‘壹’ 《数据结构》算法实现与分析高一凡中的源代码要怎么用
这个代码可以直接用。用的时候必须把include中的文件也保存好。
‘贰’ 急!!!!!!!!!!!!高分求<数据结构及算法经典> 源代码
这个地址绝对好下的,你看看:
http://download.csdn.net/filedown/YXI=!178854
如果不行,发消息给我,传给你.
已经发到你信箱里了,看一下..
‘叁’ 数据结构与算法C语言的一段代码
struct 不能这样赋值吧
‘肆’ 《数据结构与算法分析:C语言描述(原书第2版) 》这本书比起其他书,可以么看这本书需要什么基础
额,我想你说的《数据结构与算法分析》应该是Weiss写的那本吧,那本书豆瓣给出了9分的评分,已经算是非常高的分数了,但计算机世界的经典着作犹如浩瀚的海洋,了不起的编程书籍还有很多。
Kernighan的《程序设计实践》是让你全面了解编程该做些什么的经典着作,尽管这书非常地薄。
cormen的《算法导论》和Skiena 《算法设计手册》是比《数据结构与算法分析》更大部头的巨着。
Bentley的《编程珠玑》(1,2卷)将带你领略算法的力量。
侯捷的《STL源码剖析》,深入讲解C++标准库的实现细节,让你真正见识顶尖高手的杰作。
stevens 的《unix环境高级编程》《unix网络编程》是程序员的进阶宝典,应当一读再读,因为你最终会明白,你的程序是运行在操作系统上的,是需要和网络交互的,你需要了解他们,和他们友好相处。
C++之父Bjarne Stroustrup的三本大作:《 C++程序设计语言 》、《C++程序设计原理与实践 》、《C++语言的设计和演化 》是C++语言的最权威的指南,同时也是经典编程着作。
Bryant的《深入理解计算机系统》都是能告诉你计算机底层做了什么工作,让你更好地理解计算机,更好地利用CPU的天书。
关于软件开发方面的经典着作有《程序员修炼之道》《代码大全》《重构》《设计模式》,在任何一个编程论坛的推荐表里,这些都是程序员必看图书。
还有一本书叫《计算机程序的构造和解释》,神一样的着作,它可以颠覆你的编程思维。
当然,计算机算法的顶尖之作要算knuth的《计算机程序设计艺术》(1-4卷),其内容极深极广极难,那真是如浩瀚之海洋,叹为观止了。
所谓术业有专攻,每个领域都有其经典的着作,这就要根据你个人的兴趣去进一步探究了。例如程序设计语言与编译器、操作系统内核、硬件设计、人工智能与机器学习、自然语言处理、信息论与信号处理、网络编程、机器人等等。
‘伍’ 《数据结构与算法分析( C++版)(第二版)国外计算机科学教材系列》txt下载阅读,求百度云资源
《数据结构与算法分析(C++版)(第二版)》([美] Clifford A.Shaffer)电子书网盘下载免费在线阅读
链接: https://pan..com/s/1DBcf3gNP9u5VdIJWPS5n6w
书名:数据结构与算法分析(C++版)(第二版)
作者:[美] Clifford A.Shaffer
译者:张铭
豆瓣评分:7.1
出版社:电子工业出版社
出版年份:2002-6
页数:327
内容简介:
本书采用程序员最爱用的面向对象C+ +语言来描述数据结构和算法,并把数据结构原理和算法分析技术有机地结合在一起,系统介绍了各种类型的数据结构和排序、检索的各种方法。作者非常注意对每一种数据结构不同存储方法及有关算法进行分析比较。书中还引入了一些比较高级的数据结构与先进的算法分析技术,并介绍了可计算性理论的一般知识。本版的重要改进在于引入了参数化的模板,从而提高了算法中数据类型的通用性,支持高效的代码重用。本书概念清楚、逻辑性强、内容新颖,可作为大专院校计算机软件专业与计算机应用专业学生的教材和参考书,也可供计算机工程技术人员参考。
作者简介:
Associate Professor
2000A Torgerson
Department of Computer Science
Virginia Tech
Blacksburg, VA 24061
‘陆’ c语言数据结构(考题,测试你的能力)--编写源代码
P88 稀疏矩阵十字链表相加算法如下:
/*假设ha为A稀疏矩阵十字链表的头指针,hb为B稀疏矩阵十字链表的头指针*/
#include<stdio.h>
#define maxsize 100
struct linknode
{ int i,j;
struct linknode *cptr,*rptr;
union vnext
{ int v;
struct linknode *next;} k;
};
struct linknode creatlindmat( ) /*建立十字链表*/
{ int x, m, n, t, s, i, j, k;
struct linknode *p , *q, *cp[maxsize],*hm;
