导航:首页 > 源码编译 > 智能控制有哪些算法

智能控制有哪些算法

发布时间:2023-02-06 04:33:16

㈠ 智能控制包括哪些

具体的我也不清楚,不过我觉得用智能控制生活很方便的,我家就用的英国OLBLO的智能控制系统,它们的智能控制面板很不错,南京这边有卖的,上海、北京、广州、深圳都有卖

㈡ 大家能给穷举一下自动控制领域有哪些控制算法

还有非线性控制,自适应控制,模型预测控制,数字控制,智能控制(神经网络,贝叶斯模型,模糊算法,机器学习,进化,遗传等等)。这些分类之间都有交集。

算法只是理论而已,和复杂的实际情况还不是一回事。

㈢ 控制算法都有哪些

控制算法分为模糊PID控制算法和自适应控制算法。各自的特点如下:模糊PID控制算法的特点:

1、简化系统设计的复杂性,特别适用于非线性、时变、滞后、模型不完全系统的控制。

2、不依赖于被控对象的精确数学模型。

3、利用控制法则来描述系统变量间的关系。

4、不用数值而用语言式的模糊变量来描述系统,模糊控制器不必对被控制对象建立完整的数学模式。

5、模糊控制器是一语言控制器,便于操作人员使用自然语言进行人机对话。

6、模糊控制器是一种容易控制、掌握的较理想的非线性控制器,具有较佳的鲁棒性、适应性、强健性(Robustness)及较佳的容错性(FaultTolerance)。自适应控制算法的特点:1、实现了控制器参数的在线自动整定。2、与常规PID控制器有相同的结构。3、采用单片微机实现了控制算法,实用性强,可靠性好。

