A. mac os下有办法是用epoll吗我要编译一个linux下写的源码,发现系统里没有epoll,有办法安装吗
你这个程序是 linux-only 的还是 POSIX 兼容的?
如果是兼容的你看看他缺那个函数库装上就行了。我记得 mac 有 posix 兼容支持功能库装上就行了,当然这个兼容不全,有些东西还要自己另外装。
不过 epoll 我没印象是什么……好像是 Linux 内核的?
如果是 Linux 内核的东西,那这个程序就是 Linux-Only 的程序,你只能做源代码移植了。
BSD 的内核有 Linux 兼容接口层可以用,MAC 的我没印象有。
B. 面试必问的epoll技术,从内核源码出发彻底搞懂epoll
epoll是linux中IO多路复用的一种机制,I/O多路复用就是通过一种机制,一个进程可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作。当然linux中IO多路复用不仅仅是epoll,其他多路复用机制还有select、poll,但是接下来介绍epoll的内核实现。
events可以是以下几个宏的集合:
epoll相比select/poll的优势 :
epoll相关的内核代码在fs/eventpoll.c文件中,下面分别分析epoll_create、epoll_ctl和epoll_wait三个函数在内核中的实现,分析所用linux内核源码为4.1.2版本。
epoll_create用于创建一个epoll的句柄,其在内核的系统实现如下:
sys_epoll_create:
可见,我们在调用epoll_create时,传入的size参数,仅仅是用来判断是否小于等于0,之后再也没有其他用处。
整个函数就3行代码,真正的工作还是放在sys_epoll_create1函数中。
sys_epoll_create -> sys_epoll_create1:
sys_epoll_create1 函数流程如下:
sys_epoll_create -> sys_epoll_create1 -> ep_alloc:
sys_epoll_create -> sys_epoll_create1 -> ep_alloc -> get_unused_fd_flags:
linux内核中,current是个宏,返回的是一个task_struct结构(我们称之为进程描述符)的变量,表示的是当前进程,进程打开的文件资源保存在进程描述符的files成员里面,所以current->files返回的当前进程打开的文件资源。rlimit(RLIMIT_NOFILE) 函数获取的是当前进程可以打开的最大文件描述符数,这个值可以设置,默认是1024。
相关视频推荐:
支撑亿级io的底层基石 epoll实战揭秘
网络原理tcp/udp,网络编程epoll/reactor,面试中正经“八股文”
学习地址:C/C++Linux服务器开发/后台架构师【零声教育】-学习视频教程-腾讯课堂
需要更多C/C++ Linux服务器架构师学习资料加群 812855908 获取(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等),免费分享
__alloc_fd的工作是为进程在[start,end)之间(备注:这里start为0, end为进程可以打开的最大文件描述符数)分配一个可用的文件描述符,这里就不继续深入下去了,代码如下:
sys_epoll_create -> sys_epoll_create1 -> ep_alloc -> get_unused_fd_flags -> __alloc_fd:
然后,epoll_create1会调用anon_inode_getfile,创建一个file结构,如下:
sys_epoll_create -> sys_epoll_create1 -> anon_inode_getfile:
anon_inode_getfile函数中首先会alloc一个file结构和一个dentry结构,然后将该file结构与一个匿名inode节点anon_inode_inode挂钩在一起,这里要注意的是,在调用anon_inode_getfile函数申请file结构时,传入了前面申请的eventpoll结构的ep变量,申请的file->private_data会指向这个ep变量,同时,在anon_inode_getfile函数返回来后,ep->file会指向该函数申请的file结构变量。
