基于稀疏表示残差融合的人脸表情识别[D].五邑大学,2011.
[6] 张慕凡. 基于稀疏表示的人脸识别的应用研究[D].南京邮电大学,2014.
[7] 赵晓. 基于稀疏表示的人脸识别方法研究[D].北京工业大学,2013.
[8] 何玲丽. 基于核稀疏表示的人脸识别方法研究[D].湖南大学,2014.
❹ 人脸识别有什么优化算法还请各位大神赐教,简单一点的。谢谢
人脸识别技术概述
广义的人脸识别主要分为人脸检测(face detection)、特征提取(feature extraction)和人脸识别(face recognition)三个过程,如图1所示。
人脸,人脸识别,人脸识别技术
图1 典型的人脸识别过程
其中,第三步提到的人脸识别是狭义的人脸识别,即将待识别人脸所提取的特征与数据库中人脸的特征进行对比,根据相似度判别分类。而人脸识别又可以分为两个大类:一类是确认(verification),这是人脸图像与数据库中已存的该人图像比对的过程,回答你是不是你的问题;另一类是辨认(identification),这是人脸图像与数据库中已存的所有图像匹配的过程,回答你是谁的问题。显然,人脸辨认要比人脸确认困难,因为辨认需要进行海量数据的匹配。在辨认过程中,海量数据的处理、特征提取和分类算法的选择变得非常重要。识别率和识别速度是人脸识别技术中主要的衡量算法性能的指标。本文后面提到的人脸识别,主要指的是人脸辨认。
人脸识别技术原理
人脸识别算法发展到今天,大致上可以分为两类:基于特征的人脸识别算法和基于外观的人脸识别算法。其中,多数基于特征的人脸识别算法属于早期的人脸识别算法,现在已经不再使用。不过近些年出现了一些新的基于特征的算法,并取得不错的效果。而基于外观的人脸识别算法是由于实现简单,受到广泛关注。接下来将分别介绍两类人脸识别算法。
基于特征的人脸识别算法:早期的人脸识别算法主要是基于特征模板和几何约束来实现的。这一类算法首先对输入图像进行处理,提取出如眼睛、鼻子和嘴等面部特征和外观轮廓。然后计算这些面部特征之间的几何关系,如距离、面积和角度等。这样将输入图像转换为几何特征向量后,使用标准的统计模式识别技术进行匹配分类。由于算法利用了一些直观的特征,计算量小。不过,由于其所需的特征点不能精确选择,限制了它的应用范围。另外,当光照变化、人脸有外物遮挡、面部表情变化时,特征变化较大。所以说,这类算法只适合于人脸图像的粗略识别,无法在实际中应用。
人脸,人脸识别,人脸识别技术
图2 一些典型的面部几何特征示意图
以上这些方法都是通过一些特征模板和几何约束来检测特定的面部特征,并计算特征之间的关系。还有一些方法使用了图像的局部表示来提取特征。其中最受关注的方法是局部二值模式(LBP)算法。LBP方法首先将图像分成若干区域,在每个区域的像素3x3邻域中用中心值作阈值化,将结果看成是二进制数。图3显示了一个LBP算子。LBP算子的特点是对单调灰度变化保持不变。每个区域通过这样的运算得到一组直方图,然后将所有的直方图连起来组成一个大的直方图并进行直方图匹配计算进行分类。
人脸,人脸识别,人脸识别技术
图3 LBP算子
基于特征的人脸识别算法主要的优势在于对姿态、尺度和光照等变化鲁棒。由于多数特征是基于手动选择和先验知识,受图像本身的成像质量影响较少。另外,提取出的面部特征往往维数较低,匹配速度快。这些方法的缺点是自动特征提取的难度较大。如果特征集的鉴别能力弱,再多的后续处理也无法补偿本身的不足。