㈣ 智能控制的类型

分级递阶智能控制是在自适应控制和自组织控制基础上,由美国普渡大学Saridis提出的智能控制理论.分级递阶智能控制(Hierarchical Intelligent Control)主要由三个控制级组成,按智能控制的高低分为组织级,协调级,执行级,并且这三级遵循伴随智能递降精度递增原则。
组织级(organization level):组织级通过人机接口和用户(操作员)进行交互,执行最高决策的控制功能,监视并指导协调级和执行级的所有行为,其智能程度最高.
协调级(Coordination level):协调级可进一步划分为两个分层:控制管理分层和控制监督分层.
执行级(executive level):执行级的控制过程通常是执行一个确定的动作. 专家指的是那些对解决专门问题非常熟悉的人们,他们的这种专门技术通常源于丰富的经验,以及他们处理问题的详细专业知识.
专家系统主要指的是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的经验方法来处理该领域的高水平难题.它具有启发性,透明性,灵活性,符号操作,不一确定性推理等特点.应用专家系统的概念和技术,模拟人类专家的控制知识与经验而建造的控制系统,称为专家控制系统.
专家系统是利用专家知识对专门的或困难的问题进行描述. 用专家系统所构成的专家控制,无论是专家控制系统还是专家控制器,其相对工程费用较高,而且还涉及自动地获取知识困难、无自学能力、知识面太窄等问题. 尽管专家系统在解决复杂的高级推理中获得较为成功的应用,但是专家控制的实际应用相对还是比较少。 神经网络是指由大量与生物神经系统的神经细胞相类似的人工神经元互连而组成的网络;或由大量象生物神经元的处理单元并联互连而成.这种神经网络具有某些智能和仿人控制功能.
学习算法是神经网络的主要特征,也是当前研究的主要课题.学习的概念来自生物模型,它是机体在复杂多变的环境中进行有效的自我调节.神经网络具备类似人类的学习功能.一个神经网络若想改变其输出值,但又不能改变它的转换函数,只能改变其输人,而改变输人的唯一方法只能修改加在输人端的加权系数.
神经网络的学习过程是修改加权系数的过程,最终使其输出达到期望值,学习结束.常用的学习算法有:Hebb学习算法,widrow Hoff学习算法,反向传播学习算法一BP学习算法,Hopfield反馈神经网络学习算法等。
神经网络是利用大量的神经元按一定的拓扑结构和学习调整方法. 它能表示出丰富的特性:并行计算、分布存储、可变结构、高度容错、非线性运算、自我组织、学习或自学习等. 这些特性是人们长期追求和期望的系统特性. 它在智能控制的参数、结构或环境的自适应、自组织、自学习等控制方面具有独特的能力. 神经网络可以和模糊逻辑一样适用于任意复杂对象的控制,但它与模糊逻辑不同的是擅长单输入多输出系统和多输入多输出系统的多变量控制. 在模糊逻辑表示的SIMO 系统和MIMO 系统中,其模糊推理、解模糊过程以及学习控制等功能常用神经网络来实现.模糊神经网络技术和神经模糊逻辑技术:模糊逻辑和神经网络作为智能控制的主要技术已被广泛应用. 两者既有相同性又有不同性. 其相同性为:两者都可作为万能逼近器解决非线性问题,并且两者都可以应用到控制器设计中. 不同的是:模糊逻辑可以利用语言信息描述系统,而神经网络则不行;模糊逻辑应用到控制器设计中,其参数定义有明确的物理意义,因而可提出有效的初始参数选择方法;神经网络的初始参数(如权值等) 只能随机选择. 但在学习方式下,神经网络经过各种训练,其参数设置可以达到满足控制所需的行为. 模糊逻辑和神经网络都是模仿人类大脑的运行机制,可以认为神经网络技术模仿人类大脑的硬件,模糊逻辑技术模仿人类大脑的软件. 根据模糊逻辑和神经网络的各自特点,所结合的技术即为模糊神经网络技术和神经模糊逻辑技术. 模糊逻辑、神经网络和它们混合技术适用于各种学习方式 智能控制的相关技术与控制方式结合或综合交叉结合,构成风格和功能各异的智能控制系统和智能控制器是智能控制技术方法的一个主要特点. 所谓模糊控制,就是在被控制对象的模糊模型的基础上,运用模糊控制器近似推理手段,实现系统控制的一种方法.模糊模型是用模糊语言和规则描述的一个系统的动态特性及性能指标.
模糊控制的基本思想是用机器去模拟人对系统的控制.它是受这样事实而启发的:对于用传统控制理论无法进行分析和控制的复杂的和无法建立数学模型的系统,有经验的操作者或专家却能取得比较好的控制效果,这是因为他们拥有日积月累的丰富经验,因此人们希望把这种经验指导下的行为过程总结成一些规则,并根据这些规则设计出控制器.然后运用模糊理论,模糊语言变量和模糊逻辑推理的知识,把这些模糊的语言上升为数值运算,从而能够利用计算机来完成对这些规则的具体实现,达到以机器代替人对某些对象进行自动控制的目的。
模糊逻辑用模糊语言描述系统,既可以描述应用系统的定量模型也可以描述其定性模型. 模糊逻辑可适用于任意复杂的对象控制. 但在实际应用中模糊逻辑实现简单的应用控制比较容易. 简单控制是指单输入单输出系统(SISO) 或多输入单输出系统(MISO) 的控制. 因为随着输入输出变量的增加,模糊逻辑的推理将变得非常复杂。 学习是人类的主要智能之一,人类的各项活动也需要学习.在人类的进化过程中,学习功能起着十分重要的作用.学习控制正是模拟人类自身各种优良的控制调节机制的一种尝试. 所谓学习是一种过程,它通过重复输人信号,并从外部校正该系统,从而使系统对特定输人具有特定响应.学习控制系统是一个能在其运行过程中逐步获得受控过程及环境的非预知信息,积累控制经验,并在一定的评价标准下进行估值,分类,决策和不断改善系统品质的自动控制系统。
(1)遗传算法学习控制
智能控制是通过计算机实现对系统的控制,因此控制技术离不开优化技术。快速、高效、全局化的优化算法是实现智能控制的重要手段。遗传算法是模拟自然选择和遗传机制的一种搜索和优化算法,它模拟生物界/生存竞争,优胜劣汰,适者生存的机制,利用复制、交叉、变异等遗传操作来完成寻优。遗传算法作为优化搜索算法,一方面希望在宽广的空间内进行搜索,从而提高求得最优解的概率;另一方面又希望向着解的方向尽快缩小搜索范围,从而提高搜索效率。如何同时提高搜索最优解的概率和效率,是遗传算法的一个主要研究方向。遗传算法作为一种非确定的拟自然随机优化工具,具有并行计算、快速寻找全局最优解等特点,它可以和其他技术混合使用,用于智能控制的参数、结构或环境的最优控制。
(2)迭代学习控制
迭代学习控制模仿人类学习的方法、即通过多次的训练,从经验中学会某种技能,来达到有效控制的目的。迭代学习控制能够通过一系列迭代过程实现对二阶非线性动力学系统的跟踪控制。整个控制结构由线性反馈控制器和前馈学习补偿控制器组成,其中线性反馈控制器保证了非线性系统的稳定运行、前馈补偿控制器保证了系统的跟踪控制精度。它在执行重复运动的非线性机器人系统的控制中是相当成功的。

