A. 解方程公式法一元二次
解一元二次方程的公式法如下:
△=b^2-4ac≥0。 对于一元二次方程ax^2+bx+c=0(a>0),设△=b^2-4ac可得出以下结果: 1、△=b^2-4ac>0的时候有2个顶点(代表有两个根)。 2、△=b^2-4ac=0的时候有1个顶点(代表有一个根)。 3、△=b^2-4ac<0的时候有没有顶点(代表有零个根)。
通过分析古巴比伦泥板上的代数问题,可以发现在公元前2250年古巴比伦人就已经掌握了与求解一元二次方程相关的代数学知识,并将之应用于解决有关矩形面积和边的问题。 相关的算法可以追溯到乌尔第三王朝。
继欧几里得之后,亚历山大数学发展第二次高潮“白银时代”的代表人物丢番图(Diophantus)发表了《算术》(Arithmetica)。
该书出现了若干二次方程或可归结为二次方程的问题。这足以说明丢番图熟练掌握了二次方程的求根公式,但仍限于正有理根。不过他始终只取一个根,如果有两个正根,他就取较大的一个。
中国古代数学很早就涉及二次方程问题。在中国传统数学最重要的着作《九章算术》中就已涉及相关问题。因此可以肯定,二次方程及其解法自东汉以来就已为人们所熟知了。
B. 一元二次方程的解法有哪些
01C. 一元二次方程的解法有几种
一元二次方程的解法:
1、直接开平方法
对于直接开平方法解一元二次方程时注意一般都有两个解,不要漏解,如果是两个相等的解,也要写成x1=x2=a的形式,其他的都是比较简单。
2、配方法
在化成直接开平方法求解的时候需要检验方程右边是否是非负的,如果是则利用直接开平方法求解即可,如果不是,原方程就没有实数解。
3、公式法
公式法是解一元二次方程的根本方法,没有使用条件,因此是必须掌握的。用公式法的注意事项只有一个就是判断“△”的取值范围,只有当△≥0时,一元二次方程才有实数解。
4、因式分解法
因式分解,在初二下学期的时候重点讲了,之前也有相关的文章,重要性毋庸置疑,在一元二次方程里,因式分解法用的还是挺多的,难度非常容易调节,所以也是考试出题老师非常喜欢的一类题型。
5、图像解法
一元二次方程ax2+bx+c=0的根的几何意义是二次函数y=ax2+bx+c的图像(为一条抛物线)与x轴交点的x坐标。
当△>0时,则该函数与x轴相交(有两个交点)。
当△=0时,则该函数与x轴相切(有且仅有一个交点)。
当△<0时,则该函数与轴x相离(没有交点)。
一元二次方程的判别式
利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况。
一元二次方程ax+bx+c=0(a不等于0)的根与根的判别式有如下关系:△=b2-4ac。
①当△>0时,方程有两个不相等的实数根。
②当△=0时,方程有两个相等的实数根。
③当△<0时,方程无实数根,但有2个共轭复根。
D. 一元二次方程的解法有哪些
1、开平方法
形如x²=p的一元二次方程可采用直接开平方法解一元二次方程。
2、配方法
将一元二次方程配成(x+m)²=n的形式,再利用直接开平方法求解的方法。
3、计算机法
在使用计算机解一元二次方程时,和人手工计算类似,大部分情况下也是根据求根公式来求解。
E. 如何解一元二次方程
用因式分解法解一元二次方程的一般步骤:
一、将方程右边化为( 0)
二、方程左边分解为(两个 )因式的乘积
三、令每个一次式分别为( 0)得到两个一元一次方程
四、两个一元一次方程的解,就是所求一元二次方程的解。
复合应用题解题思路:是由两个或两个以上相互联系的简单应用题组合而成的。
1、理解题意,就是弄清应用题中的已知条件和要求问题。
2、分析数量关系,就是分析已知数量与未知数数量,已知数量与未知数数量间的关系,找到解题途径,确定先算什么,再算什么,最好算什么。
3、列式解答,就是根据分析,列出算式并计算出来。
4、验算并给出答案,就是检验解答过程中是否合理,结果是否正确,与原题的条件是否相符,最后写出答案。
F. 解一元二次方程的方法
解一元二次方程的方法如下
直接开平方法,直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的 方程,其解为x=±根号下n+m。