基于外观的人脸识别算法:基于外观的人脸识别算法也称为整体方法。它们使用图像的全局信息来辨识人脸。最简单的整体方法是用二维数组来存放图像的灰度值,然后直接对输入图像和数据库中的所有图像进行相关性比较。这种方法的缺点非常多,如易受环境影响、计算耗时等。其中一个重要的问题是这样的分类是在一个非常高维的空间中进行的。为了克服维数问题,一些算法使用统计降维方法来获取和保留更有用的信息,最典型的算法就是主成分分析(PCA)算法和线性鉴别分析(LDA)算法。
PCA算法指出任何特定的人脸可以由一个低维的特征子空间表示,并可以用这个特征子空间近似地重建。将输入人脸图像投影到特征子空间上得到的特征与已知的数据库进行比对来确定身份。PCA算法选取的特征最大化了人脸样本间的差异,但也保留了一些由于光照和面部表情产生的不必要的变化。而同一个人由于光照产生的变化可能会大于不同人之间的变化,如图4所示。LDA算法在最大化不同个体之间的样本差异的同时,最小化同一个体内部的样本差异。这样达到了人脸特征子空间的划分。图5是PCA和LDA算法的示例。其中,PCA的特征脸是由组成PCA特征子空间的特征向量按二维图像来排列得到的类似人脸的图像。LDA的Fisher脸也是同样道理。经过特征脸和Fisher脸重构得到的人脸图像在第四行。可以看到,PCA重构脸与输入人脸差异较小,但LDA的Fisher脸很难辨认,但突出了该个体的显着特征。PCA和LDA方法都假设存在一个最优的投影子空间。这个子空间的每个区域对应唯一的一个人。然而,事实上在人脸空间中许多人经常会映射到相同的区域中,因此这种假设并不成立。
来源:海鑫科金
http://www.hisign.com.cn/news/instry/2699.html
❺ 人的表情一共有多少种
有丰富的表情,这是人脸的重要特征。当然,刚生下的婴儿谈不上有多少表情,呆头呆脑的人表情也不会多姿多彩。一般说,正常人的脸部有6种基本表情,那就是:厌恶、愤怒、害怕、高兴、悲伤和惊奇。画家徐悲鸿则把表情归为喜、怒、哀、惧、爱、厌、勇、怯几类。细细分辨,人的表情可达7000种以上,真可谓千变万化。据研究,脸部用以表达情感的肌肉多达好几千条,人的丰富的表情正是它们导演的。 即使是与世隔绝的土着部落人,他们脸上的表情也和我们一个模样。生来就双目失明的人,表情与明眼人同样没什么不同。由此推论,表情竟是我们与生俱来的本领哩 据研究,人的左边脸部表情要比右边的变化强烈。心理学家通过对不同性格的人观察证实,面部表情是从左侧开始,而且左右是不对称的。这是由于我们大脑的右半球通常与外界直接联系,右脑又是控制着左脸的缘故。
记得采纳啊
❻ 人有哪些表情呢
1、高兴:
当心中感觉快乐时,额头通常是平展的,眼睛是闪光而微亮的,而且面颊上提。同时,嘴角后拉,上翘如新月;而一旦笑出声时,面部肌肉的运动程度就会加大,眼睛会显得更加明亮。
面部表情的作用
面部表情是一种十分重要的非语言交往手段,艺术家们往往会通过对人物面部表情的描绘,来表现人物内心的情绪和情感,栩栩如生地展现人物的精神风貌。人们也可以用面部表情与人沟通。
