导航:首页 > 源码编译 > mcu编译器

mcu编译器

发布时间:2023-02-15 17:58:07

① MCU的主要区别

在20世纪最值得人们称道的成就中,就有集成电路和电子计算机的发展。20世纪70年代出现的微型计算机,在科学技术界引起了影响深远的变革。在70年代中期,微型计算机家族中又分裂出一个小小的派系--单片机。随着4位单片机出现之后,又推出了8位的单片机。MCS48系列,特别是MCS51系列单片机的出现,确立了单片机作为微控制器(MCU)的地位,引起了微型计算机领域新的变革。在当今世界上,微处理器(MPU)和微控制器(MCU)形成了各具特色的两个分支。它们互相区别,但又互相融合、互相促进。与微处理器(MPU)以运算性能和速度为特征的飞速发展不同,微控制器(MCU)则是以其控制功能的不断完善为发展标志的。
CPU(Central Processing Unit,中央处理器)发展出来三个分枝,一个是DSP(Digital Signal Processing/Processor,数字信号处理),另外两个是MCU(Micro Control Unit,微控制器单元)和MPU(Micro Processor Unit,微处理器单元)。
MCU集成了片上外围器件;MPU不带外围器件(例如存储器阵列),是高度集成的通用结构的处理器,是去除了集成外设的MCU;DSP运算能力强,擅长很多的重复数据运算,而MCU则适合不同信息源的多种数据的处理诊断和运算,侧重于控制,速度并不如DSP。MCU区别于DSP的最大特点在于它的通用性,反应在指令集和寻址模式中。DSP与MCU的结合是DSC,它终将取代这两种芯片。
1.对密集的乘法运算的支持
GPP不是设计来做密集乘法任务的,即使是一些现代的GPP,也要求多个指令周期来做一次乘法。而DSP处理器使用专门的硬件来实现单周期乘 法。DSP处理器还增加了累加器寄存器来处理多个乘积的和。累加器寄存器通常比其他寄存器宽,增加称为结果bits的额外bits来避免溢出。同时,为了 充分体现专门的乘法-累加硬件的好处,几乎所有的DSP的指令集都包含有显式的MAC指令。
2. 存储器结构
传统上,GPP使用冯.诺依曼存储器结构。这种结构中,只有一个存储器空间通过一组总线(一个地址总线和一个数据总线)连接到处理器核。通常,做一次乘法会发生4次存储器访问,用掉至少四个指令周期。
大多数DSP采用了哈佛结构,将存储器空间划分成两个,分别存储程序和数据。它们有两组总线连接到处理器核,允许同时对它们进行访问。这种安排将处理器存储器的带宽加倍,更重要的是同时为处理器核提供数据与指令。在这种布局下,DSP得以实现单周期的MAC指令。
典型的高性能GPP实际上已包含两个片内高速缓存,一个是数据,一个是指令,它们直接连接到处理器核,以加快运行时的访问速度。从物理上说,这种片内的双存储器和总线的结构几乎与哈佛结构的一样了。然而从逻辑上说,两者还是有重要的区别。
GPP使用控制逻辑来决定哪些数据和指令字存储在片内的高速缓存里,其程序员并不加以指定(也可能根本不知道)。与此相反,DSP使用多个片内 存储器和多组总线来保证每个指令周期内存储器的多次访问。在使用DSP时,程序员要明确地控制哪些数据和指令要存储在片内存储器中。程序员在写程序时,必 须保证处理器能够有效地使用其双总线。
此外,DSP处理器几乎都不具备数据高速缓存。这是因为DSP的典型数据是数据流。也就是说,DSP处理器对每个数据样本做计算后,就丢弃了,几乎不再重复使用。
3.零开销循环
如果了解到DSP算法的一个共同的特点,即大多数的处理时间是花在执行较小的循环上,也就容易理解,为什么大多数的DSP都有专门的硬件,用于 零开销循环。所谓零开销循环是指处理器在执行循环时,不用花时间去检查循环计数器的值、条件转移到循环的顶部、将循环计数器减1。
