导航:首页 > 源码编译 > 推荐算法的主要观点

推荐算法的主要观点

发布时间:2023-02-13 05:35:26

① 推荐算法综述

推荐系统的目的是通过推荐计算帮助用户从海量的数据对象中选择出用户最有可能感兴趣的对象。涉及三个基本内容:目标用户、待推荐项目以及推荐算法,基本流程为:描述为用户模型构建、项目模型建立以及推荐算法处理三个基本流程;

为了能够为用户提供准确的推荐服务,推荐系统需要为用户构建用户模型,该模型能够反映用户动态变化的多层次兴趣偏好,有助于推荐系统更好的理解用户的特征和需求。构建用户模型通常需要经历三个流程:用户数据收集,用户模型表示以及用户模型更新。

(1)用户数据收集:用户数据是用户模型构建的基础,用户数据收集的方式一般有显示方式获取和隐式方式获取两种。
显示方式获取的数据是用户特征属性和兴趣偏好的直接反映,所获得的信息数据是较为客观全面的,比如用户在注册时包含的性别、年龄等信息可以直接表示出用户的基本人口学信息和兴趣信息,用户对项目的评分可以反映出用户的偏好。但显示获取的方式最大的缺陷是其实时性较差,并且具有很强的侵袭性。
隐式方式获取用户数据是在不干扰用户的前提下,采集用户的操作行为数据,并从中挖掘出用户的兴趣偏好。用户的很多操作行为都能反映出用户的喜好,比如用户浏览网页的速度、用户查询的关键字等,推荐系统在不影响用户使用系统的情况下,通过行为日志挖掘出用户的偏好。隐式获取方式由于具有较好的实时性和灵活性和较弱的侵袭性,己经成为推荐系统中主要的用户数据采集方式。

(2)用户模型表示:用户模型是从用户数据中归纳出的推荐系统所理解的用户兴趣偏好的结构化形式。
a 基于内容关键词表示;
b 基于评分矩阵表示;
(3)用户模型更新:推荐系统面临的问题之一是兴趣漂移,兴趣漂移的根本原因在于用户的兴趣会随时间发生改变。为了使用户模型够准确的代表用户的兴趣,推荐系统需要根据最新的用户数据对用户模型进行更新。

目前项目模型主要通过基于内容和基于分类这两类方式来建立。基于内容的方式是以项目本身内容为基础,向量空间模型表示是目前御用最为广泛的基于内容的方式。

基于分类的方式是根据项目的内容或者属性,将项目划分到一个或者几个类别中,利用类别信息来表示项目,这种方法可以很方便地将项目推荐给对某一类别感兴趣的用户。常见的分类算法有朴素贝叶斯算法和KNN分类算法等。

推荐系统实现的核心是其使用的推荐算法。针对不同的使用环境及其系统的数据特征,选取不同的推荐算法,可以在本质上提高推荐系统的推荐效果。根据不同的分类标准,推荐算法出现了有很多不同的分类方法,本文采用了比较普遍的分类方法。

推荐系统通常被分为基于内容的推荐算法、协同过滤推荐算法以及混合模型推荐算法三大类。

基于内容的推荐算法,其本质是对物品或用户的内容进行分析建立属性特征。系统根据其属性特征,为用户推荐与其感兴趣的属性特征相似的信息。算法的主要思想是将与用户之前感兴趣的项目的内容相似的其他项目推荐给用户。

CBF(Content-based Filter Recommendations)算法的主要思想是将与用户之前感兴趣的项目的内容相似的其他项目推荐给用户,比如用户喜欢Java开发的书籍,则基于内容过滤算法将用户尚未看过的其他Java开发方面的书籍推荐给用户。因此,该推荐算法的关键部分是计算用户模型和项目模型之间的内容相似度,相似度的计算通常采用余弦相似性度量。

基于内容的推荐过程一般分为以下三个模块:
(1)特征提取模块:由于大多数物品信息是非结构化的,需要为每个物品(如产品、网页、新闻、文档等)抽取出一些特征属性,用某一恰当的格式表示,以便下一阶段的处理。如将新闻信息表示成关键词向量,此种表示形式将作为下一模块(属性特征学习模块)的输入。

(2)特征学习模块:通过用户的历史行为数据特征,机器学习出用户的兴趣特征模型。本模块负责收集代表用户喜好的数据信息,并泛化这些数据,用于构建用户特征模型。通常使用机器学习的泛化策略,来将用户喜好表示为兴趣模型。

(3)推荐模块:该模块利用上一阶段得到的用户特征模型,通过对比用户兴趣模型与带推荐物品的特征相似度,为用户推荐与其兴趣相似度较高的物品,从而达到个性化推荐的目的。该模块一般采用计算用户兴趣向量与待推荐物品特征向量的相似度来进行排序,将相似度较高的物品推荐给相应用户。计算相似度有多种方法,如皮尔逊相关系数法、夹角余弦法、Jaccard相关系数法等。

协同过滤算法(Collaborative Filtering)是于内容无关的,即不需要额外获取分析用户或物品的内容属性特征。是基于用户历史行为数据进行推荐的算法。其通过分析用户与物品间的联系来寻找新的用户与物品间的相关性。

该算法算法通常有两个过程,一个过程是预测,另一个过程是推荐。主流的协同过滤算法包括三种:基于用户的协同过滤(User-Based Collaborative Filtering,UBCF)、基于项目的协同过滤(Item-Based Collaborative Filtering, IBCF)和基于模型的协同过滤(Model-Based Collaborative Filtering, MBCF)

(1)基于用户的协同过滤算法
基于用户的协同过滤推荐算法,先通过用户历史行为数据找到和用户u相似的用户,将这些用户感兴趣的且u没有点击过的物品推荐给用户。
算法主要包括以下两个步骤:
(1)找到与目标用户喜好相似的邻居用户集合。
(2)在邻居用户集合中,为用户推荐其感兴趣的物品。

UBCF的基本思想是将与当前用户有相同偏好的其他用户所喜欢的项目推荐给当前用户。一个最典型的例子就是电影推荐,当我们不知道哪一部电影是我们比较喜欢的时候,通常会询问身边的朋友是否有好的电影推荐,询问的时候我们习惯于寻找和我们品味相同或相似的朋友。

(2)基于物品的协同过滤算法
基于物品的协同过滤算法(Item-based Collaborative Filtering)其主要思想是,为用户推荐那些与他们之前喜欢或点击过的物品相似的物品。不过基于物品的协同过滤算法并不是利用物品的内容属性特征来计算物品之间的相似度的。该类算法是利用用户的历史行为数据计算待推荐物品之间的相似度。在该类算法中,如果喜欢物品A的用户大都也喜欢物品B,那么就可以认为物品A和物品B之间的相似度很高。
算法分为以下两个步骤:
(1)根据用户历史行为数据,计算物品间的相似度。
(2)利用用户行为和物品间的相似度为用户生成推荐列表。

IBCF算法是亚马逊在2003年发表的论文中首次提出,该算法的基本思想是根据所有用户的历史偏好数据计算项目之间的相似性,然后把和用户喜欢的项目相类似的并且用户还未选择的其他项目推荐给用户,例如,假设用户喜欢项目a,则用户喜欢与项目a高度相似且还未被用户选择的项目b的可能性非常大,因此将项目b推荐给用户。

UBCF和IBCF都属于基于内存的协同过滤算法,这类算法由于充分发挥了用户的评分数据,形成全局推荐,因此具有较高的推荐质量。但随着用户和项目的规模增长,这类算法的计算时间大幅上升,使得系统的性能下降。针对该问题,研究人员提出将数据挖掘中的模型和CF算法结合,提出了基于模型的协同过滤算法(MBCF) 。

MBCF算法利用用户历史评分数据建立模型,模型建立的算法通常有奇异值分解、聚类算法、贝叶斯网络、关联规则挖掘等,且通常是离线完成。由于MBCF通常会对原始评分值做近似计算,通过牺牲一定的准确性来换取系统性能,因此MBCF的推荐质量略差于UBCF和IBCF。