简要说一下file/dentry/inode,当进程打开一个文件时,内核就会为该进程分配一个file结构,表示打开的文件在进程的上下文,然后应用程序会通过一个int类型的文件描述符来访问这个结构,实际上内核的进程里面维护一个file结构的数组,而文件描述符就是相应的file结构在数组中的下标。
dentry结构(称之为“目录项”)记录着文件的各种属性,比如文件名、访问权限等,每个文件都只有一个dentry结构,然后一个进程可以多次打开一个文件,多个进程也可以打开同一个文件,这些情况,内核都会申请多个file结构,建立多个文件上下文。但是,对同一个文件来说,无论打开多少次,内核只会为该文件分配一个dentry。所以,file结构与dentry结构的关系是多对一的。
同时,每个文件除了有一个dentry目录项结构外,还有一个索引节点inode结构,里面记录文件在存储介质上的位置和分布等信息,每个文件在内核中只分配一个inode。 dentry与inode描述的目标是不同的,一个文件可能会有好几个文件名(比如链接文件),通过不同文件名访问同一个文件的权限也可能不同。dentry文件所代表的是逻辑意义上的文件,记录的是其逻辑上的属性,而inode结构所代表的是其物理意义上的文件,记录的是其物理上的属性。dentry与inode结构的关系是多对一的关系。
sys_epoll_create -> sys_epoll_create1 -> fd_install:
总结epoll_create函数所做的事:调用epoll_create后,在内核中分配一个eventpoll结构和代表epoll文件的file结构,并且将这两个结构关联在一块,同时,返回一个也与file结构相关联的epoll文件描述符fd。当应用程序操作epoll时,需要传入一个epoll文件描述符fd,内核根据这个fd,找到epoll的file结构,然后通过file,获取之前epoll_create申请eventpoll结构变量,epoll相关的重要信息都存储在这个结构里面。接下来,所有epoll接口函数的操作,都是在eventpoll结构变量上进行的。
所以,epoll_create的作用就是为进程在内核中建立一个从epoll文件描述符到eventpoll结构变量的通道。
epoll_ctl接口的作用是添加/修改/删除文件的监听事件,内核代码如下:
sys_epoll_ctl:
根据前面对epoll_ctl接口的介绍,op是对epoll操作的动作(添加/修改/删除事件),ep_op_has_event(op)判断是否不是删除操作,如果op != EPOLL_CTL_DEL为true,则需要调用_from_user函数将用户空间传过来的event事件拷贝到内核的epds变量中。因为,只有删除操作,内核不需要使用进程传入的event事件。
接着连续调用两次fdget分别获取epoll文件和被监听文件(以下称为目标文件)的file结构变量(备注:该函数返回fd结构变量,fd结构包含file结构)。
接下来就是对参数的一些检查,出现如下情况,就可以认为传入的参数有问题,直接返回出错:
当然下面还有一些关于操作动作如果是添加操作的判断,这里不做解释,比较简单,自行阅读。
在ep里面,维护着一个红黑树,每次添加注册事件时,都会申请一个epitem结构的变量表示事件的监听项,然后插入ep的红黑树里面。在epoll_ctl里面,会调用ep_find函数从ep的红黑树里面查找目标文件表示的监听项,返回的监听项可能为空。
接下来switch这块区域的代码就是整个epoll_ctl函数的核心,对op进行switch出来的有添加(EPOLL_CTL_ADD)、删除(EPOLL_CTL_DEL)和修改(EPOLL_CTL_MOD)三种情况,这里我以添加为例讲解,其他两种情况类似,知道了如何添加监听事件,其他删除和修改监听事件都可以举一反三。
为目标文件添加监控事件时,首先要保证当前ep里面还没有对该目标文件进行监听,如果存在(epi不为空),就返回-EEXIST错误。否则说明参数正常,然后先默认设置对目标文件的POLLERR和POLLHUP监听事件,然后调用ep_insert函数,将对目标文件的监听事件插入到ep维护的红黑树里面:
sys_epoll_ctl -> ep_insert:
前面说过,对目标文件的监听是由一个epitem结构的监听项变量维护的,所以在ep_insert函数里面,首先调用kmem_cache_alloc函数,从slab分配器里面分配一个epitem结构监听项,然后对该结构进行初始化,这里也没有什么好说的。我们接下来看ep_item_poll这个函数调用:
sys_epoll_ctl -> ep_insert -> ep_item_poll:
ep_item_poll函数里面,调用目标文件的poll函数,这个函数针对不同的目标文件而指向不同的函数,如果目标文件为套接字的话,这个poll就指向sock_poll,而如果目标文件为tcp套接字来说,这个poll就是tcp_poll函数。虽然poll指向的函数可能会不同,但是其作用都是一样的,就是获取目标文件当前产生的事件位,并且将监听项绑定到目标文件的poll钩子里面(最重要的是注册ep_ptable_queue_proc这个poll callback回调函数),这步操作完成后,以后目标文件产生事件就会调用ep_ptable_queue_proc回调函数。
接下来,调用list_add_tail_rcu将当前监听项添加到目标文件的f_ep_links链表里面,该链表是目标文件的epoll钩子链表,所有对该目标文件进行监听的监听项都会加入到该链表里面。
然后就是调用ep_rbtree_insert,将epi监听项添加到ep维护的红黑树里面,这里不做解释,代码如下:
sys_epoll_ctl -> ep_insert -> ep_rbtree_insert:
前面提到,ep_insert有调用ep_item_poll去获取目标文件产生的事件位,在调用epoll_ctl前这段时间,可能会产生相关进程需要监听的事件,如果有监听的事件产生,(revents & event->events 为 true),并且目标文件相关的监听项没有链接到ep的准备链表rdlist里面的话,就将该监听项添加到ep的rdlist准备链表里面,rdlist链接的是该epoll描述符监听的所有已经就绪的目标文件的监听项。并且,如果有任务在等待产生事件时,就调用wake_up_locked函数唤醒所有正在等待的任务,处理相应的事件。当进程调用epoll_wait时,该进程就出现在ep的wq等待队列里面。接下来讲解epoll_wait函数。
总结epoll_ctl函数:该函数根据监听的事件,为目标文件申请一个监听项,并将该监听项挂人到eventpoll结构的红黑树里面。
epoll_wait等待事件的产生,内核代码如下:
sys_epoll_wait:
首先是对进程传进来的一些参数的检查:
参数全部检查合格后,接下来就调用ep_poll函数进行真正的处理:
sys_epoll_wait -> ep_poll:
ep_poll中首先是对等待时间的处理,timeout超时时间以ms为单位,timeout大于0,说明等待timeout时间后超时,如果timeout等于0,函数不阻塞,直接返回,小于0的情况,是永久阻塞,直到有事件产生才返回。
当没有事件产生时((!ep_events_available(ep))为true),调用__add_wait_queue_exclusive函数将当前进程加入到ep->wq等待队列里面,然后在一个无限for循环里面,首先调用set_current_state(TASK_INTERRUPTIBLE),将当前进程设置为可中断的睡眠状态,然后当前进程就让出cpu,进入睡眠,直到有其他进程调用wake_up或者有中断信号进来唤醒本进程,它才会去执行接下来的代码。
如果进程被唤醒后,首先检查是否有事件产生,或者是否出现超时还是被其他信号唤醒的。如果出现这些情况,就跳出循环,将当前进程从ep->wp的等待队列里面移除,并且将当前进程设置为TASK_RUNNING就绪状态。
如果真的有事件产生,就调用ep_send_events函数,将events事件转移到用户空间里面。
sys_epoll_wait -> ep_poll -> ep_send_events:
ep_send_events没有什么工作,真正的工作是在ep_scan_ready_list函数里面:
sys_epoll_wait -> ep_poll -> ep_send_events -> ep_scan_ready_list:
ep_scan_ready_list首先将ep就绪链表里面的数据链接到一个全局的txlist里面,然后清空ep的就绪链表,同时还将ep的ovflist链表设置为NULL,ovflist是用单链表,是一个接受就绪事件的备份链表,当内核进程将事件从内核拷贝到用户空间时,这段时间目标文件可能会产生新的事件,这个时候,就需要将新的时间链入到ovlist里面。