printf("请输入稀疏矩阵的行、列数及非零元个数\n");
scanf("%d%d%d",&m,&n,&t);
if (m>n) s=m; else s=n;
hm=(struct linknode*)malloc(sizeof(struct linknode)) ;
hm->i=m; hm->j=n;
cp[0]=hm;
for (i=1; i<=s;i++)
{ p=(struct linknode*)malloc(sizeof(struct linknode)) ;
p->i=0; p->j=0;
p->rptr=p; p->cptr=p;
cp[i]=p;
cp[i-1]->k.next=p;
}
cp[s]->k.next=hm;
for( x=1;x<=t;x++)
{ printf("请输入一个三元组(i,j,v)\n");
scanf("%d%d%d",&i,&j,&k);
p=(struct linknode*)malloc(sizeof(struct linknode));
p->i=i; p->j=j; p->k.v=k;
/*以下是将p插入到第i行链表中 */
q=cp[i];
while ((q->rptr!=cp[i]) &&( q->rptr->j<j))
q=q->rptr;
p->rptr=q->rptr;
q->rptr=p;
/*以下是将P插入到第j列链表中*/
q=cp[j];
while((q->cptr!=cp[j]) &&( q->cptr->i<i))
q=q->cptr;
p->cptr=q->cptr;
q->cptr=p;
}
return hm;
}
/* ha和hb表示的两个稀疏矩阵相加,相加的结果放入ha中*/
struct linknode *matadd(struct linknode *ha, struct linknode *hb)
{ struct linknode *pa, *pb, *qa, *ca,*cb,*p,*q;
struct linknode *hl[maxsize];
int i , j, n;
if((ha->i!=hb->i)||(ha->j!=hb->j))
printf("矩阵不匹配,不能相加\n");
else
{ p=ha->k.next; n=ha->j;
for (i=1;i<=n; i++)
{ hl[i]=p;
p=p->k.next;
}
ca=ha->k.next; cb=hb->k.next;
while(ca->i==0)
{pa=ca->rptr; pb=cb->rptr;
qa=ca;
while(pb->j!=0)
{ if((pa->j<pb->j)&&(pa->j!=0))
{ qa=pa; pa=pa->rptr;}
else if ((pa->j>pb->j)||(pa->j==0)) /*插入一个结点*/
{ p=(struct linknode*)malloc(sizeof(struct linknode));
p->i=pb->i; p->j=pb->j;
p->k.v=pb->k.v;
qa->rptr=p; p->rptr=pa;
qa=p; pb=pb->rptr;
j=p->j; q=hl[j]->cptr;
while((q->i<p->i)&&(q->i!=0))
{ hl[j]=q; q=hl[j]->cptr;}
hl[j]->cptr=p; p->cptr=q;
hl[j]=p;
}
else
{pa->k.v=pa->k.v+pb->k.v;
if(pa->k.v==0) /*删除一个结点*/
{ qa->rptr=pa->rptr;
j=pa->j; q=hl[j]->cptr;
while (q->i<pa->i)
{hl[j]=q; q=hl[j]->cptr;}
hl[j]->cptr=q->cptr;
pa=pa->rptr; pb=pb->rptr;
free(q);
}
else
{ qa=pa; pa=pa->rptr;
pb=pb->rptr;
}
}
}
ca=ca->k.next; cb=cb->k.next;
}
}
return ha;
}
void print(struct linknode *ha) /*输出十字链表*/
{ struct linknode *p,*q;
p=ha->k.next;
while(p->k.next!=ha)
{ q=p->rptr;
while(q->rptr!=p)
{ printf("%3d%3d%3d\t",q->i,q->j,q->k.v);
q=q->rptr;
}
if(p!=q)
printf("%3d%3d%3d",q->i,q->j,q->k.v);
printf("\n");
p=p->k.next;
}
q=p->rptr;