由于基于内容的推荐算法和协同过滤推荐算法都有其各自的局限性,混合推荐算法应运而生。混合推荐算法根据不同的应用场景,有多
种不同的结合方式,如加权、分层和分区等。

目前使用的混合推荐算法的思想主要可以分成以下几类:
(1)多个推荐算法独立运行,获取的多个推荐结果以一定的策略进行混合,例如为每一个推荐结果都赋予一个权值的加权型混合推荐算法和将各个推荐结果取TOP-N的交叉混合推荐算法。

(2)将前一个推荐方法产出的中间结果或者最终结果输出给后一个推荐方法,层层递进,推荐结果在此过程中会被逐步优选,最终得到一个精确度比较高的结果。

(3)使用多种推荐算法,将每种推荐算法计算过程中产生的相似度值通过权重相加,调整每个推荐算法相似度值的权重,以该混合相似度值为基础,选择出邻域集合,并结合邻域集合中的评估信息,得出最优的推荐结果。

BP (Back Propagation)神经网络是目前应用最广泛的神经网络模型之一,是一种按误差逆传播算法训练的多层前馈网络。

BP神经网络模型包括输入层、隐藏层和输出层,每一层由一个或多个神经元组成,其结构图如图2-3所示。BP神经网络拥有很强的非线性映射能力和自学习、自适应能力,网络本身结构的可变性,也使其十分灵活,一个三层的BP神经网络能够实现对任意非线性函数进行逼近。

BP神经网络的训练过程通常分为3个过程,依次分别为数据初始化过程、正向推演计算过程以及反向权重调整过程。数据初始化是BP神经网络能够进行有效训练的前提,该过程通常包括输入数据进行归一化处理和初始权重的设置;正向推演计算是数据沿着网络方向进行推演计算;反向权重调整则是将期望输出和网络的实际输出进行对比,从输出层开始,向着输入层的方向逐层计算各层中各神经元的校正差值,调整神经元的权重。正向推演计算和反向权重调整为对单个训练样本一次完整的网络训练过程,经过不断的训练调整,网络的实际输出越来越趋近于期望输出,当网络输出到达预期目标,整个训练过程结束。

TF-IDF(Term Frequency-Inverse Document Frequency,词频一逆文档)是文本处理中常用的加权技术,广泛应用于信息检索、搜索引擎等领域。
TF-IDF的主要思想是:如果一个关键词在文档中出现的频率很高,而在其他文档中出现次数较少,则该关键词被认为具有较强的代表性,即该关键词通过TF-IDF计算后有较高的权重。

TextRank算法,是一种用于文本关键词排序的算法,页排序算法PageRank。
PageRank基本思想是将每个网页看成一个节点,网页中的链接指向看成一条有向边,一个网页节点的重要程度取决于链接指向该网页节点的其他节点的数量和重要权值,该过程描述如下:让每一个网页对其所包含的链接指向的网页进行迭代投票,每次迭代投票过程中票的权重取决于网页当前拥有的票数,当投票结果收敛或者达到指定的迭代次数时,每个网页所获得票数即为网页重要程度权值。

TextRank算法相比于TF-IDF最大的优点是TextRank是一种无监督的学习,因此不会受限于文本的主题,并且无需大规模的训练集,可以针对单一文本进行快速的关键词的权重计算。

② 推荐算法有哪些

推荐应该说分为两类:个性化推荐和非个性化推荐,“让全局优秀的内容被大家看到”应该算是非个性化推荐,热门榜单/最多观看这类方法可以简单解决这个问题;不同的人对于“好”的理解不一样,换句话说也就是偏好不同,所以推荐新加入的好内容我认为是个性化推荐问题。

个性化推荐的两个主要思想八个字概括之:物以类聚、人以群分。主要的方法及变种应该有很多,像协同过滤、基于内容的推荐、基于标签的推荐等等。

③ 推荐系统产品和算法概述丨产品杂谈系列

本文主要是对最近所学的推荐系统的总结,将会简单概述非个性化范式、群组个性化范式、完全个性化范式、标的物关联标的物范式、笛卡尔积范式等5种常用的推荐范式的设计思路。

许多产品的推荐算法都依赖于三类数据:标的物相关的描述信息(如推荐鞋子,则包括鞋子的版型、适用对象、材质等信息、用户画像数据(指的是用户相关数据,如性别、年龄、收入等)、用户行为数据(例如用户在淘宝上的浏览、收藏、购买等)。这三类数据是推荐模型的主要组成部分,除此之外一些人工标注的数据(例如为商品人工打上标签)、第三方数据也能够用于补充上述的三类数据。

服务端在有以上数据的基础上,就可以从三个维度进行推荐:

根据个性化推荐的颗粒度,我们可以将基于用户维度的推荐分为非个性化推荐、群组个性化推荐及完全个性化推荐三种类型。

非个性化推荐指的是每个用户看到的推荐内容都是一样的 在互联网产品中,我们最常见的非个性化推荐的例子是各种排行榜,如下图是酷狗音乐的排行榜推荐,通过各个维度计算各类榜单,不管是谁看到这个榜单,上面的排序和内容都是一致的。

群组个性化推荐指的是将具有相同特征的用户聚合成一组,同一组用户在某些方面具备相似性,系统将为这一组用户推荐一样的内容 。这种推荐方式是很多产品进行用户精细化运营时会采用的方式,通过用户画像系统圈定一批批用户,并对这批用户做统一的运营。例如音乐软件的推荐播放,若以摇滚乐为基准将一批用户聚合成组,则为这些用户提供的每日推荐歌单是相同的内容和顺序,但与另一组爱听民谣的用户相比,两组用户看到的每日推荐内容将是不同的。

完全个性化指的是为每个用户推荐的内容都不一样,是根据每一位用户的行为及兴趣来为用户做推荐,是当今互联网产品中最常用的一种推荐方式 。大多数情况下我们所说的推荐就是指这种形式的推荐,例如淘宝首页的“猜你喜欢”就是一个完全个性化的推荐,千人千面,每个人看到的推荐尚品都不一样。

完全个性化可以只基于用户行为进行推荐,在构建推荐算法时只考虑到用户个人的特征和行为 ,不需要考虑其他用户,这也是最常见的内容推荐方式。除此之外, 还可以基于群组行为进行完全个性化推荐,除了利用用户自身的行为外,还依赖于其他用户的行为构建推荐算法模型 。例如,用户属性和行为相似的一群用户,其中90%的用户买了A商品后也买了B商品,则当剩下的10%用户单独购买B商品时,我们可以为该用户推荐商品A。

基于群组行为进行的完全个性化推荐可以认为是全体用户的协同进化,常见的协同过滤、基于模型的推荐等都属于这类推荐形式。

基于标的物的推荐指的是用户在访问标的物详情页或者退出标的物详情页时,可以根据标的物的描述信息为用户推荐一批相似的或者相关的标的物,对应的是最开始提到的“标的物关联标的物范式” 。如下图酷狗的相似歌曲推荐,

除了音乐产品外,视频网站、电商、短视频等APP都大量使用基于标的物维度的推荐。如下图便是YouTube基于标的物关联标的物的推荐。在YouTube上我观看一个周杰伦的音乐视频时,YouTube在该页面下方为我推荐更多与周杰伦有关的视频。

基于用户和标的物交叉维度的推荐指的是将用户维度和标的物维度结合起来,不同用户访问同一标的物的详情页时看到的推荐内容也不一样,对应的是开头提到的笛卡尔积推荐范式。 拿酷狗音乐对相似歌曲的推荐来举例,如果该推荐采用的是用户和标的物交叉维度的推荐的话,不同用户看到的“没有理想的人不伤心”这首歌曲,下面的相似歌曲是不一样的。拿淘宝举例的话,一样是搜索“裤子”这一关键词,不同的人搜索得到的搜索结果和排序是不同的,可能用户A搜索出来优先展示的是牛仔裤,而用户B优先展示的是休闲裤,淘宝将结合搜索关键词与用户个人的历史行为特征展示对应的搜索结果和排序。