㈤ 智能算法有哪些

(1)人工神经网络(Artificial Neural Network)类:反向传播(Backpropagation)、波尔兹曼机(Boltzmann Machine)、卷积神经网络(Convolutional Neural Network)、Hopfield网络(hopfield Network)、多层感知器(Multilyer Perceptron)、径向基函数网络(Radial Basis Function Network,RBFN)、受限波尔兹曼机(Restricted Boltzmann Machine)、回归神经网络(Recurrent Neural Network,RNN)、自组织映射(Self-organizing Map,SOM)、尖峰神经网络(Spiking Neural Network)等。
(2)贝叶斯类(Bayesin):朴素贝叶斯(Naive Bayes)、高斯贝叶斯(Gaussian Naive Bayes)、多项朴素贝叶斯(Multinomial Naive Bayes)、平均-依赖性评估(Averaged One-Dependence Estimators,AODE)
贝叶斯信念网络(Bayesian Belief Network,BBN)、贝叶斯网络(Bayesian Network,BN)等。
(3)决策树(Decision Tree)类:分类和回归树(Classification and Regression Tree,CART)、迭代Dichotomiser3(Iterative Dichotomiser 3, ID3),C4.5算法(C4.5 Algorithm)、C5.0算法(C5.0 Algorithm)、卡方自动交互检测(Chi-squared Automatic Interaction Detection,CHAID)、决策残端(Decision Stump)、ID3算法(ID3 Algorithm)、随机森林(Random Forest)、SLIQ(Supervised Learning in Quest)等。
(4)线性分类器(Linear Classifier)类:Fisher的线性判别(Fisher’s Linear Discriminant)
线性回归(Linear Regression)、逻辑回归(Logistic Regression)、多项逻辑回归(Multionmial Logistic Regression)、朴素贝叶斯分类器(Naive Bayes Classifier)、感知(Perception)、支持向量机(Support Vector Machine)等。
常见的无监督学习类算法包括:
(1) 人工神经网络(Artificial Neural Network)类:生成对抗网络(Generative Adversarial Networks,GAN),前馈神经网络(Feedforward Neural Network)、逻辑学习机(Logic Learning Machine)、自组织映射(Self-organizing Map)等。
(2) 关联规则学习(Association Rule Learning)类:先验算法(Apriori Algorithm)、Eclat算法(Eclat Algorithm)、FP-Growth算法等。
(3)分层聚类算法(Hierarchical Clustering):单连锁聚类(Single-linkage Clustering),概念聚类(Conceptual Clustering)等。
(4)聚类分析(Cluster analysis):BIRCH算法、DBSCAN算法,期望最大化(Expectation-maximization,EM)、模糊聚类(Fuzzy Clustering)、K-means算法、K均值聚类(K-means Clustering)、K-medians聚类、均值漂移算法(Mean-shift)、OPTICS算法等。

㈥ 智能控制理论与技术主要包括哪几种控制方法

智能控制理论与技术是一门新兴的技术学科,主要包括模糊逻辑控制、神经网络控制、专家控制、学习控制、分层递阶和遗传算法等。

㈦ 仿人智能控制算法是什么

过程控制对象难以建立精确的数学模型,仿人智能控制以人的思维方式、控制经验、行为和直觉推理为基础,避开了求解繁琐的对象模型或建立脑模型时遇到的种种难题,因此它在过程控制中将会显示出其独特的优势;文中详细讨论了应用于过程控制中的仿人智能控制算法;最后,现场应用表明仿人智能控制是过程控制中的最佳选择。
【作者单位】:中国人民解放军后勤工程学院 重庆400016 (牛鹏辉);中国人民解放军后勤工程学院 重庆400016(涂亚庆)
【关键词】:过程控制;仿人智能控制;控制器
【分类号】:TP18
【DOI】:cnki:ISSN:1007-0257.0.2005-10-016
【正文快照】:
0引言 过程控制是工业自动化中一个最重要的分支,它主要针对 所谓六大参数,即温度、压力、流量、液位、成分和物性等参 数的控制问题。在过程控制中,了解被控对象的动态特性十分 重要,控制系统的设计是依据被控对象的控制要求和动态特性 进行的。过程控制涉及的被控对象大多具有以下特点:①被控 对象的动态特性通常是单调曲线,被控量的变化一般比较缓; ②被控对象在动态特性通常存在迟延或纯滞后;③被控对象的 动态特性存在稳定的自衡过程,中性稳定的非自衡过程;④被 控对象往往具有诸如饱和、死区、滞环和倒S形等非线形特 性;⑤被控对象往…

