导航:首页 > 源码编译 > 相同元素排列组合算法

相同元素排列组合算法

发布时间:2023-02-09 20:02:19

A. 组合数公式是什么

用C(k,l)表示由k个元素中取出l个元素的组合数,则所求概率为:

C(m+n-1,m)×p^n×(1-p)^m。是从n个不同元素中每次取出m个不同元素(0≤m≤n),不管其顺序合成一组,称为从n个元素中不重复地选取m个元素的一个组合。所有这样的组合的总数称为组合数。



(1)相同元素排列组合算法扩展阅读:

从n个不同元素中可重复地选取m个元素。不管其顺序合成一组,称为从n个元素中取m个元素的可重复组合。当且仅当所取的元素相同,且同一元素所取的次数相同,则两个重复组合相同。

排列组合计算方法如下:

排列A(n,m)=n×(n-1)。(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)。

组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!。

B. 排列组合中元素有相同的怎么办

1、排列组合中元素有相同的只要写出一个元素相同的一个就行;

2、排列组合是组合学最基本的概念;

3、所谓排列,就是从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。

(2)相同元素排列组合算法扩展阅读:

排列组合介绍:

排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。

其他排列与组合公式 从n个元素中取出m个元素的循环排列数=A(n,m)/m=n!/m(n-m)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!×n2!×...×nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。

参考资料来源:网络-排列组合

C. 计算排列组合,重复数字排列成不重复组合

在不同个数时,一般无需考虑重复,但当数目相同时,一定注意容易重复,如6本书放到三堆可不是先分堆再排列,因为在分堆时实际上已经排了序。

举最简单的例子,如果不计顺序,只是从1-5中选3个数字的话,就用C3 5,如果用A3 5带了顺序的话,那么123和132和213和231和312和321就属于同一种情况了,就重复了。

乘法原理和分步计数法

1、乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。

2、合理分步的要求

任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。

3、与后来的离散型随机变量也有密切相关。

D. 求排列组合算法,比如C62(6在下,2在上),麻烦详细一点,高中的知识还给老师了,汗

C62(6在下,2在上)计算方法如下:

E. 排列组合算法 简介排列组合算法

1、排列有两种定义,但计算方法只有一种,凡是符合这两种定义的都用这种方法计算。

2、定义的前提条件是m≦n,m与n均为自然数。

3、从n个不同元素中,任取m个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

4、从n个不同元素中,取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。

5、用具体的例子来理解上面的定义:4种颜色按不同颜色,进行排列,有多少种排列方法,如果是6种颜色。从6种颜色中取出4种进行排列。

F. 排列组合公式及算法

P(m,n)=n*(n-1)(n-2)...(n-m+1)=n!/(n-m)!【n个元素中,取m个的排列】
C(m,n)=P(m,n)/P(m,m)=n(n-1)(n-2)...(n-m+1)/m!
=n!/[(n-m)!*m!].【n个元素中取m个元素的组合】
满意请把我列为最佳答案~~~~

G. 怎样通过排列组合算法求数字和

排列的定义及其计算公式:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)! 此外规定0!=1

排列组合

组合的定义及其计算公式:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。C(n,m)=A(n,m)∧2/m!=A(n,m)/m!; C(n,m)=C(n,n-m)。(其中n≥m)

其他排列与组合公式 从n个元素中取出m个元素的循环排列数=A(n,m)/m=n!/m(n-m)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!×n2!×...×nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。

(7)相同元素排列组合算法扩展阅读

1、加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。

⒉、第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。

⒊、分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。

⑵乘法原理和分步计数法

⒈、 乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。

⒉、合理分步的要求

任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。

参考资料:排列组合的网络

H. 排列组合中的“元素” 相同和不同的问题如何处理

排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合.
(一)两个基本原理是排列和组合的基础
(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法.
(2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.
这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.
这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来.
(二)排列和排列数
(1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.
从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法.
(2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列
当m=n时,为全排列Pnn=n(n-1)(n-1)…3·2·1=n!
(三)组合和组合数
(1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从 n个不同元素中取出m个元素的一个组合.
从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合.
(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个
这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的.

I. 排列组合的计算公式是什么

排列组合的计算公式是A(n,m)=n×(n-1).(n-m+1)=n/(n-m)。排列组合是组合学最基本的概念,所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序,组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。

排列组合的发展

排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。排列组合与古典概率论关系密切,虽然数学始于结绳计数的远古时代,由于那时社会的生产水平的发展尚处于低级阶段,谈不上有什么技巧。

随着人们对于数的了解和研究,在形成与数密切相关的数学分支的过程中,如数论、代数、函数论以至泛函的形成与发展,逐步地从数的多样性发现数数的多样性,产生了各种数数的技巧,同时,人们对数有了深入的了解和研究,在形成与形密切相关的各种数学分支的过程中,如几何学、拓扑学以至范畴论的形成与发展。

阅读全文

与相同元素排列组合算法相关的资料

热点内容
千聊免费课程可以重新加密吗 浏览:507
python能代替php吗 浏览:252
phpexcel样式 浏览:265
安卓手机有没有什么软件可以阻止弹广告的 浏览:306
linux局域网搭建服务器 浏览:690
python编译器mac 浏览:293
windows的doc命令 浏览:463
nfc全加密门禁卡 浏览:636
身份信息被加密 浏览:482
我的盐城app怎么添加不了家庭成员 浏览:493
php商城并发 浏览:348
熊猫绘画app怎么做出大佬的笔刷 浏览:603
云存储服务器知识 浏览:461
服务器cpu是什么指令集 浏览:591
糖猫t10怎么安装app 浏览:992
电脑加密u盘怎么使用 浏览:518
linux如何升级php版本升级 浏览:841
二级程序员c语言难度 浏览:353
批处理编译qt 浏览:67
铁友app怎么查询机票订单 浏览:197