对于基于笛卡尔积推荐范式设计的推荐系统来说,由于每个用户在每个标的物上的推荐列表都不一样,我们是没办法是先将所有组合计算出来并储存(组合过多,数量是非常巨大的),因此对于系统来说,能否在用户请求的过程中快速地为用户计算个性化推荐的标的物列表将会是一个比较大的挑战,对于整个推荐系统的架构也有更高的要求,因此在实际应用中,该种推荐方式用的比较少。

非个性化范式指的是为所有用户推荐一样的标的物列表,常见的各种榜单就是基于此类推荐规则,如电商APP中的新品榜、畅销榜等。排行榜就是基于某个规则来对标的物进行排序,将排序后的部分标的物推荐给用户。例如新品榜是按照商品上架的时间顺序来倒序排列,并将排序在前列的产品推荐给用户。而畅销榜则是按照商品销量顺序降序排列,为用户推荐销量靠前的商品。

根据具体的产品和业务场景,即使同样是非个性化范式推荐,在具体实施时也可能会比较复杂。例如在电商APP中畅销榜的推荐可能还会将地域、时间、价格等多个维度纳入考虑范围内,基于每个维度及其权重进行最终的排序推荐。

大部分情况下,非个性化范式推荐可以基于简单的计数统计来生成推荐,不会用到比较复杂的机器学习算法,是一种实施门槛较低的推荐方式。基于此,非个性化范式推荐算法可以作为产品冷启动或者默认的推荐算法。

完全个性化范式是目前的互联网产品中最常用的推荐模式,可用的推荐方法非常多。下面对常用的算法进行简单梳理。

该推荐算法只需要考虑到用户自己的历史行为而不需要考虑其他用户的行为,其核心思想是:标的物是有描述属性的,用户对标的物的操作行为为用户打上了相关属性的烙印,这些属性就是用户的兴趣标签,那么我们就可以基于用户的兴趣来为用户生成推荐列表。还是拿音乐推荐来举例子,如果用户过去听了摇滚和民谣两种类型的音乐,那么摇滚和民谣就是这个用户听歌时的偏好标签,此时我们就可以为该用户推荐更多的摇滚类、民谣类歌曲。

基于内容的个性化推荐在实操中有以下两类方式。

第一种是基于用户特征标识的推荐。
标的物是有很多文本特征的,例如标签、描述信息等,我们可以将这些文本信息基于某种算法转化为特征向量。有了标的物的特征向量后,我们可以将用户所有操作过的标的物的特征向量基于时间加权平均作为用户的特征向量,并根据用户特征向量与标的物特征向量的乘积来计算用户与标的物的相似度,从而计算出该用户的标的物推荐列表。

第二种是基于倒排索引查询的推荐。
如果我们基于标的物的文本特征(如标签)来表示标的物属性,那么基于用户对该标的物的历史行为,我们可以构建用户画像,该画像即是用户对于各个标签的偏好,并且对各个标签都有相应的偏好权重。

在构建完用户画像后,我们可以基于标签与标的物的倒排索引查询表,以标签为关键词,为用户进行个性化推荐。

举个粗暴的例子,有歌曲A、B、C分别对应摇滚、民谣、古风三个音乐标签,我听了歌曲A、B,则在我身上打了摇滚和民谣的标签,又基于我听这两个歌曲的频率,计算了我对“摇滚”和“民谣”的偏好权重。
在倒排索引查询表中,摇滚和民谣又会分别对应一部分歌曲,所以,可以根据我对摇滚和民谣的偏好权重从查询表中筛选一部分歌曲并推荐给我。

基于倒排索引查询的推荐方式是非常自然直观的,只要用户有一次行为,我们就可以据此为用户进行推荐。但反过来,基于用户兴趣给用户推荐内容,容易局限推荐范围,难以为用户推荐新颖的内容。

基于协同过滤的推荐算法,核心思想是很朴素的”物以类聚、人以群分“的思想。所谓物以类聚,就是计算出每个标的物最相似的标的物列表,我们就可以为用户推荐用户喜欢的标的物相似的标的物,这就是基于物品的协同过滤。所谓人以群分,就是我们可以将与该用户相似的用户喜欢过的标的物(而该用户未曾操作过)的标的物推荐给该用户,这就是基于用户的协同过滤。

常见的互联网产品中,很多会采用基于标的物的协同过滤,因为相比之下用户的变动概率更大,增长速度可能较快,这种情况下,基于标的物的协同过滤算法将会更加的稳定。

协同过滤算法思路非常简单直观,也易于实现,在当今的互联网产品中应用广泛。但协同过滤算法也有一些难以避免的问题,例如产品的冷启动阶段,在没有用户数据的情况下,没办法很好的利用协同过滤为用户推荐内容。例如新商品上架时也会遇到类似的问题,没有收集到任何一个用户对其的浏览、点击或者购买行为,也就无从基于人以群分的概念进行商品推荐。

基于模型的推荐算法种类非常多,我了解到的比较常见的有迁移学习算法、强化学习算法、矩阵分解算法等,且随着近几年深度学习在图像识别、语音识别等领域的进展,很多研究者和实践者也将其融入到推荐模型的设计当中,取得了非常好的效果。例如阿里、京东等电商平台,都是其中的佼佼者。

由于该算法涉及到比较多的技术知识,在下也处于初步学习阶段,就不班门弄斧做过多介绍了,有兴趣的朋友可以自行进行学习。

群组个性化推荐的第一步是将用户分组,因此,采用什么样的分组原则就显得尤为重要。常见的分组方式有两种。

先基于用户的人口统计学数据(如年龄、性别等)或者用户行为数据(例如对各种不同类型音乐的播放频率)构建用户画像。用户画像一般用于做精准的运营,通过显示特征将一批人圈起来形成同一组,对这批人做针对性的运营。因为前头已经提到此算法,这里不再重复介绍。

聚类是非常直观的一种分组思路,将行为偏好相似的用户聚在一起成为一个组,他们有相似的兴趣。常用的聚类策略有如下两类。

标的物关联标的物就是为每个标的物推荐一组标的物。该推荐算法的核心是怎么从一个标的物关联到其他的标的物。这种关联关系可以是相似的(例如嘉士伯啤酒和喜力啤酒),也可以是基于其他维度的关联(例如互补品,羽毛球拍和羽毛球)。常用的推荐策略是相似推荐。下面给出3种常用的生成关联推荐的策略。

这类推荐方式一般是利用已知的数据和标的物信息来描述一个标的物,通过算法的方式将其向量化,从而根据不同标的物向量之间的相似度来急速标的物之间的相似度,从而实现相识标的物的推荐。

在一个成熟的产品中,我们可以采集到的非常多的用户行为,例如在电商平台中,我们可以手机用户搜索、浏览、收藏、点赞等行为,这些行为就代表了用户对某个标的物的某种偏好,因此,我们可以根据用户的这些行为来进行关联推荐。

例如,可以将用户的行为矩阵分解为用户特征矩阵和物品特征矩阵,物品特征矩阵可以看成是衡量物品的一个向量,利用该向量我们就可以计算两个标的物之间的相似度了,从而为该用户推荐相似度高的其他产品。

再例如, 采用购物篮的思路做推荐,这种思路非常适合图书、电商等的推荐 。 以电商为例,我们可以把用户经常一起浏览(或者购买)的商品形成一个列表,将过去一段时间所有的列表收集起来。对于任何一个商品,我们都可以找到与它一起被浏览或者购买的其他商品及其次数,并根据次数来判断其关联性,从而进行关联推荐。

我们可以对用户进行分组,同样,我们也能够对标的物进行聚类分组。通过某位参考维度,我们将一些列具有相似性的标的物分成一组,当我们为用户进行推荐的时候,便可以将同一组内的其他标的物作为推荐对象,推荐给用户。

笛卡尔积范式的推荐算法一般是先采用标的物关联标的物范式计算出待推荐的标的物列表。再根据用户的兴趣来对该推荐列表做调整(例如根据不同兴趣的权重重新调整推荐列表的排序)、增加(例如基于个性化增加推荐对象)、删除(例如过滤掉已经看过的),由于其复杂程度较高在实际业务场景中应用较少,这边不再详细介绍。