G. 一元二次方程四种解法总结有哪些
一元二次方程有四种解法:直接开平方法;配方法;公式法;因式分解法。解一元二次方程的基本思想方法为通过“降次”将其化为两个一元一次方程。
1、直接开平方法
形如x²=p或(nx+m)²=p(p≥0)的一元二次方程可采用直接开平方法解一元二次方程。如果方程化成x²=p的形式,那么可得x=±√p。如果方程能化成(nx+m)²=p(p≥0)的形式,那么nx+m=±√p,进而得出方程的根。
2、配方法:用配方法解方程ax²+bx+c=0 (a≠0),先将常数c移到方程右边,将二次项系数化为1,方程两边分别加上一次项系数的一半的平方,方程左边成为一个完全平方式。
3、公式法:把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a,b,c的值代入求根公式就可得到方程的根。
4、因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
成立条件
一元二次方程成立必须同时满足三个条件:
1、是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。
2、只含有一个未知数。
3、未知数项的最高次数是2。
H. 一元二次方程6种解法是什么
一元二次方程没有6种解法,一元二次方程4种解法:
一、直接开平方法。
形如(x+a)^2=b,当b大于或等于0时,x+a=正负根号b,x=-a加减根号b;当b小于0时。方程无实数根。
二、配方法。
1、二次项系数化为1。
2、移项,左边为二次项和一次项,右边为常数项。
3、配方,两边都加上一次项系数一半的平方,化成(x=a)^2=b的形式。
4、利用直接开平方法求出方程的解。
三、公式法。
现将方程整理成:ax^2+bx+c=0的一般形式。再将abc代入公式x=(-b±√(b^2-4ac))/2a,(b^2-4ac大于或等于0)即可。
四、因式分解法。
如果一元二次方程ax^2+bx+c=0中等号左边的代数式容易分解,那么优先选用因式分解法。
一元二次方程成立必须同时满足三个条件:
①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。
②只含有一个未知数。
③未知数项的最高次数是2。
I. 一元二次方程的解法公式
公式的一般形式:ax_+bx+c=0(a≠0),其中ax_是二次项,a是二次项系数;bx是一次项;b是一次项系数;c是常数项。
使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。
因式分解法:
因式分解法又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“十字相乘法”,因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。用因式分解法解一元二次方程的步骤:一元二次方程:
(1)将方程右边化为0;
(2)将方程左边分解为两个一次式的积;
(3)令这两个一次式分别为0,得到两个一元一次方程;
(4)解这两个一元一次方程,它们的解就是原方程的解.
J. 一元二次方程怎么解
一元二次方程四中解法。
一、公式法。
二、配方法。
三、直接开平方法。
四、因式分解法。
公式法1先判断△=b_-4ac,若△<0原方程无实根;
2若△=0,原方程有两个相同的解为:X=-b/(2a);
3若△>0,原方程的解为:X=((-b)±√(△))/(2a)。
配方法。先把常数c移到方程右边得:aX_+bX=-c。将二次项系数化为1得:X_+(b/a)X=-c/a,方程两边分别加上(b/a)的一半的平方得X_+(b/a)X+(b/(2a))_=-c/a+(b/(2a))_方程化为:(b+(2a))_=-c/a+(b/(2a))_。
5①、若-c/a+(b/(2a))_<0,原方程无实根;
②、若-c/a+(b/(2a))_=0,原方程有两个相同的解为X=-b/(2a);
③、若-c/a+(b/(2a))_>0,原方程的解为X=(-b)±√((b_-4ac))/(2a)。