仅接着,调用sproc回调函数(这里将调用ep_send_events_proc函数)将事件数据从内核拷贝到用户空间。
sys_epoll_wait -> ep_poll -> ep_send_events -> ep_scan_ready_list -> ep_send_events_proc:
ep_send_events_proc回调函数循环获取监听项的事件数据,对每个监听项,调用ep_item_poll获取监听到的目标文件的事件,如果获取到事件,就调用__put_user函数将数据拷贝到用户空间。
回到ep_scan_ready_list函数,上面说到,在sproc回调函数执行期间,目标文件可能会产生新的事件链入ovlist链表里面,所以,在回调结束后,需要重新将ovlist链表里面的事件添加到rdllist就绪事件链表里面。
同时在最后,如果rdlist不为空(表示是否有就绪事件),并且由进程等待该事件,就调用wake_up_locked再一次唤醒内核进程处理事件的到达(流程跟前面一样,也就是将事件拷贝到用户空间)。
到这,epoll_wait的流程是结束了,但是有一个问题,就是前面提到的进程调用epoll_wait后会睡眠,但是这个进程什么时候被唤醒呢?在调用epoll_ctl为目标文件注册监听项时,对目标文件的监听项注册一个ep_ptable_queue_proc回调函数,ep_ptable_queue_proc回调函数将进程添加到目标文件的wakeup链表里面,并且注册ep_poll_callbak回调,当目标文件产生事件时,ep_poll_callbak回调就去唤醒等待队列里面的进程。
总结一下epoll该函数: epoll_wait函数会使调用它的进程进入睡眠(timeout为0时除外),如果有监听的事件产生,该进程就被唤醒,同时将事件从内核里面拷贝到用户空间返回给该进程。
C. 关于Linux下的select/epoll
select这个系统调用的原型如下
第一个参数nfds用来告诉内核 要扫描的socket fd的数量+1 ,select系统调用最大接收的数量是1024,但是如果每次都去扫描1024,实际上的数量并不多,则效率太低,这里可以指定需要扫描的数量。 最大数量为1024,如果需要修改这个数量,则需要重新编译Linux内核源码。
第2、3、4个参数分别是readfds、writefds、exceptfds,传递的参数应该是fd_set 类型的引用,内核会检测每个socket的fd, 如果没有读事件,就将对应的fd从第二个参数传入的fd_set中移除,如果没有写事件,就将对应的fd从第二个参数的fd_set中移除,如果没有异常事件,就将对应的fd从第三个参数的fd_set中移除 。这里我们应该 要将实际的readfds、writefds、exceptfds拷贝一份副本传进去,而不是传入原引用,因为如果传递的是原引用,某些socket可能就已经丢失 。
最后一个参数是等待时间, 传入0表示非阻塞,传入>0表示等待一定时间,传入NULL表示阻塞,直到等到某个socket就绪 。
FD_ZERO()这个函数将fd_set中的所有bit清0,一般用来进行初始化等。
FD_CLR()这个函数用来将bitmap(fd_set )中的某个bit清0,在客户端异常退出时就会用到这个函数,将fd从fd_set中删除。
FD_ISSET()用来判断某个bit是否被置1了,也就是判断某个fd是否在fd_set中。
FD_SET()这个函数用来将某个fd加入fd_set中,当客户端新加入连接时就会使用到这个函数。
epoll_create系统调用用来创建epfd,会在开辟一块内存空间(epoll的结构空间)。size为epoll上能关注的最大描述符数,不够会进行扩展,size只要>0就行,早期的设计size是固定大小,但是现在size参数没什么用,会自动扩展。
返回值是epfd,如果为-1则说明创建epoll对象失败 。
第一个参数epfd传入的就是epoll_create返回的epfd。
第二个参数传入对应操作的宏,包括 增删改(EPOLL_CTL_ADD、EPOLL_CTL_DEL、EPOLL_CTL_MOD) 。
第三个参数传入的是 需要增删改的socket的fd 。
第四个参数传入的是 需要操作的fd的哪些事件 ,具体的事件可以看后续。
返回值是一个int类型,如果为-1则说明操作失败 。
第一个参数是epfd,也就是epoll_create的返回值。