与此相反,GPP的循环使用软件来实现。某些高性能的GPP使用转移预报硬件,几乎达到与硬件支持的零开销循环同样的效果。
4.定点计算
大多数DSP使用定点计算,而不是使用浮点。虽然DSP的应用必须十分注意数字的精确,用浮点来做应该容易的多,但是对DSP来说,廉价也是非 常重要的。定点机器比起相应的浮点机器来要便宜(而且更快)。为了不使用浮点机器而又保证数字的准确,DSP处理器在指令集和硬件方面都支持饱和计算、舍 入和移位。
5.专门的寻址方式
DSP处理器往往都支持专门的寻址模式,它们对通常的信号处理操作和算法是很有用的。例如,模块(循环)寻址(对实现数字滤波器延时线很有用)、位倒序寻址(对FFT很有用)。这些非常专门的寻址模式在GPP中是不常使用的,只有用软件来实现。
6.执行时间的预测
大多数的DSP应用(如蜂窝电话和调制解调器)都是严格的实时应用,所有的处理必须在指定的时间内完成。这就要求程序员准确地确定每个样本需要多少处理时间,或者,至少要知道,在最坏的情况下,需要多少时间。如果打算用低成本的GPP去完成实时信号处理的任务,执行时间的预测大概不会成为什么问题,应为低成本GPP具有相对直接的结构,比较容易预测执行时间。然而,大多数实时DSP应用所要求的处理能力是低成本GPP所不能提供的。 这时候,DSP对高性能GPP的优势在于,即便是使用了高速缓存的DSP,哪些指令会放进去也是由程序员(而不是处理器)来决定的,因此很容易判断指令是从高速缓存还是从存储器中读取。DSP一般不使用动态特性,如转移预测和推理执行等。因此,由一段给定的代码来预测所要求的执行时间是完全直截了当的。从而使程序员得以确定芯片的性能限制。
7.定点DSP指令集
定点DSP指令集是按两个目标来设计的:使处理器能够在每个指令周期内完成多个操作,从而提高每个指令周期的计算效率。将存贮DSP程序的存储器空间减到最小(由于存储器对整个系统的成本影响甚大,该问题在对成本敏感的DSP应用中尤为重要)。为了实现这些目标,DSP处理器的指令集通常都允许程序员在一个指令内说明若干个并行的操作。例如,在一条指令包含了MAC操作,即同时的一个或两个数据移动。在典型的例子里,一条指令就包含了计算FIR滤波器的一节所需要的所有操作。这种高效率付出的代价是,其指令集既不直观,也不容易使用(与GPP的指令集相比)。 GPP的程序通常并不在意处理器的指令集是否容易使用,因为他们一般使用象C或C++等高级语言。而对于DSP的程序员来说,不幸的是主要的DSP应用程序都是用汇编语言写的(至少部分是汇编语言优化的)。这里有两个理由:首先,大多数广泛使用的高级语言,例如C,并不适合于描述典型的DSP算法。其次, DSP结构的复杂性,如多存储器空间、多总线、不规则的指令集、高度专门化的硬件等,使得难于为其编写高效率的编译器。 即便用编译器将C源代码编译成为DSP的汇编代码,优化的任务仍然很重。典型的DSP应用都具有大量计算的要求,并有严格的开销限制,使得程序的优化必不可少(至少是对程序的最关键部分)。因此,考虑选用DSP的一个关键因素是,是否存在足够的能够较好地适应DSP处理器指令集的程序员。
8.开发工具的要求
因为DSP应用要求高度优化的代码,大多数DSP厂商都提供一些开发工具,以帮助程序员完成其优化工作。例如,大多数厂商都提供处理器的仿真工具,以准确地仿真每个指令周期内处理器的活动。无论对于确保实时操作还是代码的优化,这些都是很有用的工具。 GPP厂商通常并不提供这样的工具,主要是因为GPP程序员通常并不需要详细到这一层的信息。GPP缺乏精确到指令周期的仿真工具,是DSP应用开发者所面临的的大问题:由于几乎不可能预测高性能GPP对于给定任务所需要的周期数,从而无法说明如何去改善代码的性能。