while(q->rptr!=p)
{ printf("%3d%3d%3d\t",q->i,q->j,q->k.v);
q=q->rptr;
}
if(p!=q)
printf("%3d%3d%3d",q->i,q->j,q->k.v);
printf("\n");
}
void main()
{
struct linknode *ha=NULL,*hb=NULL,*hc=NULL;
ha=creatlindmat( ); /*生成一个十字链表ha*/
hb=creatlindmat( ); /*生成另一个十字链表hb*/
printf("A:\n"); /*输出十字链表ha*/
print(ha);printf("\n");
printf("B:\n"); /*输出十字链表hb*/
print(hb);printf("\n");
hc=matadd(ha,hb); /*十字链表相加*/
printf("A+B:\n"); /*输出相加后的结果*/
print(hc);printf("\n");
}
P94 数据类型描述如下:
#define elemtype char
struct node1
{ int atom;
struct node1 *link;
union
{
struct node1 *slink;
elemtype data;
} ds;
}
P95 数据类型描述如下:
struct node2
{ elemtype data;
struct node2 *link1,*link2;
}
P96 求广义表的深度depth(LS)
int depth(struct node1 *LS)
{
int max=0,dep;
while(LS!=NULL)
{ if(LS->atom==0) //有子表
{ dep=depth(LS->ds.slink);
if(dep>max) max=dep;
}
LS=LS->link;
}
return max+1;
}
P96 广义表的建立creat(LS)
void creat(struct node1 *LS)
{
char ch;
scanf("%c",&ch);
if(ch=='#')
LS=NULL;
else if(ch=='(')
{LS=(struct node*)malloc(sizeof(struct node));
LS->atom=0;
creat(LS->ds.slink);
}
else
{ LS=(struct node*)malloc(sizeof(struct node));
LS->atom=1;
LS->ds.data=ch;
}
scanf("%c",&ch);
if(LS==NULL);
else if(ch==',')
creat(LS->link);
else if((ch==')')||(ch==';'))
LS->link=NULL;
}
P97 输出广义表print(LS)
void print(struct node1 *LS)
{
if(LS->atom==0)
{
printf("(");
if(LS->ds.slink==NULL)
printf("#");
else
print(LS->ds.slink);
}
else
printf("%c ",LS->ds.data);
if(LS->atom==0)
printf(")");
if(LS->link!=NULL)
{
printf(";");
print(LS->link);
}
}
P98 该算法的时间复杂度为O(n)。整个完整程序如下:
#include<stdio.h>
#define elemtype char
struct node1
{ int atom;
struct node1 *link;
union
{
struct node1 *slink;
elemtype data;
} ds;
};
void creat(struct node1 LS) /*建立广义表的单链表*/
{
char ch;
scanf("%c",&ch);
if(ch=='#')
LS=NULL;
else if(ch=='(')
{LS=(struct node1*)malloc(sizeof(struct node1));
LS->atom=0;
creat(LS->ds.slink);
}
else
{ LS=(struct node1*)malloc(sizeof(struct node1));
LS->atom=1;
LS->ds.data=ch;
}
scanf("%c",&ch);
if(LS==NULL);
else if(ch==',')
creat(LS->link);
else if((ch==')')||(ch==';'))
LS->link=NULL;
}