好了,本次的介绍就到此为止了。本次主要是做了一个非常简单的推荐算法概述,在实际的业务场景中,还经常需要与产品形态或者更多的未读(如时间、地点等)相结合,是一个很有意思的领域,有兴趣的朋友可以进一步了解。

④ 推荐算法有哪些

推荐算法是计算机专业中的一种算法,通过一些数学算法,推测出用户可能喜欢的东西。
基于协同过滤的推荐
基于用户的协同过滤算法: 基于一个这样的假设“跟你喜好相似的人喜欢的东西你也很有可能喜欢。”所以基于用户的协同过滤主要的任务就是找出用户的最近邻居,从而根据最近邻 居的喜好做出未知项的评分预测。这种算法主要分为3个步骤:
1、用户评分。可以分为显性评分和隐形评分两种。显性评分就是直接给项目评分(例如给网络里的用户评分),隐形评分就是通过评价或是购买的行为给项目评分 (例如在有啊购买了什么东西)。
2、寻找最近邻居。这一步就是寻找与你距离最近的用户,测算距离一般采用以下三种算法:1.皮尔森相关系数。2.余弦相似性。3调整余弦相似性。调整余弦 相似性似乎效果会好一些。
3、推荐。产生了最近邻居集合后,就根据这个集合对未知项进行评分预测。把评分最高的N个项推荐给用户。 这种算法存在性能上的瓶颈,当用户数越来越多的时候,寻找最近邻居的复杂度也会大幅度的增长。
组合推荐
在组合方式上,有研究人员提出了七种组合思路:
1、加权(Weight):加权多种推荐技术结果。
2、变换(Switch):根据问题背景和实际情况或要求决定变换采用不同的推荐技术。
3、混合(Mixed):同时采用多种推荐技术给出多种推荐结果为用户提供参考。
4、特征组合(Feature combination):组合来自不同推荐数据源的特征被另一种推荐算法所采用。
5、层叠(Cascade):先用一种推荐技术产生一种粗糙的推荐结果,第二种推荐技术在此推荐结果的基础上进一步作出更精确的推荐。
6、特征扩充(Feature augmentation):一种技术产生附加的特征信息嵌入到另一种推荐技术的特征输入中。
7、元级别(Meta-level):用一种推荐方法产生的模型作为另一种推荐方法的输入。

⑤ 推荐算法简介

写在最前面:本文内容主要来自于书籍《推荐系统实践》和《推荐系统与深度学习》。

推荐系统是目前互联网世界最常见的智能产品形式。从电子商务、音乐视频网站,到作为互联网经济支柱的在线广告和新颖的在线应用推荐,到处都有推荐系统的身影。推荐算法是推荐系统的核心,其本质是通过一定的方式将用户和物品联系起来,而不同的推荐系统利用了不同的方式。

推荐系统的主要功能是以个性化的方式帮助用户从极大的搜索空间中快速找到感兴趣的对象。因此,目前所用的推荐系统多为个性化推荐系统。个性化推荐的成功应用需要两个条件:

在推荐系统的众多算法中,基于协同的推荐和基于内容的推荐在实践中得到了最广泛的应用。本文也将从这两种算法开始,结合时间、地点上下文环境以及社交环境,对常见的推荐算法做一个简单的介绍。

基于内容的算法的本质是对物品内容进行分析,从中提取特征,然后基于用户对何种特征感兴趣来推荐含有用户感兴趣特征的物品。因此,基于内容的推荐算法有两个最基本的要求:

下面我们以一个简单的电影推荐来介绍基于内容的推荐算法。

现在有两个用户A、B和他们看过的电影以及打分情况如下:

其中问好(?)表示用户未看过。用户A对《银河护卫队 》《变形金刚》《星际迷航》三部科幻电影都有评分,平均分为 4 .7 分 ( (5+4+5 ) / 3=4.7 );对《三生三世》《美人鱼》《北京遇上西雅图》三部爱情电影评分平均分为 2.3 分 ( ( 3十2+2 ) /3=2.3 )。现在需要给A推荐电影,很明显A更倾向于科幻电影,因此推荐系统会给A推荐独立日。而对于用户B,通过简单的计算我们可以知道更喜欢爱情电影,因此给其推荐《三生三世》。当然,在实际推荐系统中,预测打分比这更加复杂些,但是其原理是一样的。

现在,我们可以将基于内容的推荐归纳为以下四个步骤:

通过上面四步就能快速构建一个简单的推荐系统。基于内容的推荐系统通常简单有效,可解释性好,没有物品冷启动问题。但他也有两个明显的缺点:

最后,顺便提一下特征提取方法:对于某些特征较为明确的物品,一般可以直接对其打标签,如电影类别。而对于文本类别的特征,则主要是其主题情感等,则些可以通过tf-idf或LDA等方法得到。

基于协同的算法在很多地方也叫基于邻域的算法,主要可分为两种:基于用户的协同算法和基于物品的协同算法。

啤酒和尿布的故事在数据挖掘领域十分有名,该故事讲述了美国沃尔玛超市统计发现啤酒和尿布一起被购买的次数非常多,因此将啤酒和尿布摆在了一起,最后啤酒和尿布的销量双双增加了。这便是一个典型的物品协同过滤的例子。

基于物品的协同过滤指基于物品的行为相似度(如啤酒尿布被同时购买)来进行物品推荐。该算法认为,物品A和物品B具有很大相似度是因为喜欢物品A的用户大都也喜欢物品B。

基于物品的协同过滤算法主要分为两步:

基于物品的协同过滤算法中计算物品相似度的方法有以下几种:
(1)基于共同喜欢物品的用户列表计算。

此外,John S. Breese再其论文中还提及了IUF(Inverse User Frequence,逆用户活跃度)的参数,其认为活跃用户对物品相似度的贡献应该小于不活跃的用户,应该增加IUF参数来修正物品相似度的公式:

上面的公式只是对活跃用户做了一种软性的惩罚, 但对于很多过于活跃的用户, 比如某位买了当当网80%图书的用户, 为了避免相似度矩阵过于稠密, 我们在实际计算中一般直接忽略他的兴趣列表, 而不将其纳入到相似度计算的数据集中。

(2)基于余弦相似度计算。

(3)热门物品的惩罚。
从上面(1)的相似度计算公式中,我们可以发现当物品 i 被更多人购买时,分子中的 N(i) ∩ N(j) 和分母中的 N(i) 都会增长。对于热门物品,分子 N(i) ∩ N(j) 的增长速度往往高于 N(i),这就会使得物品 i 和很多其他的物品相似度都偏高,这就是 ItemCF 中的物品热门问题。推荐结果过于热门,会使得个性化感知下降。以歌曲相似度为例,大部分用户都会收藏《小苹果》这些热门歌曲,从而导致《小苹果》出现在很多的相似歌曲中。为了解决这个问题,我们对于物品 i 进行惩罚,例如下式, 当α∈(0, 0.5) 时,N(i) 越小,惩罚得越厉害,从而使热门物品相关性分数下降( 博主注:这部分未充分理解 ):

此外,Kary pis在研究中发现如果将ItemCF的相似度矩阵按最大值归一化, 可以提高推荐的准确率。 其研究表明, 如果已经得到了物品相似度矩阵w, 那么可以用如下公式得到归一化之后的相似度矩阵w':

归一化的好处不仅仅在于增加推荐的准确度,它还可以提高推荐的覆盖率和多样性。一般来说,物品总是属于很多不同的类,每一类中的物品联系比较紧密。假设物品分为两类——A和B, A类物品之间的相似度为0.5, B类物品之间的相似度为0.6, 而A类物品和B类物品之间的相似度是0.2。 在这种情况下, 如果一个用户喜欢了5个A类物品和5个B类物品, 用ItemCF给他进行推荐, 推荐的就都是B类物品, 因为B类物品之间的相似度大。 但如果归一化之后, A类物品之间的相似度变成了1, B类物品之间的相似度也是1, 那么这种情况下, 用户如果喜欢5个A类物品和5个B类物品, 那么他的推荐列表中A类物品和B类物品的数目也应该是大致相等的。 从这个例子可以看出, 相似度的归一化可以提高推荐的多样性。