② 请问谁有MCS96系列单片机的编译器

我怀疑Intel不再推出这玩意了,建议你搞别的,例如DSP+MCU(Blackfin之类的),便宜,极快!当然,MCS96/196有其特有的特点,稳定、可靠、耐辐射、抗冲击等等。一定要玩?找个破解的Tasking Software的C编译器吧! 仿真器也不很贵。但是,芯片越来越难买喔!

③ stm32cubeide设置文件编译顺序

对一个加法函数的库项目的建立和编译整个过程如下:
1、这里就要选择ARMMCU的GCC编译器了。
2、选择和MCU型号的绑定关系了,毕竟编译的库是给MCU项目所用,这里选择STM32F401CCU6的芯片。
2、添加源文件编写加法函数,编写加法函数进行编译。
3、编译成功,在工程目录里就可以找到编译好的库文件了,库文件的调用,配置一个对应MCU的基本工程,建立一个STM32F401CCU6的工程,并配置USART2作为串口输出。
4、保存后产生基本工程代码,重载printf函数方便打印输出,参考STM32UART串口printf函数应用及浮点打印代码空间节省。
5、在工程的core/inc/目录新建一个和库文件同名的头文件,将库文件libLib_C_Demo.a放置到工程的源文件目录core/src/,则在工程目录树立可以看到。
6、因为编译器默认只是识别C语言源代码(.c文件),还需要进行库文件的指定,这样编译器才会对二进制库文件(.a)进行识别。
7、先打开属性菜单,进行库文件所在目录和库文件名的添加指定,注意库文件名前需要加冒号,ApplyandClose后,就可以在工程文件里对库文件进行调用,首先要引入库文件的头文件。
8、在while循环里进行打印输出,打印数据为库函数调用的加法和,编译下载到STM32F401CCU6芯片后运行,通过串口工具观察打印结果,输出打印结果正确,库函数正常调用成功。

④ STM8S003FxxxMCU用哪个编译软件

没有rando函数。只有rand和randn
1.rand()
生成(0,1)区间上均匀分布的随机变量。基本语法:
rand([M,N,P ...])
生成排列成M*N*P... 多维向量的随机数。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:
rand(5,1) %生成5个随机数排列的列向量,一般用这种格式
rand(5) %生成5行5列的随机数矩阵
rand([5,4]) %生成一个5行4列的随机数矩阵
生成的随机数大致的分布。
x=rand(100000,1);
hist(x,30);
由此可以看到生成的随机数很符合均匀分布。(视频教程会略提及hist()函数的作用)
2.randn()
生成服从标准正态分布(均值为0,方差为1)的随机数。基本语法和rand()类似。
randn([M,N,P ...])
生成排列成M*N*P... 多维向量的随机数。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:
randn(5,1) %生成5个随机数排列的列向量,一般用这种格式
randn(5) %生成5行5列的随机数矩阵
randn([5,4]) %生成一个5行4列的随机数矩阵
3、matlab中random函数——通用函数,求各分布的随机数据,其用法:
y = random('norm',A1,A2,A3,m,n)
式中:A1,A2,A3为分布的参数,m,n用来指定随机数的行和列,name的取值有相关的表格来参照。
例:产生一个3行4列均值为2、标准差为0.3的正态分布随机数:
>>y =random('norm',2,0.3,3,4)
y =

2.1613 2.2587 1.8699 2.8308
2.5502 2.0956 2.1028 1.5950
1.3223 1.6077 3.0735 2.9105

⑤ “Keil C51”下如何让编译器优先使用片内“RAM”

C51内存结构深度剖析x0dx0a在编写应用程序时,定义一个变量,一个数组,或是说一个固定表格,到底存储在什么地方;当定义变量大小超过MCU的内存范围时怎么办;如何控制变量定义不超过存储范围;以及如何定义变量才能使得变量访问速度最快,写出的程序运行效率最高。以下将一一解答。x0dx0ax0dx0a1 六类关键字(六类存储类型)x0dx0adata idata xdata pdata code bdatax0dx0ax0dx0a code: code memory (程序存储器也即只读存储器)用来保存常量或是程序。code memory 采用16位地址线编码,可以是在片内,或是片外,大小被限制在64KBx0dx0a 作用:定义常量,如八段数码表或是编程使用的常,在定义时加上code 或明确指明定义的常量保存到code memory(只读)x0dx0a 使用方法:x0dx0a char code table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};x0dx0a 此关键字的使用方法等同于constx0dx0ax0dx0adata data memory (数据存储区)只能用于声明变量,不能用来声明函数,该区域位于片内,采用8位地址线编码,具有最快的存储速度,但是数量被限制在128byte或更少。x0dx0a 使用方法:x0dx0a unsigned char data fast_variable=0;x0dx0ax0dx0a idata idata memory(数据存储区)只能用于声明变量,不能用来声明函数. 该区域位于片内,采用8位地址线编码,内存大小被限制在256byte或更少。该区域的低地址区与data memory地址一致;高地址区域是52系列在51系列基础上扩展的并与特殊功能寄存器具有相同地址编码的区域。即:data memory是idata memory的一个子集。x0dx0a x0dx0a xdata xdata memory 只能用于声明变量,不能用来声明函数,该区域位于MCUx0dx0a 外部,采用16位地址线进行编码,存储大小被限制在64KB以内。x0dx0a 使用方法:x0dx0a unsigned char xdata count=0;x0dx0ax0dx0apdata pdata memory 只能用于声明变量,不能用来声明函数,该区域位于MCU外部,采用8位地址线进行编码。存储大小限制在256byte. 是xdata memory的低256byte。为其子集。x0dx0a 使用方法x0dx0a unsigned char pdata count=0;x0dx0ax0dx0a bdata bdata memory 只能用于声明变量,不能用来声明函数。该区域位于8051内部位数据地址。定义的量保存在内部位地址空间,可用位指令直接读写。x0dx0a 使用方法:x0dx0a unsigned char bdata varab=0x0dx0ax0dx0a 注:有些资料讲,定义字符型变量时,在缺省unsigned 时,字符型变量,默认为无符号,与标准C不同,但我在Keil uVision3中测试的时候发现并非如此。在缺省的情况下默认为有符号。或许在以前的编译器是默认为无符号。所以看到有的资料上面这样讲的时候,要注意一下,不同的编译器或许不同。所以我们在写程序的时候,还是乖乖的把unsigned signed 加上,咱也别偷这个懒。x0dx0a 2函数的参数和局部变量的存储模式x0dx0a C51 编译器允许采用三种存储器模式:SMALL,COMPACT 和LARGE。一个函数的存储器模式确定了函数的参数的局部变量在内存中的地址空间。处于SMALL模式下的函数参数和局部变量位于8051单片机内部RAM中,处于COMPACT和LARGE模式下的函数参数和局部变量则使用单片机外部RAM。在定义一个函数时可以明确指定该函数的存储器模式。方法是在形参表列的后面加上一存储模式。x0dx0a x0dx0a 示例如下:x0dx0a #pragma large //此预编译必须放在所有头文前面x0dx0a int func0(char x,y) small;x0dx0a char func1(int x) large;x0dx0a int func2(char x);x0dx0a 注:x0dx0a 上面例子在第一行用了一个预编译命令#pragma 它的意思是告诉c51编译器在对程序进行编译时,按该预编译命令后面给出的编译控制指令LARGE进行编译,即本例程序编译时的默认存储模式为LARGE.随后定义了三个函数,第一个定义为SMALL存储模式,第二个函数定义为LARGE第三个函数未指定,在用C51进行编译时,只有最后一个函数按LARGE存储器模式处理,其它则分别按它们各自指定的存储器模式处理。x0dx0a 本例说明,C51编译器允许采用所谓的存储器混合模式,即允许在一个程序中将一些函数使用一种存储模式,而其它一些则按另一种存储器模式,采用存储器混合模式编程,可以充分利用8051系列单片机中有限的存储器空间,同时还可以加快程序的执行速度。x0dx0ax0dx0a3绝对地址访问 absacc.h(相当重要)x0dx0ax0dx0a#define CBYTE ((unsigned char volatile code *) 0)x0dx0a#define DBYTE ((unsigned char volatile data *) 0)x0dx0a#define PBYTE ((unsigned char volatile pdata *) 0)x0dx0a#define XBYTE ((unsigned char volatile xdata *) 0)x0dx0a 功能:CBYTE 寻址 CODE区x0dx0a DBYTE 寻址 DATA区x0dx0a PBYTE 寻址 XDATA(低256)区x0dx0a XBYTE 寻址 XDATA区x0dx0a 例: 如下指令在对外部存储器区域访问地址0x1000x0dx0a xvar=XBYTE[0x1000];x0dx0a XBYTE[0x1000]=20;x0dx0ax0dx0a#define CWORD ((unsigned int volatile code *) 0)x0dx0a#define DWORD ((unsigned int volatile data *) 0)x0dx0a#define PWORD ((unsigned int volatile pdata *) 0)x0dx0a#define XWORD ((unsigned int volatile xdata *) 0)x0dx0ax0dx0a 功能:与前面的一个宏相似,只是它们指定的数据类型为unsigned int .。x0dx0a 通过灵活运用不同的数据类型,所有的8051地址空间都是可以进行访问。x0dx0a 如x0dx0aDWORD[0x0004]=0x12F8;x0dx0a即内部数据存储器中(0x08)=0x12; (0x09)=0xF8x0dx0ax0dx0a注:用以上八个函数,可以完成对单片机内部任意ROM和RAM进行访问,非常方便。还有一种方法,那就是用指钟,后面会对C51的指针有详细的介绍。x0dx0ax0dx0a4寄存器变量(register)x0dx0a 为了提高程序的执行效率,C语言允许将一些频率最高的那些变量,定义为能够直接使用硬件寄存器的所谓的寄存器变量。定义一个变量时,在变量类型名前冠以“register” 即将该变量定义成为了寄存器变量。寄存器变量可以认为是一自动变量的一种。有效作用范围也自动变量相同。由于计算机寄存器中寄存器是有限的。不能将所有变量都定义成为寄存器变量,通常在程序中定义寄存器变量时,只是给编译器一个建议,该变量是否真正成为寄存器变量,要由编译器根据实际情况来确定。另一方面,C51编译器能够识别程序中使用频率最高的变量,在可能的情况下,即使程序中并未将该变量定义为寄存器变量,编译器也会自动将其作为寄存器变量处理。被定义的变量是否真正能成为寄存器变量,最终是由编译器决定的。x0dx0ax0dx0a5内存访问杂谈x0dx0a 1指钟x0dx0a指钟本身是一个变量,其中存放的内容是变量的地址,也即特定的数据。8051的地址是16位的,所以指针变量本身占用两个存储单元。指针的说明与变量的说明类似,仅在指针名前加上“*”即可。x0dx0a 如 int *int_point; 声明一个整型指针x0dx0a char *char_point; 声明一个字符型指针x0dx0a 利用指针可以间接存取变量。实现这一点要用到两个特殊运算符x0dx0a & 取变量地址x0dx0a * 取指针指向单元的数据x0dx0ax0dx0a示例一:x0dx0aint a,b;x0dx0a int *int_point; //定义一个指向整型变量的指针x0dx0a a=15;x0dx0a int_point=&a; //int_point指向 ax0dx0a *int_point=5; //给int_point指向的变量a 赋值5 等同于a=5; x0dx0a示例二:x0dx0a char i,table[6],*char_point;x0dx0a char_point=table;x0dx0a for(i=0;i<6;i++)x0dx0a {x0dx0a char_point=i;x0dx0a char_point++;x0dx0a}x0dx0a注:x0dx0a 指针可以进行运算,它可以与整数进行加减运算(移动指针)。但要注意,移动指针后,其地址的增减量是随指针类型而异的,如,浮点指针进行自增后,其内部将在原有的基础上加4,而字符指针当进生自增的时候,其内容将加1。原因是浮点数,占4个内存单元,而字符占一个字节。x0dx0ax0dx0a宏晶科技最新一代STC12C5A360S2系列,每一个单片机出厂时都有全球唯一身份证号码(ID号),用户可以在单片机上电后读取内部RAM单元F1H~F7H的数值,来获取此单片机的唯一身份证号码。使用MOV @Ri 指令来读取。下面介绍C51 获取方法:x0dx0a char id[7]={0};x0dx0a char i;x0dx0a char idata *point;x0dx0a for(i=0;i<7;i++)x0dx0a {x0dx0a id[i]=*point;x0dx0a point++;x0dx0a}x0dx0a x0dx0a(此处只是对指针做一个小的介绍,达到访问内部任何空间的方式,后述有对指针使用的详细介绍)x0dx0a2对SFR,RAM ,ROM的直接存取x0dx0aC51提供了一组可以直接对其操作的扩展函数x0dx0a若源程序中,用#include包含头文件,io51.h 后,就可以在扩展函数中使用特殊功能寄存器的地址名,以增强程序的可读性:x0dx0ax0dx0a 注 此方法对SFR,RAM,ROM的直接存取不建议使用.因为,淡io51.h这个头文件在KEIL中无法打开,可用指针,或是采用absacc.h头文件,