第二个参数是一个epoll_event类型的指针,也就是传入的是一个数组指针。 内核会将就绪的socket的事件拷贝到这个数组中,用户可以根据这个数组拿到事件和消息等 。
第三个参数是maxevents,传入的是 第二个参数的数组的容量 。
第四个参数是timeout, 如果设为-1一直阻塞直到有就绪数据为止,如果设为0立即返回,如果>0那么阻塞一段时间 。
返回值是一个int类型,也就是就绪的socket的事件的数量(内核拷贝给用户的events的元素的数量),通过这个数量可以进行遍历处理每个事件 。
一般需要传入 ev.data.fd 和 ev.events ,也就是fd和需要监控的fd的事件。事件如果需要传入多个,可以通过按位与来连接,比如需要监控读写事件,只需要像如下这样操作即可: ev.events=EPOLLIN | EPOLLOUT 。
LT(水平触发), 默认 的工作模式, 事件就绪后用户可以选择处理和不处理,如果用户不处理,内核会对这部分数据进行维护,那么下次调用epoll_wait()时仍旧会打包出来 。
ET(边缘触发),事件就绪之后, 用户必须进行处理 ,因为内核把事件打包出来之后就把对应的就绪事件给清掉了, 如果不处理那么就绪事件就没了 。ET可以减少epoll事件被重复触发的次数,效率比LT高。
如果需要设置为边缘触发只需要设置事件为类似 ev.events=EPOLLIN | EPOLLET 即可 。
select/poll/epoll是nio多路复用技术, 传统的bio无法实现C10K/C100K ,也就是无法满足1w/10w的并发量,在这么高的并发量下,在进行上下文切换就很容易将服务器的负载拉飞。
1.将fd_set从用户态拷贝到内核态
2.根据fd_set扫描内存中的socket的fd的状态,时间复杂度为O(n)
3.检查fd_set,如果有已经就绪的socket,就给对应的socket的fd打标记,那么就return 就绪socket的数量并唤醒当前线程,如果没有就绪的socket就继续阻塞当前线程直到有socket就绪才将当前线程唤醒。
4.如果想要获取当前已经就绪的socket列表,则还需要进行一次系统调用,使用O(n)的时间去扫描socket的fd列表,将已经打上标记的socket的fd返回。
CPU在同一个时刻只能执行一个程序,通过RR时间片轮转去切换执行各个程序。没有被挂起的进程(线程)则在工作队列中排队等待CPU的执行,将进程(线程)从工作队列中移除就是挂起,反映到Java层面的就是线程的阻塞。
什么是中断?当我们使用键盘、鼠标等IO设备的时候,会给主板一个电流信号,这个电流信号就给CPU一个中断信号,CPU执行完当前的指令便会保存现场,然后执行键盘/鼠标等设备的中断程序,让中断程序获取CPU的使用权,在中断程序后又将现场恢复,继续执行之前的进程。
如果第一次没检测到就绪的socket,就要将其进程(线程)从工作队列中移除,并加入到socket的等待队列中。
socket包含读缓冲区+写缓冲区+等待队列(放线程或eventpoll对象)
当从客户端往服务器端发送数据时,使用TCP/IP协议将通过物理链路、网线发给服务器的网卡设备,网卡的DMA设备将接收到的的数据写入到内存中的一块区域(网卡缓冲区),然后会给CPU发出一个中断信号,CPU执行完当前指令则会保存现场,然后网卡的中断程序就获得了CPU的使用权,然后CPU便开始执行网卡的中断程序,将内存中的缓存区中的数据包拿出,判断端口号便可以判断它是哪个socket的数据,将数据包写入对应的socket的读(输入)缓冲区,去检查对应的socket的等待队列有没有等待着的进程(线程),如果有就将该线程(进程)从socket的等待队列中移除,将其加入工作队列,这时候该进程(线程)就再次拥有了CPU的使用权限,到这里中断程序就结束了。
之后这个进程(线程)就执行select函数再次去检查fd_set就能发现有socket缓冲区中有数据了,就将该socket的fd打标记,这个时候select函数就执行完了,这时候就会给上层返回一个int类型的数值,表示已经就绪的socket的数量或者是发生了错误。这个时候就再进行内核态到用户态的切换,对已经打标记的socket的fd进行处理。
将原本1024bit长度的bitmap(fd_set)换成了数组的方式传入 ,可以 解决原本1024个不够用的情况 ,因为传入的是数组,长度可以不止是1024了,因此socket数量可以更多,在Kernel底层会将数组转换成链表。
