① 算法该怎么学感觉好难
很多人都会说"学一样东西难",一开始我也觉得很大程度是因为每个人的智力水平等等不可改变的因素. 但是后来我发现,有一个东西也很能决定一个人是否会觉得一样东西难学,那就是理解方式.
一件事物通过不同的途径让一个人理解效果差异是很大的.就比如说数学里面教你一个圆,有的人看到一个圆就能很快明白什么是圆,有的人却非得看到x^2+y^2 = r^2这种式子才有感觉,甚至有的人需要"到定点距离为定长的点集"这种描述才能理解. 那这个不一定是说谁的智力水平更高,而是因为他们对不同形式事物的敏感程度不同.
回到算法上来.算法本质是一种数学.他是抽象的操作集合.(看这么说你可能会觉得不知所云,但是如果我说他只是一种解决问题的办法可能就好理解). 所以很多书,论文,或者很多老师教的都是一种数学描述的算法,这样子的算法就我个人而言相当难理解,看了就想到代数高数什么的.. 但是如果找一个图文并茂的解释,或者找个人一步一步把一个算法给你我比划一下,我立刻就能理解. 说白了,就是你一定要找很多很多不同的角度来尝试接受一种东西,你一定可以找到一种你相当敏感的角度,用这个角度学习你就会游刃有余. 智力因素并没有太大影响的.
具体点说,你可以试试这几种不同的角度.
直接看数学形式的算法.我个人最无法接受的形式,但是有人很喜欢..例子就是算法导论上面那种描述.
听一般语言描述,最理想是找一个明白的人,给你用通俗语言讲讲原理.这个不错,很多我是这么理解的
图形理解,叫理解的人给你画插图,分布图,结构图等等,来分解一个算法,找到他的思路.说到图,有一个人的博客这方面做得很好:matrix67.
程序理解.找到一种算法的实现程序,对着程序理解,可以尝试分布运行,观察一下变量的变化,这样来理解算法.
实在太难的算法,可以边写边改来理解.当时我学习插头dp的时候就是这样,不论怎么总是一知半解,最后硬着头皮写了一遍,改了很久,但是改过了的时候,也就真的明白了是怎么回事了.
也许还有别的什么办法,因为人对事物的接受角度实在是太多了.多想想你平时学习什么比较容易,找出你最敏感的理解方式就行了.
有感而发说的一些东西,不一定都是正确的,只供参考,欢迎指正.
② 学习算法导论需要什么数学基础或者其他的基础吗
算法导论的数学基础要求不是很高 确切的说老外的书 对于数学的要求都不是很高 但 人家要的是研究的态度 线代 高数 还有一点点的离散数学基础就可以了
③ 初学者如何学算法
先看看两本书,一本数据结构,一本离散数学。。。看完以后你就会。。。。
④ 做为一个初学者,如何才能学好算法呢,感觉自己很菜
凡事都讲究动机,你学习算法的目的是什么呢?目的不同,学法不同侧重不同。
如果你是准备跳槽,以面试为目的,可以先从cracking the coding interview入手,题目是按照链表,树图,递归这种章节安排的,每章都有题目,难度适中,第一遍自己写不出来很正常,画图分析,然后再做第二遍,第二遍就快很多,理解也深刻了,实在理解不了的算法,没办法,背吧,说不定到后面不知什么时候就理解了,所谓读书百遍,其意自现,算法也一样。
如果你是半路出家的程序员,看书觉得看不下去,可以试着看看视频,现在网络这么发达,网上有很多免费的精品视频,比如潭州教育老师的数据结构以及清华邓俊辉老师的数据结构都是特别好的课程。
最后一种就是你对算法理论和精髓确实感兴趣,且有一定的数学功底,你可以尝试研究下《算法导论》,甚至《计算机程序设计艺术》(反正我是看不下去)。
其实,无论出于哪种目学习算法,其实最重要的一点就是:多编程实践,多思考,这是废话,但这也是真理。
⑤ 算法怎么学
贪心算法的定义:
贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,只做出在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。
解题的一般步骤是:
1.建立数学模型来描述问题;
2.把求解的问题分成若干个子问题;
3.对每一子问题求解,得到子问题的局部最优解;
4.把子问题的局部最优解合成原来问题的一个解。