void print(struct node1 LS) /*输出广义单链表*/
{
if(LS->atom==0)
{
printf("(");
if(LS->ds.slink==NULL)
printf("#");
else
print(LS->ds.slink);
}
else
printf("%c",LS->ds.data);
if(LS->atom==0)
printf(")");
if(LS->link!=NULL)
{
printf(";");
print(LS->link);
}
}
int depth(struct node1 LS) /*求广义表的深度*/
{
int max=0;
while(LS!=NULL)
{ if(LS->atom==0)
{ int dep=depth(LS->ds.slink);
if(dep>max) max=dep;
}
LS=LS->link;
}
return max+1;
}
main()
{ int dep;
struct node1 *p=NULL;
creat(p); /*建立广义表的单链表*/
print(p); /*输出广义单链表*/
dep=depth(p); /*求广义表的深度*/
printf("%d\n",dep);
}
第六章 树
P109 二叉链表的结点类型定义如下:
typedef struct btnode
{ anytype data;
struct btnode *Lch,*Rch;
}tnodetype;
P109 三叉链表的结点类型定义如下:
typedef struct btnode3
{ anytype data;
struct btnode *Lch,*Rch,*Parent ;
}tnodetype3;
P112 C语言的先序遍历算法:
void preorder (tnodetype *t)
/*先序遍历二叉树算法,t为指向根结点的指针*/
{ if (t!=NULL)
{printf("%d ",t->data);
preorder(t->lch);
preorder(t->rch);
}
}
P113 C语言的中序遍历算法:
void inorder(tnodetype *t)
/*中序遍历二叉树算法,t为指向根结点的指针*/
{
if(t!=NULL)
{inorder(t->lch);
printf("%d ",t->data);
inorder(t->rch);
}
}
P113 C语言的后序遍历算法:
void postorder(tnodetype *t)
/*后序遍历二叉树算法,t为指向根结点的指针*/
{
if(t!=NULL)
{ postorder(t->lch);
postorder(t->rch);
printf("%d ",t->data);
}
}
P114 如果引入队列作为辅助存储工具,按层次遍历二叉树的算法可描述如下:
void levelorder(tnodetype *t)
/*按层次遍历二叉树算法,t为指向根结点的指针*/
{tnodetype q[20]; /*辅助队列*/
front=0;
rear=0; /*置空队列*/
if (t!=NULL)
{ rear++;
q[rear]=t; /*根结点入队*/
}
while (front!=rear)
{ front++;
t=q [front];
printf ("%c\n",t->data);
if (t->lch!=NULL) /*t的左孩子不空,则入队*/
{ rear++;
q [rear]=t->lch;
}
if (t->rch!=NULL) /*t的右孩子不空,则入队*/
{ rear++;
q [rear]=t->rch;
}
}
}
P115 以中序遍历的方法统计二叉树中的结点数和叶子结点数,算法描述为:
void inordercount (tnodetype *t)
/*中序遍历二叉树,统计树中的结点数和叶子结点数*/
{ if (t!=NULL)
{ inordercount (t->lch); /*中序遍历左子树*/
printf ("%c\n",t->data); /*访问根结点*/
countnode++; /*结点计数*/
if ((t->lch==NULL)&&(t->rch==NULL))
countleaf++; /*叶子结点计数*/
inordercount (t->rch); /*中序遍历右子树*/
}
}
P115 可按如下方法计算一棵二叉树的深度:
void preorderdeep (tnodetype *t,int j)
/*先序遍历二叉树,并计算二叉树的深度*/
{ if (t!=NULL)
{ printf ("%c\n",t->data); /*访问根结点*/
j++;
if (k<j) k=j;
preorderdeep (t->lch,j); /*先序遍历左子树*/
preorderdeep (t->rch,j); /*先序遍历右子树*/
}
}
P117 线索二叉树的结点类型定义如下:
struct nodexs
{anytype data;
struct nodexs *lch, *rch;
int ltag,rtag; /*左、右标志域*/
}
P117 中序次序线索化算法
void inorderxs (struct nodexs *t)
/*中序遍历t所指向的二叉树,并为结点建立线索*/
{ if (t!=NULL)
{ inorderxs (t->lch);
printf ("%c\n",t->data);
if (t->lch!=NULL)
t->ltag=0;
else { t->ltag=1;
t->lch=pr;
} /*建立t所指向结点的左线索,令其指向前驱结点pr*/
if (pr!=NULL)
{ if (pr->rch!=NULL)
pr->rtag=0;
else { pr->rtag=1;
pr->rch=p;
}
} /*建立pr所指向结点的右线索,令其指向后继结点p*/
pr=p;
inorderxs (t->rch);
}
}
P118 在中根线索树上检索某结点的前驱结点的算法描述如下:
struct nodexs * inpre (struct nodexs *q)
/*在中根线索树上检索q所指向的结点的前驱结点*/
{ if (q->ltag==1)
p=q->lch;
else { r=q->lch;
while (r->rtag!=1)
r=r->rch;
p=r;
}
return (p);
}
P119 在中根线索树上检索某结点的后继结点的算法描述如下:
struct nodexs * insucc (struct nodexs *q)
/*在中根线索树上检索q所指向的结点的后继结点*/
{ if (q->rtag==1)
p=q->rch;
else { r=q->rch;
while (r->ltag!=1)
r=r->lch;
p=r;
}
return (p);
}
P120 算法程序用C语言描述如下:
void sortBT(BT *t,BT *s) /*将指针s所指的结点插入到以t为根指针的二叉树中*/
{ if (t==NULL) t=s; /*若t所指为空树,s所指结点为根*/
else if (s->data < t->data)
sortBT(t->lch,s); /*s结点插入到t的左子树上去*/
else
sortBT(t->rch,s); /*s结点插入到t的右子树上去*/
}
P121 二叉排序树结点删除算法的C语言描述如下:
void delnode(bt,f,p)
/*bt为一棵二叉排序树的根指针,p指向被删除结点,f指向其双亲*/
/*当p=bt时f为NULL*/
{ fag=0; /*fag=0时需修改f指针信息,fag=1时不需修改*/
if (p->lch==NULL)
s=p->rch; /*被删除结点为叶子或其左子树为空*/
else if (p->rch==NULL)
s=p->lch;
else { q=p; /*被删除结点的左、右子树均非空*/
s=p->lch;
while (s->rch!=NULL)
{ q=s;
s=s->rch;
} /*寻找s结点*/
if (q=p)
q->lch=s->lch;
else q->rch=s->lch;
p->data=s->data; /*s所指向的结点代替被删除结点*/
DISPOSE(s);
Fag=1;
}
if (fag=0) /*需要修改双亲指针*/
{ if (f=NULL)
bt=s; /*被删除结点为根结点*/
else if (f->lch=p)
f->lch=s;
else f->rch=s;
DISPOSE(p); /*释放被删除结点*/
}
}
第七章 图
P134 用邻接矩阵表示法表示图,除了存储用于表示顶点间相邻关系的邻接矩阵外,通常还需要用一个顺序表来存储顶点信息。其形式说明如下:
# define n 6 /*图的顶点数*/
# define e 8 /*图的边(弧)数*/
typedef char vextype; /*顶点的数据类型*/
typedef float adjtype; /*权值类型*/
typedef struct
{vextype vexs[n];
adjtype arcs[n][n];
}graph;
P135 建立一个无向网络的算法。
CREATGRAPH(ga) /*建立无向网络*/
Graph * ga;
{
int i,j,k;
float w;
for(i=0;i<n;i++ )
ga ->vexs[i]=getchar(); /*读入顶点信息,建立顶点表*/