在十多年前,linux2.6之前,不支持epoll,当时可能会选择用Windows/Unix用作服务器,而不会去选择Linux,因为select/poll会随着并发量的上升,性能变得越来越低,每次都得检查所有的Socket列表。
1.select/poll每次调用都必须根据提供所有的socket集合,然后就 会涉及到将这个集合从用户空间拷贝到内核空间,在这个过程中很耗费性能 。但是 其实每次的socket集合的变化也许并不大,也许就1-2个socket ,但是它会全部进行拷贝,全部进行遍历一一判断是否就绪。
2.select/poll的返回类型是int,只能代表当前的就绪的socket的数量/发生了错误, 如果还需要知道是哪些socket就绪了,则还需要再次使用系统调用去检查哪些socket是就绪的,又是一次O(n)的操作,很耗费性能 。
1.epoll在Kernel内核中存储了对应的数据结构(eventpoll)。我们可以 使用epoll_create()这个系统调用去创建一个eventpoll对象 ,并返回eventpoll的对象id(epfd),eventpoll对象主要包括三个部分:需要处理的正在监听的socket_fd列表(红黑树结构)、socket就绪列表以及等待队列(线程)。
2.我们可以使用epoll_ctl()这个系统调用对socket_fd列表进行CRUD操作,因为可能频繁地进行CRUD,因此 socket_fd使用的是红黑树的结构 ,让其效率能更高。epoll_ctl()传递的参数主要是epfd(eventpoll对象id)。
3.epoll_wait()这个系统调用默认会 将当前进程(线程)阻塞,加入到eventpoll对象的等待队列中,直到socket就绪列表中有socket,才会将该进程(线程)重新加入工作队列 ,并返回就绪队列中的socket的数量。
socket包含读缓冲区、写缓冲区和等待队列。当使用epoll_ctl()系统调用将socket新加入socket_fd列表时,就会将eventpoll对象引用加到socket的等待队列中, 当网卡的中断程序发现socket的等待队列中不是一个进程(线程),而是一个eventpoll对象的引用,就将socket引用追加到eventpoll对象的就绪列表的尾部 。而eventpoll对象中的等待队列存放的就是调用了epoll_wait()的进程(线程),网卡的中断程序执行会将等待队列中的进程(线程)重新加入工作队列,让其拥有占用CPU执行的资格。epoll_wait()的返回值是int类型,返回的是就绪的socket的数量/发生错误,-1表示发生错误。
epoll的参数有传入一个epoll_event的数组指针(作为输出参数),在调用epoll_wait()返回的同时,Kernel内核还会将就绪的socket列表添加到epoll_event类型的数组当中。
D. Linux select/poll/epoll 原理(一)实现基础
本序列涉及的 Linux 源码都是基于 linux-4.14.143 。
1.1 文件抽象
在 Linux 内核里,文件是一个抽象,设备是个文件,网络套接字也是个文件。
文件抽象必须支持的能力定义在 file_operations 结构体里。
在 Linux 里,一个打开的文件对应一个文件描述符 file descriptor/FD,FD 其实是一个整数,内核把进程打开的文件维护在一个数组里,FD 对应的是数组的下标。
文件抽象的能力定义:
1.2 文件 poll 操作
poll 函数的原型:
文件抽象 poll 函数的具体实现必须完成两件事(这两点算是规范了):
1. 在 poll 函数敢兴趣的等待队列上调用 poll_wait 函数,以接收到唤醒;具体的实现必须把 poll_table 类型的参数作为透明对象来使用,不需要知道它的具体结构。
2. 返回比特掩码,表示当前可立即执行而不会阻塞的操作。
下面是某个驱动的 poll 实现示例,来自:https://www.oreilly.com/library/view/linux-device-drivers/0596000081/ch05s03.html:
poll 函数接收的 poll_table 只有一个队列处理函数 _qproc 和感兴趣的事件属性 _key。
文件抽象的具体实现在构建时会初始化一个或多个 wait_queue_head_t 类型的事件等待队列 。
poll 等待的过程:
事件发生时的唤醒过程:
一个小困惑: