导航:首页 > 源码编译 > 某规模为n的问题求解算法

某规模为n的问题求解算法

发布时间:2023-02-16 18:18:20

1. 分治算法是什么呢

分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解。即一种分目标完成程序算法,简单问题可用二分法完成。

解题步骤

分治法解题的一般步骤:

(1)分解,将要解决的问题划分成若干规模较小的同类问题;

(2)求解,当子问题划分得足够小时,用较简单的方法解决;

(3)合并,按原问题的要求,将子问题的解逐层合并构成原问题的解。

2. 时间复杂度怎么算

问题一:请问算法的时间复杂度是怎么计算出来的? 首先假设任意一个简单运算的时间都是1,例如a=1;a++;a=a*b;这些运算的时间都是1.
那么例如
for(int i=0;i 问题二:数据结构中的时间复杂度怎么算啊?看不懂啊,有没有具体的公式 求时间复杂度,其实是在统计基本操作步骤的执行次数。
“基本操作步骤”指的是加减乘除这种。比如有一个for循环,执行N次,每次做一个加法一个乘法,那么总的操作步骤数就是2N,用大O记号就是O(N).
原理就是这么简单,计数而已。
实际做题的时候,看清楚for循环的嵌套层数,就差不离。

问题三:如何计算算法的时间复杂度 求解算法的时间复杂度的具体步骤是:⑴找出算法中的基本语句;算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。⑵计算基本语句的执行次数的数量级;只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。⑶用大Ο记号表示算法的时间性能。将基本语句执行次数的数量级放入大Ο记号中。如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:for(i=1;i 问题四:如何计算时间复杂度 如何计算时间复杂度
定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。
当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。
我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。
此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。
“大 O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。
这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。
O(1)
Temp=i;i=j;j=temp;
以 上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时 间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。
O(n^2)
2.1. 交换i和j的内容
sum=0; (一次)
for(i=1;i>

问题五:时间复杂度如何计算 10分 给我十分,我告诉你答案

问题六:C语言算法的时间复杂度如何计算啊? 看看这个 每个循环都和上一层循环的参数有关。 所以要用地推公式: 设i(n)表示第一层循环的i为n时的循环次数,注意到他的下一层循环次数刚好就是n,分别是0,1,2...n-1 所以,把每一层循环设一个函数分别为:j(n),k(n),t(n) 则有 i(n)=j(0)+...+j(n-1) j(n)=k(0)+...+k(n-1) k(n)=t(0)+...+t(n-1) i(0)=j(0)=k(0)=0 t(n)=1 而总循环数是i(0)+i(1)...+i(n-1) 可以根据递推条件得出准确值 所以算法复杂度是O(i(0)+i(1)...+i(n-1))
记得采纳啊

问题七:程序中的时间复杂度是怎么计算的? 算法复杂度的介绍,见网络:
ke./view/7527
时间复杂度
时间频度
一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
计算方法
1. 一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))
分析:随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。
2. 在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))
例:算法:
for(i=1;i>

问题八:人脸识别的计算时间复杂度怎么算 递归算法的时间复杂度分析 收藏 在算法分析中,当一个算法中包含递归调用时,其时间复杂度的分析会转化为一个递归方程求解。实际上,这个问题是数学上求解渐近阶的问题,而递归方程的形式多种多样,其求解方法也是不一而足,比较常用的有以下四种方法: (1)代入法(Substitution Method) 代入法的基本步骤是先推测递归方程的显式解,然后用数学归纳法来验证该解是否合理。 (2)迭代法(Iteration Method) 迭代法的基本步骤是迭代地展开递归方程的右端,使之成为一个非递归的和式,然后通过对和式的估计来达到对方程左端即方程的解的估计。 (3)套用公式法(Master Method) 这个方法针对形如“T(n) = aT(n/b) + f(n)”的递归方程。这种递归方程是分治法的时间复杂性所满足的递归关系,即一个规模为n的问题被分成规模均为n/b的a个子问题,递归地求解这a个子问题,然后通过对这a个子间题的解的综合,得到原问题的解。 (4)差分方程法(Difference Formula Method) 可以将某些递归方程看成差分方程,通过解差分方程的方法来解递归方程,然后对解作出渐近阶估计。 下面就以上方法给出一些例子说明。 一、代入法 大整数乘法计算时间的递归方程为:T(n) = 4T(n/2) + O(n),其中T(1) = O(1),我们猜测一个解T(n) = O(n2 ),根据符号O的定义,对n>n0,有T(n) >