for(i=0;i<n;i++ )
for(j=0;j<n;j++)
ga ->arcs[i][j]=0; /*邻接矩阵初始化*/
for(k=0;k<e;k++) /*读入e条边*/
(scanf("%d%d%f",&I,&j,&w); /*读入边(vi,vj)上的权w */
ga ->arcs[i][j]=w;
ga - >arcs[j][i]=w;
}
} /*CREATGRAPH*/
P136 邻接表的形式说明及其建立算法:
typedef struct node
{int adjvex; /*邻接点域*/
struct node * next; /*链域*/
}edgenode; /*边表结点*/
typedef struct
{vextype vertex; /*顶点信息*/
edgenode link; /*边表头指针*/
}vexnode; /*顶点表结点*/
vexnode ga[n];
CREATADJLIST(ga) /*建立无向图的邻接表*/
Vexnode ga[ ];
{int i,j,k;
edgenode * s;
for(i=o;i<n;i++= /*读入顶点信息*/
(ga[i].vertex=getchar();
ga[i].1ink=NULL; /*边表头指针初始化*/
}
for(k=0;k<e;k++= /*建立边表*/
{scanf("%d%d",&i,&j); /*读入边(vi , vj)的顶点对序号*/
s=malloc(sizeof(edgenode)); /*生成邻接点序号为j的表结点*s */
s-> adjvex=j;
s- - >next:=ga[i].Link;
ga[i].1ink=s; /*将*s插入顶点vi的边表头部*/
s=malloc(size0f(edgende)); /*生成邻接点序号为i的边表结点*s */
s ->adjvex=i;
s ->next=ga[j].1ink;
ga[j].1ink=s; /*将*s插入顶点vj的边表头部*/
}
} /* CREATADJLIST */
P139 分别以邻接矩阵和邻接表作为图的存储结构给出具体算法,算法中g、g1和visited为全程量,visited的各分量初始值均为FALSE。
int visited[n] /*定义布尔向量visitd为全程量*/
Graph g; /*图g为全程量*/
DFS(i) /*从Vi+1出发深度优先搜索图g,g用邻接矩阵表示*/
int i;
{ int j;
printf("node:%c\n" , g.vexs[i]); /*访问出发点vi+1 */
Visited[i]=TRUE; /*标记vi+l已访问过*/
for (j=0;j<n;j++) /*依次搜索vi+1的邻接点*/
if((g.arcs[i][j]==1) &&(! visited[j]))
DFS(j); /*若Vi+l的邻接点vj+l未曾访问过,则从vj+l出发进行深度优先搜索*/
} /*DFS*/
vexnode gl[n] /*邻接表全程量*/
DFSL(i) /*从vi+l出发深度优先搜索图g1,g1用邻接表表示*/
int i;
{ int j;
edgenode * p;
printf("node:%C\n" ,g1[i].vertex);
vistited[i]=TRUE;
p=g1[i].1ink; /*取vi+1的边表头指针*/
while(p !=NULL) /*依次搜索vi+l的邻接点*/
{
if(! Vistited[p ->adjvex])
DFSL(p - >adjvex); /*从vi+1的未曾访问过的邻接点出发进行深度优先搜索*/
p=p - >next; /*找vi+l的下一个邻接点*/
}
} /* DFSL */
P142 以邻接矩阵和邻接表作为图的存储结构,分别给出宽度优先搜索算法。
BFS(k) /*从vk+l出发宽度优先搜索图g,g用邻接矩阵表示,visited为访问标志向量*/
int k;
{ int i,j;
SETNULL(Q); /*置空队Q */
printf("%c\n",g.vexs[k]); /*访问出发点vk+l*x/
visited[k]=TRUE; /*标记vk+l已访问过*/
ENQUEUE(Q,K); /*已访问过的顶点(序号)入队列*/
While(!EMPTY(Q)) /*队非空时执行*/
{i=DEQUEUE(Q); /*队头元素序号出队列*/
for(j=0;j<n;j++)
if((g.arcs[i][j]==1)&&(! visited[j]))
{printf("%c\n" , g.vexs[j]); /*访问vi+l的未曾访问的邻接点vj+l */
visited[j]=TRUE;
ENQUEUE(Q,j); /*访问过的顶点入队*/
}
}