全文地址:http://www.cnki.com.cn/Article/CJFDTotal-JZCK200510016.htm

㈧ 智能控制的方法有哪些

这个太多了,比如专家控制,模糊控制,神经网络控制,进化计算和群体智能等优化计算方法也能跟传统的控制方法结合使用,还有学习控制等等。每个方法里也有很多分类。建议找本书看看吧,书很多的。

㈨ 什么是智能控制方法

智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高 层控 制 是 对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。
随着人工智能和计算机技术的发展,已经有可能把自动控制和人工智能以及系统科学中一些有关学科分支(如系统工程、系统学、运筹学、信息论)结合起来,建立一种适用于复杂系统的控制理论和技术。智能控制正是在这种条件下产生的。它是自动控制技术的最新发展阶段,也是用计算机模拟人类智能进行控制的研究领域。1965年,傅京孙首先提出把人工智能的启发式推理规则用于学习控制系统。1985年,在美国首次召开了智能控制学术讨论会。1987年又在美国召开了智能控制的首届国际学术会议,标志着智能控制作为一个新的学科分支得到承认。智能控制具有交叉学科和定量与定性相结合的分析方法和特点。
一个系统如果具有感知环境、不断获得信息以减小不确定性和计划、产生以及执行控制行为的能力,即称为智能控制系统. 智能控制技术是在向人脑学习的过程中不断发展起来的,人脑是一个超级智能控制系统,具有实时推理、决策、学习和记忆等功能,能适应各种复杂的控制环境.
智能控制与传统的或常规的控制有密切的关系,不是相互排斥的. 常规控制往往包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题.
1. 传统的自动控制是建立在确定的模型基础上的,而智能控制的研究对象则存在模型严重的不确定性,即模型未知或知之甚少者模型的结构和参数在很大的范围内变动,比如工业过程的病态结构问题、某些干扰的无法预测,致使无法建立其模型,这些问题对基于模型的传统自动控制来说很难解决.
2. 传统的自动控制系统的输入或输出设备与人及外界环境的信息交换很不方便,希望制造出能接受印刷体、图形甚至手写体和口头命令等形式的信息输入装置,能够更加深入而灵活地和系统进行信息交流,同时还要扩大输出装置的能力,能够用文字、图纸、立体形象、语言等形式输出信息. 另外,通常的自动装置不能接受、分析和感知各种看得见、听得着的形象、声音的组合以及外界其它的情况. 为扩大信息通道,就必须给自动装置安上能够以机械方式模拟各种感觉的精确的送音器,即文字、声音、物体识别装置. 可喜的是,近几年计算机及多媒体技术的迅速发展,为智能控制在这一方面的发展提供了物质上的准备,使智能控制变成了多方位“立体”的控制系统.
3. 传统的自动控制系统对控制任务的要求要么使输出量为定值(调节系统) ,要么使输出量跟随期望的运动轨迹(跟随系统) ,因此具有控制任务单一性的特点,而智能控制系统的控制任务可比较复杂,例如在智能机器人系统中,它要求系统对一个复杂的任务具有自动规划和决策的能力,有自动躲避障碍物运动到某一预期目标位置的能力等. 对于这些具有复杂的任务要求的系统,采用智能控制的方式便可以满足.
4. 传统的控制理论对线性问题有较成熟的理论,而对高度非线性的控制对象虽然有一些非线性方法可以利用,但不尽人意. 而智能控制为解决这类复杂的非线性问题找到了一个出路,成为解决这类问题行之有效的途径. 工业过程智能控制系统除具有上述几个特点外,又有另外一些特点,如被控对象往往是动态的,而且控制系统在线运动,一般要求有较高的实时响应速度等,恰恰是这些特点又决定了它与其它智能控制系统如智能机器人系统、航空航天控制系统、交通运输控制系统等的区别,决定了它的控制方法以及形式的独特之处.
5. 与传统自动控制系统相比,智能控制系统具有足够的关于人的控制策略、被控对象及环境的有关知识以及运用这些知识的能力
6. 与传统自动控制系统相比,智能控制系统能以知识表示的非数学广义模型和以数学表示的混合控制过程,采用开闭环控制和定性及定量控制结合的多模态控制方式.
7. 与传统自动控制系统相比,智能控制系统具有变结构特点,能总体自寻优,具有自适应、自组织、自学习和自协调能力.