如果大家比较了解动态规划,就会发现它们之间的相似之处。最优解问题大部分都可以拆分成一个个的子问题,把解空间的遍历视作对子问题树的遍历,则以某种形式对树整个的遍历一遍就可以求出最优解,大部分情况下这是不可行的。贪心算法和动态规划本质上是对子问题树的一种修剪,两种算法要求问题都具有的一个性质就是子问题最优性(组成最优解的每一个子问题的解,对于这个子问题本身肯定也是最优的)。动态规划方法代表了这一类问题的一般解法,我们自底向上构造子问题的解,对每一个子树的根,求出下面每一个叶子的值,并且以其中的最优值作为自身的值,其它的值舍弃。而贪心算法是动态规划方法的一个特例,可以证明每一个子树的根的值不取决于下面叶子的值,而只取决于当前问题的状况。换句话说,不需要知道一个节点所有子树的情况,就可以求出这个节点的值。由于贪心算法的这个特性,它对解空间树的遍历不需要自底向上,而只需要自根开始,选择最优的路,一直走到底就可以了。
话不多说,我们来看几个具体的例子慢慢理解它:
1.活动选择问题
这是《算法导论》上的例子,也是一个非常经典的问题。有n个需要在同一天使用同一个教室的活动a1,a2,…,an,教室同一时刻只能由一个活动使用。每个活动ai都有一个开始时间si和结束时间fi 。一旦被选择后,活动ai就占据半开时间区间[si,fi)。如果[si,fi]和[sj,fj]互不重叠,ai和aj两个活动就可以被安排在这一天。该问题就是要安排这些活动使得尽量多的活动能不冲突的举行。例如下图所示的活动集合S,其中各项活动按照结束时间单调递增排序。

关于贪心算法的基础知识就简要介绍到这里,希望能作为大家继续深入学习的基础。
⑥ 《算法导论》有什么好的学习心得
《算法导论》自第一版出版以来,已经成为世界范围内广泛使用的大学教材和专业人员的标准参考手册。本书全面论述了算法的内容,从一定深度上涵盖了算法的诸多方面,同时其讲授和分析方法又兼顾了各个层次读者的接受能力。各章内容自成体系,可作为独立单元学习。所有算法都用英文和伪码描述,使具备初步编程经验的人也可读懂。全书讲解通俗易懂,且不失深度和数学上的严谨性。第二版增加了新的章节,如算法作用、概率分析与随机算法、线性编程等,几乎对第一版的各个部分都作了大量修订。
本书深入浅出,全面地介绍了计算机算法。对每一个算法的分析既易于理解又十分有趣,并保持了数学严谨性。本书的设计目标全面,适用于多种用途。涵盖的内容有:算法在计算中的作用,概率分析和随机算法的介绍。本书专门讨论了线性规划,介绍了动态规划的两个应用,随机化和线性规划技术的近似算法等,还有有关递归求解、快速排序中用到的划分方法与期望线性时间顺序统计算法,以及对贪心算法元素的讨论。本书还介绍了对强连通子图算法正确性的证明,对哈密顿回路和子集求和问题的NP完全性的证明等内容。全书提供了900多个练习题和思考题以及叙述较为详细的实例研究。
本书内容丰富,对本科生的数据结构课程和研究生的算法课程都是很实用的教材。本书在读者的职业生涯中,也是一本案头的数学参考书或工程实践手册。
⑦ 读《算法导论》需要哪些比较基础的知识这么厚一本书该如何去读和学习请前辈们指教
你知道C语言要扎实可以看到那些伪代码,还有就是数学功底要好就行了
⑧ 《算法导论》有什么好的学习心得
本人没有读过这本书,文化水平不够,就算读了估计也是不知所云,这个应该是比较专业的人看的吧,那我只能从网上摘录些供大家分享。

推荐每学一个算法,就去各个OJ(Online Judge)找一些相关题目做做,有时理论让人很无语,分析代码也是一个不错的选择。
⑨ 算法导论是讲c的算法还是整个算法。适合什么时候看。我现在入门c语言。以后该怎么个学习法。
讲的当然是算法的经典理论知识和方法,这些理论和方法用在其他编程语言仍然是通用的。当然书中可能会用c语言写的代码作为例子来讲解。
学习一门编程语言和学习算法是密不可分的,系统的算法知识有助于编程语言的灵活运用,而一定的编程语言基础又有助于更好地理解算法的精髓。
如果你在学习C语言之前,有一定的编程基础,那么建议现在就开始学习算法导论,这样有助于你C语言的学习。
如果你无任何编程基础,还是建议先从学习C语言开始,等有了一定的编程基础之后再去学习算法导论,才能让你的编程能力更上一层楼。
⑩ 我是学生,高中,现在想学计算机,自学,那么《算法导论》适合零基础的吗,高数啥的什么都不会,学的好吗
《算法导论》不适合零基础。可以先学习《计算机基础》,然后再学习C语言或Java语言基础,再学习《数据结构》。