⑥ “Keil C51”下如何让编译器优先使用片内“RAM”

C51内存结构深度剖析
在编写应用程序时,定义一个变量,一个数组,或是说一个固定表格,到底存储在什么地方;当定义变量大小超过MCU的内存范围时怎么办;如何控制变量定义不超过存储范围;以及如何定义变量才能使得变量访问速度最快,写出的程序运行效率最高。以下将一一解答。

1 六类关键字(六类存储类型)
data idata xdata pdata code bdata

code: code memory (程序存储器也即只读存储器)用来保存常量或是程序。code memory 采用16位地址线编码,可以是在片内,或是片外,大小被限制在64KB
作用:定义常量,如八段数码表或是编程使用的常,在定义时加上code 或明确指明定义的常量保存到code memory(只读)
使用方法:
char code table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};
此关键字的使用方法等同于const

data data memory (数据存储区)只能用于声明变量,不能用来声明函数,该区域位于片内,采用8位地址线编码,具有最快的存储速度,但是数量被限制在128byte或更少。
使用方法:
unsigned char data fast_variable=0;

idata idata memory(数据存储区)只能用于声明变量,不能用来声明函数. 该区域位于片内,采用8位地址线编码,内存大小被限制在256byte或更少。该区域的低地址区与data memory地址一致;高地址区域是52系列在51系列基础上扩展的并与特殊功能寄存器具有相同地址编码的区域。即:data memory是idata memory的一个子集。

xdata xdata memory 只能用于声明变量,不能用来声明函数,该区域位于MCU
外部,采用16位地址线进行编码,存储大小被限制在64KB以内。
使用方法:
unsigned char xdata count=0;

pdata pdata memory 只能用于声明变量,不能用来声明函数,该区域位于MCU外部,采用8位地址线进行编码。存储大小限制在256byte. 是xdata memory的低256byte。为其子集。
使用方法
unsigned char pdata count=0;

bdata bdata memory 只能用于声明变量,不能用来声明函数。该区域位于8051内部位数据地址。定义的量保存在内部位地址空间,可用位指令直接读写。
使用方法:
unsigned char bdata varab=0

注:有些资料讲,定义字符型变量时,在缺省unsigned 时,字符型变量,默认为无符号,与标准C不同,但我在Keil uVision3中测试的时候发现并非如此。在缺省的情况下默认为有符号。或许在以前的编译器是默认为无符号。所以看到有的资料上面这样讲的时候,要注意一下,不同的编译器或许不同。所以我们在写程序的时候,还是乖乖的把unsigned signed 加上,咱也别偷这个懒。
2函数的参数和局部变量的存储模式
C51 编译器允许采用三种存储器模式:SMALL,COMPACT 和LARGE。一个函数的存储器模式确定了函数的参数的局部变量在内存中的地址空间。处于SMALL模式下的函数参数和局部变量位于8051单片机内部RAM中,处于COMPACT和LARGE模式下的函数参数和局部变量则使用单片机外部RAM。在定义一个函数时可以明确指定该函数的存储器模式。方法是在形参表列的后面加上一存储模式。

示例如下:
#pragma large //此预编译必须放在所有头文前面
int func0(char x,y) small;
char func1(int x) large;
int func2(char x);
注:
上面例子在第一行用了一个预编译命令#pragma 它的意思是告诉c51编译器在对程序进行编译时,按该预编译命令后面给出的编译控制指令LARGE进行编译,即本例程序编译时的默认存储模式为LARGE.随后定义了三个函数,第一个定义为SMALL存储模式,第二个函数定义为LARGE第三个函数未指定,在用C51进行编译时,只有最后一个函数按LARGE存储器模式处理,其它则分别按它们各自指定的存储器模式处理。
本例说明,C51编译器允许采用所谓的存储器混合模式,即允许在一个程序中将一些函数使用一种存储模式,而其它一些则按另一种存储器模式,采用存储器混合模式编程,可以充分利用8051系列单片机中有限的存储器空间,同时还可以加快程序的执行速度。

3绝对地址访问 absacc.h(相当重要)

#define CBYTE ((unsigned char volatile code *) 0)
#define DBYTE ((unsigned char volatile data *) 0)
#define PBYTE ((unsigned char volatile pdata *) 0)
#define XBYTE ((unsigned char volatile xdata *) 0)
功能:CBYTE 寻址 CODE区
DBYTE 寻址 DATA区
PBYTE 寻址 XDATA(低256)区
XBYTE 寻址 XDATA区
例: 如下指令在对外部存储器区域访问地址0x1000
xvar=XBYTE[0x1000];
XBYTE[0x1000]=20;

#define CWORD ((unsigned int volatile code *) 0)
#define DWORD ((unsigned int volatile data *) 0)
#define PWORD ((unsigned int volatile pdata *) 0)
#define XWORD ((unsigned int volatile xdata *) 0)

功能:与前面的一个宏相似,只是它们指定的数据类型为unsigned int .。
通过灵活运用不同的数据类型,所有的8051地址空间都是可以进行访问。

DWORD[0x0004]=0x12F8;
即内部数据存储器中(0x08)=0x12; (0x09)=0xF8

注:用以上八个函数,可以完成对单片机内部任意ROM和RAM进行访问,非常方便。还有一种方法,那就是用指钟,后面会对C51的指针有详细的介绍。

4寄存器变量(register)
为了提高程序的执行效率,C语言允许将一些频率最高的那些变量,定义为能够直接使用硬件寄存器的所谓的寄存器变量。定义一个变量时,在变量类型名前冠以“register” 即将该变量定义成为了寄存器变量。寄存器变量可以认为是一自动变量的一种。有效作用范围也自动变量相同。由于计算机寄存器中寄存器是有限的。不能将所有变量都定义成为寄存器变量,通常在程序中定义寄存器变量时,只是给编译器一个建议,该变量是否真正成为寄存器变量,要由编译器根据实际情况来确定。另一方面,C51编译器能够识别程序中使用频率最高的变量,在可能的情况下,即使程序中并未将该变量定义为寄存器变量,编译器也会自动将其作为寄存器变量处理。被定义的变量是否真正能成为寄存器变量,最终是由编译器决定的。

5内存访问杂谈
1指钟
指钟本身是一个变量,其中存放的内容是变量的地址,也即特定的数据。8051的地址是16位的,所以指针变量本身占用两个存储单元。指针的说明与变量的说明类似,仅在指针名前加上“*”即可。
如 int *int_point; 声明一个整型指针
char *char_point; 声明一个字符型指针
利用指针可以间接存取变量。实现这一点要用到两个特殊运算符
& 取变量地址
* 取指针指向单元的数据

示例一:
int a,b;
int *int_point; //定义一个指向整型变量的指针
a=15;
int_point=&a; //int_point指向 a
*int_point=5; //给int_point指向的变量a 赋值5 等同于a=5;
示例二:
char i,table[6],*char_point;
char_point=table;
for(i=0;i<6;i++)
{
char_point=i;
char_point++;
}
注:
指针可以进行运算,它可以与整数进行加减运算(移动指针)。但要注意,移动指针后,其地址的增减量是随指针类型而异的,如,浮点指针进行自增后,其内部将在原有的基础上加4,而字符指针当进生自增的时候,其内容将加1。原因是浮点数,占4个内存单元,而字符占一个字节。