那么,对于两个不同的类,什么样的类其类内物品之间的相似度高,什么样的类其类内物品相似度低呢?一般来说,热门的类其类内物品相似度一般比较大。如果不进行归一化,就会推荐比较热门的类里面的物品,而这些物品也是比较热门的。因此,推荐的覆盖率就比较低。相反,如果进行相似度的归一化,则可以提高推荐系统的覆盖率。

最后,利用物品相似度矩阵和用户打过分的物品记录就可以对一个用户进行推荐评分:

基于用户的协同算法与基于物品的协同算法原理类似,只不过基于物品的协同是用户U购买了A物品,会计算经常有哪些物品与A一起购买(也即相似度),然后推荐给用户U这些与A相似的物品。而基于用户的协同则是先计算用户的相似性(通过计算这些用户购买过的相同的物品),然后将这些相似用户购买过的物品推荐给用户U。

基于用户的协同过滤算法主要包括两个步骤:

步骤(1)的关键是计算用户的兴趣相似度,主要是利用用户的行为相似度计算用户相似度。给定用户 u 和 v,N(u) 表示用户u曾经有过正反馈(譬如购买)的物品集合,N(v) 表示用户 v 曾经有过正反馈的物品集合。那么我们可以通过如下的 Jaccard 公式简单的计算 u 和 v 的相似度:

或通过余弦相似度:

得到用户之间的相似度之后,UserCF算法会给用户推荐和他兴趣最相似的K个用户喜欢的物品。如下的公式度量了UserCF算法中用户 u 对物品 i 的感兴趣程度:

首先回顾一下UserCF算法和ItemCF算法的推荐原理:UserCF给用户推荐那些和他有共同兴趣爱好的用户喜欢的物品, 而ItemCF给用户推荐那些和他之前喜欢的物品具有类似行为的物品。

(1)从推荐场景考虑
首先从场景来看,如果用户数量远远超过物品数量,如购物网站淘宝,那么可以考虑ItemCF,因为维护一个非常大的用户关系网是不容易的。其次,物品数据一般较为稳定,因此物品相似度矩阵不必频繁更新,维护代价较小。

UserCF的推荐结果着重于反应和用户兴趣相似的小群体的热点,而ItemCF的推荐结果着重于维系用户的历史兴趣。换句话说,UserCF的推荐更社会化,反应了用户所在小型兴趣群体中物品的热门程度,而ItemCF的推荐更加个性化,反应了用户自己的个性传承。因此UserCF更适合新闻、微博或微内容的推荐,而且新闻内容更新频率非常高,想要维护这样一个非常大而且更新频繁的表无疑是非常难的。

在新闻类网站中,用户的兴趣爱好往往比较粗粒度,很少会有用户说只看某个话题的新闻,而且往往某个话题也不是每天都会有新闻。 个性化新闻推荐更强调新闻热点,热门程度和时效性是个性化新闻推荐的重点,个性化是补充,所以 UserCF 给用户推荐和他有相同兴趣爱好的人关注的新闻,这样在保证了热点和时效性的同时,兼顾了个性化。

(2)从系统多样性(也称覆盖率,指一个推荐系统能否给用户提供多种选择)方面来看,ItemCF的多样性要远远好于UserCF,因为UserCF更倾向于推荐热门物品。而ItemCF具有较好的新颖性,能够发现长尾物品。所以大多数情况下,ItemCF在精度上较小于UserCF,但其在覆盖率和新颖性上面却比UserCF要好很多。

在介绍本节基于矩阵分解的隐语义模型之前,让我们先来回顾一下传统的矩阵分解方法SVD在推荐系统的应用吧。

基于SVD矩阵分解在推荐中的应用可分为如下几步:

SVD在计算前会先把评分矩阵 A 缺失值补全,补全之后稀疏矩阵 A 表示成稠密矩阵,然后将分解成 A' = U∑V T 。但是这种方法有两个缺点:(1)补成稠密矩阵后需要耗费巨大的储存空间,对这样巨大的稠密矩阵进行储存是不现实的;(2)SVD的计算复杂度很高,对这样大的稠密矩阵中进行计算式不现实的。因此,隐语义模型就被发明了出来。

更详细的SVD在推荐系统的应用可参考 奇异值分解SVD简介及其在推荐系统中的简单应用 。

隐语义模型(Latent Factor Model)最早在文本挖掘领域被提出,用于找到文本的隐含语义。相关的算法有LSI,pLSA,LDA和Topic Model。本节将对隐语义模型在Top-N推荐中的应用进行详细介绍,并通过实际的数据评测该模型。

隐语义模型的核心思想是通过隐含特征联系用户兴趣和物品。让我们通过一个例子来理解一下这个模型。

现有两个用户,用户A的兴趣涉及侦探小说、科普图书以及一些计算机技术书,而用户B的兴趣比较集中在数学和机器学习方面。那么如何给A和B推荐图书呢?

我们可以对书和物品的兴趣进行分类。对于某个用户,首先得到他的兴趣分类,然后从分类中挑选他可能喜欢的物品。简言之,这个基于兴趣分类的方法大概需要解决3个问题:

对于第一个问题的简单解决方案是找相关专业人员给物品分类。以图书为例,每本书出版时,编辑都会给出一个分类。但是,即使有很系统的分类体系,编辑给出的分类仍然具有以下缺点:(1)编辑的意见不能代表各种用户的意见;(2)编辑很难控制分类的细粒度;(3)编辑很难给一个物品多个分类;(4)编辑很难给一个物品多个分类;(5)编辑很难给出多个维度的分类;(6)编辑很难决定一个物品在某一个类别中的权重。

为了解决上述问题,研究员提出可以从数据出发,自动找到那些分类,然后进行个性化推荐。隐语义模型由于采用基于用户行为统计的自动聚类,较好地解决了上面提出的5个问题。

LFM将矩阵分解成2个而不是3个:

推荐系统中用户和物品的交互数据分为显性反馈和隐性反馈数据。隐式模型中多了一个置信参数,具体涉及到ALS(交替最小二乘法,Alternating Least Squares)中对于隐式反馈模型的处理方式——有的文章称为“加权的正则化矩阵分解”:

一个小细节:在隐性反馈数据集中,只有正样本(正反馈)没有负反馈(负样本),因此如何给用户生成负样本来进行训练是一个重要的问题。Rong Pan在其文章中对此进行了探讨,对比了如下几种方法:

用户行为很容易用二分图表示,因此很多图算法都可以应用到推荐系统中。基于图的模型(graph-based model)是推荐系统中的重要内容。很多研究人员把基于领域的模型也称为基于图的模型,因为可以把基于领域的模型看作基于图的模型的简单形式。

在研究基于图的模型之前,需要将用户行为数据表示成图的形式。本节的数据是由一系列用户物品二元组 (u, i) 组成的,其中 u 表示用户对物品 i 产生过行为。

令 G(V, E) 表示用户物品二分图,其中 V=V U UV I 由用户顶点 V U 和物品节点 V I 组成。对于数据集中每一个二元组 (u, i) ,图中都有一套对应的边 e(v u , v i ),其中 v u ∈V U 是用户对应的顶点,v i ∈V I 是物品i对应的顶点。如下图是一个简单的物品二分图,其中圆形节点代表用户,方形节点代表物品,用户物品的直接连线代表用户对物品产生过行为。比如下图中的用户A对物品a、b、d产生过行为。

度量图中两个顶点之间相关性的方法很多,但一般来说图中顶点的相关性主要取决于下面3个因素:

而相关性高的一对顶点一般具有如下特征:

举个例子,如下图,用户A和物品c、e没有边直连,但A可通过一条长度为3的路径到达c,而Ae之间有两条长度为3的路径。那么A和e的相关性要高于顶点A和c,因而物品e在用户A的推荐列表中应该排在物品c之前,因为Ae之间有两条路径。其中,(A,b,C,e)路径经过的顶点的出度为(3,2,2,2),而 (A,d,D,e) 路径经过了一个出度比较大的顶点D,所以 (A,d,D,e) 对顶点A与e之间相关性的贡献要小于(A,b,C,e)。