8. 与传统自动控制系统相比,智能控制系统有补偿及自修复能力和判断决策能力.
总之,智能控制系统通过智能机自动地完成其目标的控制过程,其智能机可以在熟悉或不熟悉的环境中自动地或人—机交互地完成拟人任务.
[编辑本段]智能控制的主要技术方法
智能控制是以控制理论、计算机科学、人工智能、运筹学等学科为基础,扩展了相关的理论和技术,其中应用较多的有模糊逻辑、神经网络、专家系统、遗传算法等理论和自适应控制、自组织控制、自学习控制等技术。
专家系统
专家系统是利用专家知识对专门的或困难的问题进行描述. 用专家系统所构成的专家控制,无论是专家控制系统还是专家控制器,其相对工程费用较高,而且还涉及自动地获取知识困难、无自学能力、知识面太窄等问题. 尽管专家系统在解决复杂的高级推理中获得较为成功的应用,但是专家控制的实际应用相对还是比较少。
模糊逻辑
模糊逻辑用模糊语言描述系统,既可以描述应用系统的定量模型也可以描述其定性模型. 模糊逻辑可适用于任意复杂的对象控制. 但在实际应用中模糊逻辑实现简单的应用控制比较容易. 简单控制是指单输入单输出系统(SISO) 或多输入单输出系统(MISO) 的控制. 因为随着输入输出变量的增加,模糊逻辑的推理将变得非常复杂。
遗传算法
遗传算法作为一种非确定的拟自然随机优化工具,具有并行计算、快速寻找全局最优解等特点,它可以和其他技术混合使用,用于智能控制的参数、结构或环境的最优控制。
神经网络
神经网络是利用大量的神经元按一定的拓扑结构和学习调整方法. 它能表示出丰富的特性:并行计算、分布存储、可变结构、高度容错、非线性运算、自我组织、学习或自学习等. 这些特性是人们长期追求和期望的系统特性. 它在智能控制的参数、结构或环境的自适应、自组织、自学习等控制方面具有独特的能力. 神经网络可以和模糊逻辑一样适用于任意复杂对象的控制,但它与模糊逻辑不同的是擅长单输入多输出系统和多输入多输出系统的多变量控制. 在模糊逻辑表示的SIMO 系统和MIMO 系统中,其模糊推理、解模糊过程以及学习控制等功能常用神经网络来实现.模糊神经网络技术和神经模糊逻辑技术:模糊逻辑和神经网络作为智能控制的主要技术已被广泛应用. 两者既有相同性又有不同性. 其相同性为:两者都可作为万能逼近器解决非线性问题,并且两者都可以应用到控制器设计中. 不同的是:模糊逻辑可以利用语言信息描述系统,而神经网络则不行;模糊逻辑应用到控制器设计中,其参数定义有明确的物理意义,因而可提出有效的初始参数选择方法;神经网络的初始参数(如权值等) 只能随机选择. 但在学习方式下,神经网络经过各种训练,其参数设置可以达到满足控制所需的行为. 模糊逻辑和神经网络都是模仿人类大脑的运行机制,可以认为神经网络技术模仿人类大脑的硬件,模糊逻辑技术模仿人类大脑的软件. 根据模糊逻辑和神经网络的各自特点,所结合的技术即为模糊神经网络技术和神经模糊逻辑技术. 模糊逻辑、神经网络和它们混合技术适用于各种学习方式 智能控制的相关技术与控制方式结合或综合交叉结合,构成风格和功能各异的智能控制系统和智能控制器是智能控制技术方法的一个主要特点.

㈩ 人工智能算法有哪些

人工智能算法有:决策树、随机森林算法、逻辑回归、SVM、朴素贝叶斯、K最近邻算法、K均值算法、Adaboost算法、神经网络、马尔可夫。

阅读全文

与智能控制有哪些算法相关的资料

热点内容
北京通app怎么注册登录 浏览:820
iphone上的数据怎么转移到安卓 浏览:743
python求每个时段平均值 浏览:244
安卓手机右上出现Hg什么意思 浏览:69
程序员神经 浏览:753
dns服务器在电脑上有什么用 浏览:915
杭州大妈喜欢程序员 浏览:686
python评论树讲解 浏览:679
juniper防火墙常用命令 浏览:426
vapp怎么下载地址 浏览:11
pdf里面内容怎么修改 浏览:807
收藏网址加密的浏览器 浏览:1000
phpurl问号 浏览:898
什么笔记本电脑可以用python 浏览:135
加密相册如何翻找 浏览:992
泰州地区DNS服务器地址 浏览:849
一种app可以买菜用英语怎么说 浏览:196
中国联通app里面通话详单怎么删除 浏览:505
计算机网络编译软件 浏览:100
程序员说不能说的秘密 浏览:700