问题九:如何计算算法的时间复杂度和空间复杂度 是说明一个程序根据其数据n的规模大小 所使用的大致时间和空间
说白了 就是表示 如果随着n的增长 时间或空间会以什么样的方式进行增长

for(int i = 0; i

3. 计算机算法中的递归法与选择排序法是什么请细讲

递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。
能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。

递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n-2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib(1)和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。
在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。
在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。
由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。

选择排序法 是对 定位比较交换法 的一种改进。在讲选择排序法之前我们先来了解一下定位比较交换法。为了便于理解,设有10个数分别存在数组元素a[0]~a[9]中。定位比较交换法是由大到小依次定位a[0]~a[9]中恰当的值(和武林大会中的比武差不多),a[9]中放的自然是最小的数。如定位a[0],先假定a[0]中当前值是最大数,a[0]与后面的元素一一比较,如果a[4]更大,则将a[0]、a[4]交换,a[0]已更新再与后面的a[5]~a[9]比较,如果a[8]还要大,则将a[0]、a[8]交换,a[0]又是新数,再与a[9]比较。一轮比完以后,a[0]就是最大的数了,本次比武的武状元诞生了,接下来从a[1]开始,因为状元要休息了,再来一轮a[1]就是次大的数,也就是榜眼,然后从a[2]开始,比出探花,真成比武大会了,当必到a[8]以后,排序就完成了。
下面给大家一个例子:
mai()
{
int a[10];
int i,j,t;
for ( i = 0; i < 10; i ++ ) scanf("%d",&a[ i ]); /*输入10个数,比武报名,报名费用10000¥ ^_^*/
for ( i = 0; i < 9; i ++ )
for ( j = i + 1; j < 10; j ++)
if ( a[ i ] < a[ j ] ) { t = a[ i ]; a[ i ] = a[ j ]; a[ j ] = t; } /*打不过就要让出头把交椅,不过a[ i ]比较爱面子,不好意思见 a[ j ],让t帮忙*/
for( i = 0; i < 10; i ++) printf("%4d",a[ i ]); /*显示排序后的结果*/
}
好啦,罗嗦了半天总算把定位比较排序法讲完了,这个方法不错,容易理解,就是有点麻烦,一把椅子换来换去,哎~
所以就有了下面的选择排序法,开始的时候椅子谁也不给,放在一边让大家看着,找个人k记录比赛结果,然后发椅子。具体来讲呢就是,改进定位比较排序法,但是这个改进只是一部分,比较的次数没变,该怎么打还是怎么打,就是不用换椅子了。每次外循环先将定位元素的小标i值记录到K,认为a[k]是最大元素其实i=k还是a[ i ]最大,a[k]与后面的元素一一比较,该交换的也是也不换,就是把K的值改变一下就完了,最后在把a[k]与a[ i ]交换,这样a就是最大的元素了。然后进入下一轮的比较。选择排序法与定位比较排序法相比较,比的次数没变,交换的次数减少了。
下面也写个例子:
main()
{
int a[10];
int i,j,t,k;
for ( i = 0; i < 10; i ++ ) scanf("%d",&a[ i ]); /*输入10个数,比武报名,报名费用10000¥ ^_^*/
for ( i = 0; i < 9; i ++ )
{ k = i; /*裁判AND记者实时追踪报道比赛情况*/
for ( j = i + 1; j < 10; j ++)
if ( a[ k ] < a[ j ] ) k = j;
t = a[ i ]; a[ i ] = a[ k ]; a[ k ] = t; /* t 发放奖品*/
}
for( i = 0; i < 10; i ++) printf("%4d",a[ i ]); /*显示排序后的结果*/
}

阅读全文

与某规模为n的问题求解算法相关的资料

热点内容
文件夹压缩过程中点击取消压缩 浏览:215
顺丰app专享优惠券怎么用 浏览:667
酷狗音乐分享文件夹 浏览:826
服务器mgmt旁边的接口是什么 浏览:844
单片机发光二极管原理图 浏览:50
在北京当程序员6年 浏览:128
编译器gcc如何用 浏览:412
androidbringup 浏览:977
算法设计与分析英文版 浏览:911
java程序员加班吗 浏览:142
编译检查的是什么错误 浏览:405
加密兔f码生成器免费 浏览:292
思科路由器命令明文加密 浏览:171
方舟生存进化服务器如何改名字 浏览:892
央行数字货币app怎么注册 浏览:431
51单片机显示时间 浏览:770
我的世界网易版怎么压缩地图 浏览:682
qq小程序云服务器和 浏览:740
方舟服务器怎么玩才好玩 浏览:561
单片机的部件 浏览:623