基于上面3个主要因素,研究人员设计了很多计算图中顶点相关性的方法,本节将介绍一种基于随机游走的PersonalRank算法。

假设要给用户u进行个性化推荐,可以从用户u对应的节点 v u 开始在用户物品二分图上进行随机游走。游走到任一节点时,首先按照概率α决定是继续游走还是停止这次游走并从 v u 节点重新开始游走。若决定继续游走,则从当前节点指向的节点中按照均匀分布随机选择一个节点作为游走下次经过的节点。这样,经过很多次随机游走后,每个物品被访问到的概率会收敛到一个数。最终的推荐列表中物品的权重就是物品节点的访问概率。

上述算法可以表示成下面的公式:

虽然通过随机游走可以很好地在理论上解释PersonalRank算法,但是该算法在时间复杂度上有明显的缺点。因为在为每个用户进行推荐时,都需要在整个用户物品二分图上进行迭代,知道所有顶点的PR值都收敛。这一过程的时间复杂度非常高,不仅无法在线进行实时推荐,离线计算也是非常耗时的。

有两种方法可以解决上面PersonalRank时间复杂度高的问题:
(1)减少迭代次数,在收敛之前停止迭代。但是这样会影响最终的精度。

(2)从矩阵论出发,重新涉及算法。另M为用户物品二分图的转移概率矩阵,即:

网络社交是当今社会非常重要甚至可以说是必不可少的社交方式,用户在互联网上的时间有相当大的一部分都用在了社交网络上。

当前国外最着名的社交网站是Facebook和Twitter,国内的代表则是微信/QQ和微博。这些社交网站可以分为两类:

需要指出的是,任何一个社交网站都不是单纯的社交图谱或兴趣图谱。如QQ上有些兴趣爱好群可以认识不同的陌生人,而微博中的好友也可以是现实中认识的。

社交网络定义了用户之间的联系,因此可以用图定义社交网络。我们用图 G(V,E,w) 定义一个社交网络,其中V是顶点集合,每个顶点代表一个用户,E是边集合,如果用户va和vb有社交网络关系,那么就有一条边 e(v a , v b ) 连接这两个用户,而 w(v a , v b )定义了边的权重。一般来说,有三种不同的社交网络数据:

和一般购物网站中的用户活跃度分布和物品流行度分布类似,社交网络中用户的入度(in degree,表示有多少人关注)和出度(out degree,表示关注多少人)的分布也是满足长尾分布的。即大部分人关注的人都很少,被关注很多的人也很少。

给定一个社交网络和一份用户行为数据集。其中社交网络定义了用户之间的好友关系,而用户行为数据集定义了不同用户的历史行为和兴趣数据。那么最简单的算法就是给用户推荐好友喜欢的物品集合。即用户u对物品i的兴趣 p ui 可以通过如下公式计算。

用户u和用户v的熟悉程度描述了用户u和用户在现实社会中的熟悉程度。一般来说,用户更加相信自己熟悉的好友的推荐,因此我们需要考虑用户之间的熟悉度。下面介绍3中衡量用户熟悉程度的方法。

(1)对于用户u和用户v,可以使用共同好友比例来计算他们的相似度:

上式中 out(u) 可以理解为用户u关注的用户合集,因此 out(u) ∩ out(v) 定义了用户u、v共同关注的用户集合。

(2)使用被关注的用户数量来计算用户之间的相似度,只要将公式中的 out(u) 修改为 in(u):

in(u) 是指关注用户u的集合。在无向社交网络中,in(u)和out(u)是相同的,而在微博这种有向社交网络中,这两个集合的含义就不痛了。一般来说,本方法适合用来计算微博大V之间的相似度,因为大v往往被关注的人数比较多;而方法(1)适用于计算普通用户之间的相似度,因为普通用户往往关注行为比较丰富。

(3)除此之外,还可以定义第三种有向的相似度:这个相似度的含义是用户u关注的用户中,有多大比例也关注了用户v:

这个相似度有一个缺点,就是在该相似度下所有人都和大v有很大的相似度,这是因为公式中的分母并没有考虑 in(v) 的大小,所以可以把 in(v) 加入到上面公式的分母,来降低大v与其他用户的相似度:

上面介绍了3种计算用户之间相似度(或称熟悉度)的计算方法。除了熟悉程度,还需要考虑用户之间的兴趣相似度。我们和父母很熟悉,但很多时候我们和父母的兴趣确不相似,因此也不会喜欢他们喜欢的物品。因此,在度量用户相似度时,还需要考虑兴趣相似度,而兴趣相似度可以通过和UserCF类似的方法度量,即如果两个用户喜欢的物品集合重合度很高,两个用户的兴趣相似度很高。

最后,我们可以通过加权的形式将两种权重合并起来,便得到了各个好有用户的权重了。

有了权重,我们便可以针对用户u挑选k个最相似的用户,把他们购买过的物品中,u未购买过的物品推荐给用户u即可。打分公式如下:

其中 w' 是合并后的权重,score是用户v对物品的打分。

node2vec的整体思路分为两个步骤:第一个步骤是随机游走(random walk),即通过一定规则随机抽取一些点的序列;第二个步骤是将点的序列输入至word2vec模型从而得到每个点的embedding向量。

随机游走在前面基于图的模型中已经介绍过,其主要分为两步:(1)选择起始节点;(2)选择下一节点。起始节点选择有两种方法:按一定规则抽取一定量的节点或者以图中所有节点作为起始节点。一般来说会选择后一种方法以保证所有节点都会被选取到。

在选择下一节点方法上,最简单的是按边的权重来选择,但在实际应用中需要通过广度优先还是深度优先的方法来控制游走范围。一般来说,深度优先发现能力更强,广度优先更能使社区内(较相似)的节点出现在一个路径里。

斯坦福大学Jure Leskovec教授给出了一种可以控制广度优先或者深度优先的方法。

以上图为例,假设第一步是从t随机游走到v,这时候我们要确定下一步的邻接节点。本例中,作者定义了p和q两个参数变量来调节游走,首先计算其邻居节点与上一节点t的距离d,根据下面的公式得到α:

一般从每个节点开始游走5~10次,步长则根据点的数量N游走根号N步。如此便可通过random walk生成点的序列样本。

得到序列之后,便可以通过word2vec的方式训练得到各个用户的特征向量,通过余弦相似度便可以计算各个用户的相似度了。有了相似度,便可以使用基于用户的推荐算法了。

推荐系统需要根据用户的历史行为和兴趣预测用户未来的行为和兴趣,因此大量的用户行为数据就成为推荐系统的重要组成部分和先决条件。如何在没有大量用户数据的情况下设计个性化推荐系统并且让用户对推荐结果满意从而愿意使用推荐系统,就是冷启动问题。

冷启动问题主要分为三类:

针对用户冷启动,下面给出一些简要的方案:
(1)有效利用账户信息。利用用户注册时提供的年龄、性别等数据做粗粒度的个性化;
(2)利用用户的社交网络账号登录(需要用户授权),导入用户在社交网站上的好友信息,然后给用户推荐其好友喜欢的物品;
(3)要求用户在登录时对一些物品进行反馈,手机用户对这些物品的兴趣信息,然后给用推荐那些和这些物品相似的物品;
(4)提供非个性化推荐。非个性化推荐的最简单例子就是热门排行榜,我们可以给用户推荐热门排行榜,然后等到用户数据收集到一定的时候,在切换为个性化推荐。

对于物品冷启动,可以利用新加入物品的内容信息,将它们推荐给喜欢过和他们相似的物品的用户。

对于系统冷启动,可以引入专家知识,通过一定高效的方式快速建立起物品的相关度表。

在上面介绍了一些推荐系统的基础算法知识,这些算法大都是比较经典且现在还在使用的。但是需要注意的是,在实践中,任何一种推荐算法都不是单独使用的,而是将多种推荐算法结合起来,也就是混合推荐系统,但是在这里并不准备介绍,感兴趣的可以查阅《推荐系统》或《推荐系统与深度学习》等书籍。此外,在推荐中非常重要的点击率模型以及基于矩阵的一些排序算法在这里并没有提及,感兴趣的也可自行学习。