一个有趣的例子是模仿,人们(和猩猩)在外表上模仿其他人的反应是常见的行为,尤其是当人们感受到他人的忧伤时,自己也会表现出忧伤的样子,这一点曾经被达尔文指出过。这种模仿可能是为了表示同情,都体验到了痛苦经历带来的忧伤。
❼ 表情包括哪几种
❽ 面部表情的表情分类
面部表情可以分为八类:感兴趣—兴奋;高兴—喜欢;惊奇—惊讶;伤心—痛苦;害怕—恐惧;害羞—羞辱;轻蔑—厌恶;生气—愤怒。一般来说,眼睛和口腔附近的肌肉群是面部表情最丰富的部分。
❾ 表情的种类有哪些
人的表情是通过面部显示的,因而所谓表情就是指面部表情。它可以分为脸面的表情、眉目的表情和口唇的表情。
第一,脸面的表情。
这是通过脸面色彩的变化、面部肌肉的动作及其所造成的纹路来表现情感的。平时人的脸色是正常的,激动时就会变红;平时人的面部肌肉是松弛的,激动时就会绷紧;当心情愁苦时,脸色往往阴沉、无光;当心情愉快时,脸部会红光满面;而当心情愤怒时,脸色或者铁青,或者暗红,面部肌肉也会紧张得发生或向上或向下的变化。
作为一个演讲者,应当了解脸面的表情变化规律,并在演讲时恰当、准确地运用这些规律。
第二,眉目的表情。
眉是通过形状变化,目是通过光泽变化来传情的。眼眉可以舒展或紧皱,眉梢可以上挑或下垂,这都能表示不同的感情。目光可以暗淡,可以饱满,也可以锐利如电,用来表示不同的感情。愤怒时两眼圆睁,双眉竖起;思考时眼眸凝视,眉头微皱;双眉紧锁,表示忧愁;含情注目,表示祈望。
可见,眉目的传情达意作用是相当大的。富有经验的演讲者,总是充分利用自己的眉目变化,来表现丰富的思想情感。
第三,口唇的表情。
口与唇往往相互配合,以其不同的形状表现不同的情意。一般说来,口角向上,表示高兴、愉快。口角向下,如果嘴唇紧闭,则表示不满或不悦;如果嘴唇微闭,则表示骄傲或厌恶;如果嘴唇微开,则表示悲哀或痛苦;如果嘴唇大张,则表示畏惧惊恐。口角平,如果嘴唇紧闭,则表示坚决、果敢;如果嘴唇微闭,则表示平安、谦逊;如果嘴唇微开,则表示注意、期望;如果嘴唇大张,则表示惊愕诧异。
演讲时,当我们讲话时要张口,但话与话之间停顿时,则往往可以闭嘴。这样我们就有了以口唇的不同形状的变化,来表情达意的机会。任何一个聪明的演讲者,都将紧紧地抓住这个机会,从而有效地利用它。
❿ 演员怎么练习面部表情
1、准备好一面小镜子,镜子的大小以能看到自己面部的全貌为宜,以后对所有表情的训练都会用到它。作出大笑的表情并保持住。将大拇指颇用力地抵在嘴角旁边的点上,从大拇指抵着地点到鼻头旁边,就会出现一道中位笑纹。然后调整这道纹理的形成位置。
2、取一根牙签并除尖去刺,做成自制的木签。然后,作出大笑的表情并保持住。想象自己的脸上有两条标准的下位笑纹,再将木签的一端,力度适中地斜抵在想象中的,左脸或右脸的下位笑纹的中间,就会抵出一道下位笑纹。然后调整这道纹理的形成位置,不能太靠近下唇。
3、对着镜子,活动自己的面部肌肉,达到运用灵活为好。分别找喜怒哀乐四种情绪,分别表现在脸上,除了眼神,面部肌肉的配合也很重要。
4、人在打呵欠的时候,会有轻度的气冲双眼的感觉,试着加强这种感觉,就会使双眼涌出泪花。不会主动地打呵欠的,可以挺拔身姿并举起双臂,这能使呵欠更容易打得出来。训练比较容易哭出来。
5、先搜集一些俊男靓女的影像,然后在进行表情训练时模仿他们的表情,届时最好是男模仿男,女模仿女。还有一种方法是,用左右脸相互模仿的办法找感觉。