宏晶科技最新一代STC12C5A360S2系列,每一个单片机出厂时都有全球唯一身份证号码(ID号),用户可以在单片机上电后读取内部RAM单元F1H~F7H的数值,来获取此单片机的唯一身份证号码。使用MOV @Ri 指令来读取。下面介绍C51 获取方法:
char id[7]={0};
char i;
char idata *point;
for(i=0;i<7;i++)
{
id[i]=*point;
point++;
}

(此处只是对指针做一个小的介绍,达到访问内部任何空间的方式,后述有对指针使用的详细介绍)
2对SFR,RAM ,ROM的直接存取
C51提供了一组可以直接对其操作的扩展函数
若源程序中,用#include包含头文件,io51.h 后,就可以在扩展函数中使用特殊功能寄存器的地址名,以增强程序的可读性:

注 此方法对SFR,RAM,ROM的直接存取不建议使用.因为,淡io51.h这个头文件在KEIL中无法打开,可用指针,或是采用absacc.h头文件,

⑦ 适合win10系统的c语言编译器

桌面操作系统

对于当前主流桌面操作系统而言,可使用 VisualC++、GCC以及 LLVM Clang 这三大编译器。

Visual C++(简称 MSVC)只能用于 Windows 操作系统;GCC 和 LLVM Clang除了可用于Windows操作系统之外,主要用于 Unix/Linux操作系统。

像现在很多版本的 Linux 都默认使用 GCC 作为C语言编译器,而像 FreeBSD、macOS 等系统默认使用 LLVM Clang 编译器。由于当前 LLVM 项目主要在 Apple 的主推下发展的,所以在 macOS中,Clang 编译器又被称为 Apple LLVM 编译器。

MSVC 编译器主要用于 Windows 操作系统平台下的应用程序开发,它不开源。用户可以使用 Visual Studio Community 版本来免费使用它,但是如果要把通过 Visual Studio Community 工具生成出来的应用进行商用,那么就得好好阅读一下微软的许可证和说明书了。

而使用 GCC 与 Clang 编译器构建出来的应用一般没有任何限制,程序员可以将应用程序随意发布和进行商用。

MSVC 编译器对 C99 标准的支持就十分有限,加之它压根不支持任何 C11 标准,所以本教程中设计 C11 的代码例子不会针对 MSVC 进行描述。所幸的是,Visual Studio Community 2017 加入了对 Clang 编译器的支持,官方称之为——Clang with Microsoft CodeGen,当前版本基于的是 Clang 3.8。

也就是说,应用于 Visual Studio 集成开发环境中的 Clang 编译器前端可支持 Clang 编译器的所有语法特性,而后端生成的代码则与 MSVC 效果一样,包括像 long 整数类型在 64 位编译模式下长度仍然为 4 个字节,所以各位使用的时候也需要注意。

为了方便描述,本教程后面涉及 Visual Studio 集成开发环境下的 Clang 编译器简称为 VS-Clang 编译器。

嵌入式系统

而在嵌入式系统方面,可用的C语言编译器就非常丰富了,比如:

⑧ MCU的编译器有哪些

编译器与芯片要对应,不存在各芯片通用的编译器。

51,IDE是keil或tkstudio,编译器都是keil内置的
pic,IDE是mplab,编译器是picc
avr,不了解
freescale,IDE用codewarrior,不同系列版本不同,编译器内置
ARM,IDE是ADS(codewarrior改的),编译器内置
等等

阅读全文

与mcu编译器相关的资料

热点内容
算法设计与分析英文版 浏览:910
java程序员加班吗 浏览:141
编译检查的是什么错误 浏览:405
加密兔f码生成器免费 浏览:292
思科路由器命令明文加密 浏览:171
方舟生存进化服务器如何改名字 浏览:892
央行数字货币app怎么注册 浏览:431
51单片机显示时间 浏览:770
我的世界网易版怎么压缩地图 浏览:682
qq小程序云服务器和 浏览:740
方舟服务器怎么玩才好玩 浏览:557
单片机的部件 浏览:621
编译原理遍的过程 浏览:252
python读取json字符串 浏览:62
ubuntu1404安装php 浏览:634
lua能编译吗 浏览:118
思仙怎么看服务器 浏览:660
php微信图片防盗链 浏览:800
安卓1怎么读音 浏览:297
农业app怎么开通快捷支付 浏览:913