虽然现在用的很多算法都是基于深度学习的,但是这些经典算法能够让我们对推荐系统的发展有一个比较好的理解,同时,更重要的一点——“推陈出新”,只有掌握了这些经典的算法,才能提出或理解现在的一些更好地算法。

⑥ 个性化推荐算法

随着算法的普及,大量的产品有了个性化推荐的功能,这也成为内容类产品的标配。个性化定制化逐渐成为了互联网思维的新补充,被提升到了越来越重要的地位。算法推荐经过了很长一段时间的发展,才逐渐达到能给用户惊喜的阶段。比如在电商领域,推荐算法可以挖掘用户潜在购买需求,缩短用户选取商品的时间,提升用户的购物体验;在新闻或段视频领域,推荐算法可以推送用户喜欢的内容,提高用户的阅读效率,减少用户选择内容的时间,也增加了用户在产品上的停留时长。

算法应用阶段

内容类产品发展初期,推荐算法一般为“热度算法”,就是系统把热点内容优先推荐送给用户,完成热点内容的高阅读率。在积累了一定的用户数据后,会发现用户阅读内容过于集中于热点信息,长尾信息中的优质资源往往被忽略,造成资源浪费。“千人一面”的状况已不是一个优质的解决方案,所以算法逐渐演变为“个性化推荐”,也就是协同过滤的方法论支撑下的一种算法。协同过滤能很好的根据用户的喜好,推荐匹配的内容,减少资源浪费,增加用户使用的友好体验。真正做到“千人千面”。

推荐算法的信息来源

第三方数据

一个新系统在初期没有数据积累的情况下,可与第三方合作,互授部分信息共享。比如,很多系统支持微信登陆,这时候可以获取客户的微信信息,生活地点,部分生活习惯等。同时会获取用户的社交信息,共同好友越多表明圈子越相似,可以推荐更多相似的内容。

用户行为数据

记录用户在系统内的使用习惯,可以准确的描述单个用户的行为特征,爱好特征等有效的信息,系统根据提取出的分析结果,将内容与之匹配,完成更精准的推荐。如,某用户经常浏览体育信息,系统将对应推荐更多体育相关的咨询,省去用户搜索筛选的时间。

基于生活习惯

基于生活习惯,生活常识的推荐,往往也可以作为内置的一个信息来源途径。比如,外卖的app推荐用户的餐厅,一般默认是位置优先,就近推荐,如果是快中午的时间段使用,系统默认推荐午餐,其次是晚餐。靠生活常识作出的系统算法,可以更符合人类的习惯,给用户更好的体验。

热度算法

热度算法简单的说就是把最核心的内容优先推荐,用新闻举例,每一条新闻都具有实效性,随着时间的推移,该条新闻的关注度降低,关注点被新的热点新闻取代。量化以上的过程,把各个影响因素设定为变量,会得出以下的公式:

新闻热度=初始热度分+用户交互热度分-衰减热度分

初始热度分为新闻产生时,系统对新闻主体的预判热度值。预判的分值一般为以下两种模式,一种情况,按照新闻类别的不同,娱乐新闻大于财经新闻,大于国际新闻,大于文化新闻等等系统的预设,依次给出不同的初始热度分;另一种情况,系统预置热词词库,用新闻的关键词和词库的去匹配,匹配度高的,初始热度分高。

用户的交互热度分也是一个变量,先要明确用的哪些行为会影响新闻热度,然后对这些行为量化,加权或打分等方式。例如,网易云音乐,用户的听歌,重复循环,收藏,评论,分享等行为,系统为每一种行为打分,求和后得出用户交互的热度分:

用户交互热度分=听歌X10+循环X5+收藏X10+评论X5+分享X3

此公式还可以继续细化,每一种操作的分值也可以作为变量,在产品前期时,传播产品为主要任务,所以分享的加权要大一些,随着网易云的发展,社区的概念逐渐强化,评论区互动的加权会加大,所以评论的分值会增加,系统随时调整分数加权,得出更准确的用户交互的影响值。

衰减热度分是一个随时间变化而变化的数值,往往是一个函数的表达。用新闻举例,新闻的热度会随着时间的推移而衰减,并且趋势是越来越快,人们在接受新的热点后,迅速忘记“旧闻”,直至热度趋近于零。根据理论数据,构建函数,准确的表达衰减分值。

还有很多其他的影响因素,比如传播次数,传播层数,停留时长等等,都会影响热度值,要想更精准的表达,就需要把涉及到的因素都作为变量,不断完善算法,才能更精准的完成推荐。

个性化推荐算法

随着用户量的增加,产品日活的增加,用户也不能仅限于千人一面热点阅读的模式中,个性化推荐在此时显得尤为重要。个性化推荐有两种常见的解决方案,一种是基于内容的推荐算法,推荐内容往往是根据用户的使用习惯得来,较为精准;另一种是基于用户的协同推荐算法,系统会根据以往使用内容,为用户建模,然后根据群体中个体的使用习惯,推荐更多超预期的内容,达到预测推荐的效果。

基于内容的推荐算法-预期内

基于内容的推荐算法,靠收集用户的使用习惯,进而推荐相关的内容。系统使用分词库匹配、关键词匹配等等方式,达到内容的匹配,做到内容的精确划分。比如,用户浏览了某部科幻电影,系统就会按照该电影所对应的标签,如科幻,然后系统推荐相同标签的影片给用户。

这样的推荐方案,确定性强,推荐的内容都是根据用户的历史来确定,不能挖掘用户的潜在需求。

基于用户的协同推荐-超预期

做到精准推荐后,系统会继续挖掘更潜在的推荐需求,给用户超预期的推荐体验。这就到了基于用户协同推荐的阶段。简单的说,这种算法是增加了用户建模的环节,将同标签的用户群分,对比群体中单个个体的特征,默认这种特征为这类人的潜在特征,再将此特征内容推荐给同标签的用户,达到超预期的推荐效果。

比如,某用户购买了一个苹果手机,系统会将此用户归类为果粉,系统识别出很多果粉除了买苹果的商品,还会购买小米作为备用机,这个特征会被系统识别为潜在需求,推荐给果粉,减少果粉选择备用机的时间。

这样的推荐算法,不仅能完成精准的推荐,还能给用户小惊喜,让系统“有温度”。但是这样的推荐方式,往往需要积累了大量用户资料为基础,才可以精确的完成。

⑦ 推荐算法小结

输入 :与用户相关的包含众多特征(feature)的数据:

用户的注册信息(职业、年龄、性别等 显信息),行为信息(使用功能、有效使用时长等 隐信息)。

输出 :推荐给用户的功能列表(根据得分高低排序)

函数 : 传统算法 、 机器学习算法 (Machine Learning)、 深度学习算法 (Deep Learning)

基于流行度的算法非常简单粗暴,类似于各大新闻、微博热榜等,根据VV、UV、日均PV或分享率等数据来按某种热度(加权)排序来推荐给用户。

访问次数 (VV):记录1天内所有访客访问了该网站多少次,相同的访客有可能多次访问该网站,且访问的次数累加。

独立访客 (UV):记录1天内所有访客访问了该网站多少次,虽然相同访客能多次访问网站,但只计算为1个独立访客。

PV访问量 (Page View):即页面访问量,每打开一次页面或者刷新一次页面,PV值+1。

优点:该算法简单,适用于刚注册的新用户

缺点:无法针对用户提供个性化的推荐

改进:基于该算法可做一些优化,例如加入用户分群的流行度进行排序,通过把热榜上的体育内容优先推荐给体育迷,把政要热文推给热爱谈论政治的用户。

基于用户的协同过滤推荐算法 (UserCF):针对目标用户(A),先通过兴趣、爱好或行为习惯找到与他相似的“其他用户”(BCD...),然后把BCD...喜欢的并且A没有浏览过的物品或功能推给A。