} /* BFS */
BFSL(k) /*从vk+l出发宽度优先搜索图g1,g1用邻接表表示*/
int k
{ int i;
edgenode * p;
SETNULL(Q);
printf("%c\n" , g1[k].vertex);
visited[k]=TRUE;
ENQUEUE(Q,k);
while(! EMPTY(Q));
{ i=DEQUEUE(Q);
p=g1[i].1ink /*取vi+l的边表头指针*/
while(p !=NULL) /*依次搜索vi+l的邻接点*/
{ if( ! visited[p - >adjvex]) /*访问vi+l的未访问的邻接点*/
{ printf{"%c\n" , g1[p - >adjvex].vertex};
visited[p - >adjvex]=TRUE;
ENQUEUE(Q,p - >adjvex); /*访问过的顶点入队*/
}
p=p - >next; /*找vi+l的下一个邻接点*/
}
}
} /*BFSL*/
P148 在对算法Prim求精之前,先确定有关的存储结构如下:
typdef struct
{Int fromvex,endvex; /*边的起点和终点*/
float length; /*边的权值*/
} edge;
float dist[n][n]; /*连通网络的带权邻接矩阵*/
edgeT[n-1]; /*生成树*/
P149 抽象语句(1)可求精为:
for(j=1;j<n;j++) /*对n-1个蓝点构造候选紫边集*/
{T[j-1].fromvex=1}; /*紫边的起点为红点*/
T[j-1].endvex=j+1; /*紫边的终点为蓝点*/
T[j-1].1ength=dist[0][j]; /*紫边长度*/
}
P149 抽象语句(3)所求的第k条最短紫边可求精为:
min=max; /*znax大于任何边上的权值*/
for (j=k;j<n-1;j++) /*扫描当前候选紫边集T[k]到T[n-2],找最短紫边*/
if(T[j].1ength<min)
{min=T[j].1ength;m=j; /*记录当前最短紫边的位置*/
}
P149 抽象语句(4)的求精:
e=T[m];T[m]=T[k];T[k]=e, /* T[k]和T[m]交换*/
v=T[kl.Endvex]; /* v是刚被涂红色的顶点*/
P149 抽象语句(5)可求精为:
for(j=k+1;j<n-1;j++) /*调整候选紫边集T[k+1]到T[n-2]*/
{d=dist[v-1][T[j].endvex-1]; /*新紫边的长度*/
if(d<T[j].1ength) /*新紫边的长度小于原最短紫边*/
{T[j].1ength=d;
T[j].fromvex=v; /*新紫边取代原最短紫边*/
}
}
P150 完整的算法:
PRIM() /*从第一个顶点出发构造连通网络dist的最小生成树,结果放在T中*/
{int j , k , m , v , min , max=l0000;
float d;
edge e;
for(j=1;j<n;j++) /*构造初始候选紫边集*/
{T[j-1].formvex=1; /*顶点1是第一个加入树中的红点*/
T[j-1].endvex=j+1;
T[j-1].length=dist[o][j];
}
for(k=0;k<n-1;k++) /*求第k条边*/
{min=max;
for(j=k;j<n-1;j++) /*在候选紫边集中找最短紫边*/
if(T[j].1ength<min)
{min=T[j].1ength;
m=j;
} /*T[m]是当前最短紫边*/
}
e=T[m];T[m]=T[k];T[k]=e; /*T[k]和T[m]交换后,T[k]是第k条红色树边*/
v=T[k].endvex ; /* v是新红点*/
for(j=k+1;j<n-1;j++) /*调整候选紫边集*/
{d=dist[v-1][T[j].endvex-1];
if(d<T[j].1ength);
{T[j].1ength=d;
T[j].fromvex=v;
}
}
} /* PRIM */
P151 Kruskl算法的粗略描述:
T=(V,φ);
While(T中所含边数<n-1)
{从E中选取当前最短边(u,v);
从E中删去边(u,v);
if((u,v)并入T之后不产生回路,将边(u,v)并入T中;
}
P153 迪杰斯特拉算法实现。算法描述如下:
#define max 32767 /*max代表一个很大的数*/
void dijkstra (float cost[][n],int v)
/*求源点v到其余顶点的最短路径及其长度*/
{ v1=v-1;
for (i=0;i<n;i++)
{ dist[i]=cost[v1][i]; /*初始化dist*/
if (dist[i]<max)
pre[i]=v;
else pre[i]=0;
}
pre[v1]=0;
for (i=0;i<n;i++)
s[i]=0; /*s数组初始化为空*/
s[v1]=1; /*将源点v归入s集合*/
for (i=0;i<n;i++)
{ min=max;
for (j=0;j<n;j++)
if (!s[j] && (dist[j]<min))
{ min=dist[j];
k=j;
} /*选择dist值最小的顶点k+1*/
s[k]=1; /*将顶点k+1归入s集合中*/
for (j=0;j<n;j++)
if (!s[j]&&(dist[j]>dist[k]+cost[k][j]))
{ dist[j]=dist[k]+cost[k][j]; /*修改 V-S集合中各顶点的dist值*/
pre[j]=k+1; /*k+1顶点是j+1顶点的前驱*/
}
} /*所有顶点均已加入到S集合中*/
for (j=0;j<n;j++) /*打印结果*/
{ printf("%f\n%d",dist[j],j+1;);
p=pre[j];
while (p!=0)
{ printf("%d",p);
p=pre[p-1];
}
}
}
P155 弗洛伊德算法可以描述为:
A(0)[i][j]=cost[i][j]; //cost为图的邻接矩阵
A(k)[i][j]=min{A(k-1) [i][j],A(k-1) [i][k]+A(k-1) [k][j]}
其中 k=1,2,…,n
P155 弗洛伊德算法实现。算法描述如下:
int path[n][n]; /*路径矩阵*/
void floyd (float A[][n],cost[][n])
{ for (i=0;i<n;i++) /*设置A和path的初值*/
for (j=0;j<n;j++)
{ if (cost[i][j]<max)
path[i][j]=j;
else { path[i][j]=0;
A[i][j]=cost[i][j];
}
}
for (k=0;k<n;k++)
/*做n次迭代,每次均试图将顶点k扩充到当前求得的从i到j的最短路径上*/
for (i=0;i<n;i++)
for (j=0;j<n;j++)
if (A[i][j]>(A[i][k]+A[k]
‘柒’ C语言 数据结构与算法分析C语言描述
Position不是一个类型,起码C语言中,我写那么多年代码没见过这个类型 。
你该把整段代码贴上来。
我猜你看的那段代码是伪代码,Position是自定义类型。
若Position是类名,那么Position P 就是实例化对象。
如果Position是结构体,那么就是声明一个结构体变量
从你的补充的代码,可以看出Position 是自定义的链表结构,而且是通过该“链表类型指针”的别名。而且这段代码我认为有错误:
free (P); //当时释放掉P指向的栈内存,P就是一个野指针
P = P -> Next; //Next的内容都被释放掉了,P->Next 还有什么意义。。。
‘捌’ 《数据结构与算法分析Java语言描述(英文版·第3版)》pdf下载在线阅读,求百度网盘云资源
《数据结构与算法分析》(韦斯 (Mark Allen Weiss))电子书网盘下载免费在线阅读
资源链接:
链接:
书名:数据结构与算法分析
作者:韦斯 (Mark Allen Weiss)
出版社:机械工业出版社
出版年份:2013-2-1
页数:614
内容简介:
本书是国外数据结构与算法分析方面的经典教材,使用卓越的Java编程语言作为实现工具讨论了数据结构(组织大量数据的方法)和算法分析(对算法运行时间的估计)。
随着计算机速度的不断增加和功能的日益强大,人们对有效编程和算法分析的要求也不断增长。本书将算法分析与最有效率的Java程序的开发有机地结合起来,深入分析每种算法,并细致讲解精心构造程序的方法,内容全面、缜密严格。
第3版的主要更新如下:
第4章包含AVL树删除算法的实现。
第5章进行了全面修订和扩充,现在包含两种较新的算法—cuckoo散列和hopscotch散列。
第7章包含基数排序的相关内容,并给出了下界证明。
第12章增加了后缀树和后缀数组的相关材料,包括Karkkainen和Sanders的线性时间后缀数组构造算法。
更新书中的代码,使用了Java 7中的菱形运算符。
作者简介:
Mark Allen Weiss佛罗里达国际大学计算与信息科学学院教授、副院长,本科教育主任和研究生教育主任。他于1987年获得普林斯顿大学计算机科学博士学位,师从Bob Sedgewick。 他曾经担任全美AP(Advanced Placement)考试计算机学科委员会的主席(2000—2004)。他的主要研究兴趣是数据结构、算法和教育学。