基于物品的协同过滤推荐算法 (ItemCF):例如由于我之前看过张艺谋导演的《英雄》这部电影,会给我推荐《红高粱》、《归来》等同导演电影。

1)分析各个用户对物品的评价,通过浏览记录、购买记录等得到用户的隐性评分;

2)根据用户对物品的隐性评分计算得到所有用户之间的相似度;

3)选出与目标用户最相似的K个用户;

4)将这K个用户隐性评分最高并且目标用户又没有浏览过的物品推荐给目标用户。

优点:

基于用户的协同过滤推荐算法是给目标用户推荐那些和他有共同兴趣的用户喜欢的物品,所以该算法推荐较为社会化,即推荐的物品是与用户兴趣一致的那个群体中的热门物品;

适于物品比用户多、物品时效性较强的情形,否则计算慢;

能实现跨领域、惊喜度高的结果。

缺点:

在很多时候,很多用户两两之间的共同评分仅有几个,也即用户之间的重合度并不高,同时仅有的共同打了分的物品,往往是一些很常见的物品,如票房大片、生活必需品;

用户之间的距离可能变得很快,这种离线算法难以瞬间更新推荐结果;   

推荐结果的个性化较弱、较宽泛。

改进:

两个用户对流行物品的有相似兴趣,丝毫不能说明他们有相似的兴趣,此时要增加惩罚力度;

如果两个用户同时喜欢了相同的物品,那么可以给这两个用户更高的相似度;

在描述邻居用户的偏好时,给其最近喜欢的物品较高权重;

把类似地域用户的行为作为推荐的主要依据。

1)分析各个用户对物品的浏览记录;

2)依据浏览记录分析得出所有物品之间的相似度;

3)对于目标用户评价高的物品,找出与之相似度最高的K个物品;

4)将这K个物品中目标用户没有浏览过的物品推荐给目标用户

优点:

基于物品的协同过滤推荐算法则是为目标用户推荐那些和他之前喜欢的物品类似的物品,所以基于物品的协同过滤推荐算法的推荐较为个性,因为推荐的物品一般都满足目标用户的独特兴趣。

物品之间的距离可能是根据成百上千万的用户的隐性评分计算得出,往往能在一段时间内保持稳定。因此,这种算法可以预先计算距离,其在线部分能更快地生产推荐列表。

应用最广泛,尤其以电商行业为典型。

适于用户多、物品少的情形,否则计算慢

推荐精度高,更具个性化

倾向于推荐同类商品

缺点:

不同领域的最热门物品之间经常具有较高的相似度。比如,基于本算法,我们可能会给喜欢听许嵩歌曲的同学推荐汪峰的歌曲,也就是推荐不同领域的畅销作品,这样的推荐结果可能并不是我们想要的。

在物品冷启动、数据稀疏时效果不佳

推荐的多样性不足,形成信息闭环

改进:

如果是热门物品,很多人都喜欢,就会接近1,就会造成很多物品都和热门物品相似,此时要增加惩罚力度;

活跃用户对物品相似度的贡献小于不活跃的用户;

同一个用户在间隔很短的时间内喜欢的两件商品之间,可以给予更高的相似度;

在描述目标用户偏好时,给其最近喜欢的商品较高权重;

同一个用户在同一个地域内喜欢的两件商品之间,可以给予更高的相似度。

(相似度计算:余弦相似度、Jaccard系数、皮尔森相关系数等)

常见经典 ML 分类算法:

逻辑回归 (Logistics Regression)

支持向量机 (SVM)

随机森林 (Random Forest)

提升类算法 (Boosting):Adaboost、GBDT、XGboost

一般处理流程:数据处理 -> 特征工程 -> 模型选择 -> 交叉验证 -> 模型选择与模型融合

特征清洗 :剔除不可信样本,缺省值极多的字段不予考虑

特征预处理 :单个特征(归一化,离散化,缺失值补全,数据变换),多个特征(PCA/LDA降维,特征选择)

使用工具 :pandas(python开源库)

模型选择与模型融合 :根据交叉验证得分选择前几名模型,然后进行模型融合(Bagging、Boosting、Stacking)

DL 优势 :ML 中特征工程是十分重要并且要根据行业经验确定,DL 可以自己从数据中学习特征。DL 能自动对输入的低阶特征进行组合、变换,得到高阶特征。对于公司产品应用领域来说,用户的注册信息(职业、年龄、性别等 显信息),行为信息(使用功能、有效使用时长等 隐信息)。这些就可以作为低阶特征输入。

RNN系列 (处理文本数据)

CNN系列 (处理图像数据)

DNN (处理一般性分类)

⑧ 推荐算法的调优内容主要有什么

推荐算法的调优内容包括:
1)基于内容的推荐:这一类一般依赖于自然语言处理NLP的一些知识,通过挖掘文本的TF-IDF特征向量,来得到用户的偏好,进而做推荐。这类推荐算法可以找到用户独特的小众喜好,而且还有较好的解释性。这一类由于需要NLP的基础,本文就不多讲,在后面专门讲NLP的时候再讨论。
2)协调过滤推荐:本文后面要专门讲的内容。协调过滤是推荐算法中目前最主流的种类,花样繁多,在工业界已经有了很多广泛的应用。它的优点是不需要太多特定领域的知识,可以通过基于统计的机器学习算法来得到较好的推荐效果。最大的优点是工程上容易实现,可以方便应用到产品中。目前绝大多数实际应用的推荐算法都是协同过滤推荐算法。
3)混合推荐:这个类似我们机器学习中的集成学习,博才众长,通过多个推荐算法的结合,得到一个更好的推荐算法,起到三个臭皮匠顶一个诸葛亮的作用。比如通过建立多个推荐算法的模型,最后用投票法决定最终的推荐结果。混合推荐理论上不会比单一任何一种推荐算法差,但是使用混合推荐,算法复杂度就提高了,在实际应用中有使用,但是并没有单一的协调过滤推荐算法,比如逻辑回归之类的二分类推荐算法广泛。
4)基于规则的推荐:这类算法常见的比如基于最多用户点击,最多用户浏览等,属于大众型的推荐方法,在目前的大数据时代并不主流。
5)基于人口统计信息的推荐:这一类是最简单的推荐算法了,它只是简单的根据系统用户的基本信息发现用户的相关程度,然后进行推荐,目前在大型系统中已经较少使用。

⑨ 推荐算法总结

一、协同过滤

基于用户协同过滤UserCF

基于物品协同过滤ItemCF

基于模型协同过滤Mode_based

基于用户和基于物品协同过滤都称为以记忆为基础的协同过滤技术,共同缺点是资料稀疏、难以处理大数据量下的即时结果,因此发展出基于模型的协同过滤

核心思想:
基于历史资料得到一个模型,再用此模型进行预测用户对物品的评分

二、聚类算法

三、分类算法:

主要思路:根据文本特征或属性,划分到已有的类别中。常用分类算法包括:决策树分类法、朴素的贝叶斯分类算法、基于支持向量机的分类器,神经网络法,K-最近邻法,模糊分类法

#朴素贝叶斯分类算法

阅读全文

与推荐算法的主要观点相关的资料

热点内容
云存储服务器知识 浏览:461
服务器cpu是什么指令集 浏览:590
糖猫t10怎么安装app 浏览:992
电脑加密u盘怎么使用 浏览:517
linux如何升级php版本升级 浏览:841
二级程序员c语言难度 浏览:351
批处理编译qt 浏览:66
铁友app怎么查询机票订单 浏览:197
myeclipselinux破解版 浏览:417
批处理命令语法不正确 浏览:889
pdf合并成一个pdf在线 浏览:383
柱加密区构造要求 浏览:514
地板木龙骨标准跟加密区别 浏览:150
解压放松的好地方河南 浏览:965
搜狗怎么移动到文件夹 浏览:617
文件自动选择到文件夹 浏览:794
赠送的app怎么在ipad下载 浏览:508
颈椎解压后神经恢复 浏览:849
怎么看app订阅扣费 浏览:314
linux系统的负载均衡 浏览:419