1. 两道编程算法题(两图一道),题目如下,可以给出算法思路或者源代码,源代码最好是C语言的
就会个第一题(因为第一题上已经给出了大致思路)
思路:用map容器(它的内部数据结构是一颗红黑树,查找和插入数据速度非常快)
map<int,st>a;//key(int):设置为1~n的数;value(st):设置为key的前驱和后继;
这样一来就可以像链表快速插入数据,又可以像数组随机访问元素(key,就相当于数组的下标)
下面是代码和运行截图;
看代码前建议先了解一下map容器的具体用法;
#include<iostream>
#include<map>
#include<vector>
using namespace std;
struct st{//两个成员变量用来储存前驱和后继
int left;//0
int right;//1
st()
{
left=0;
right=0;
}
};
void input(map<int,st> &a)//输出
{
st t;
int s=0;
map<int,st>::iterator it;//迭代器(指针)
for(it=a.begin();it!=a.end();it++)//循环迭代
{
t=it->second;
if(t.left==0)//左边等于0,说明该数是第一个数
{
s=it->first;//记录key
break;
}
}
t=a[s];
cout<<s<<" ";
while(t.right!=0)//循环找当前数的右边的数(右边的为0,就说明该数是最后一个数)
{
cout<<t.right<<" ";
t=a[t.right];
}
}
int main()
{
st t,t_i,t_x,t_k,s;
map<int,st>a;
map<int,st>::iterator it;
int n,x,p,x_l,x_r;
cin>>n;
for(int i=1;i<=n;i++)//map容器赋初值(i,t)
//i:(key)下标;t:(value)结构体变量
{
a.insert(make_pair(i,t));
}
for(int i=2;i<=n;i++)
{
cin>>x>>p;
if(p==0)//x的左边插入i
{
t=a[x];
if(t.left==0)//x的左边没有数
{
t_x.left=i;
t_i.right=x;
a[x]=t_x;
a[i]=t_i;
}
else//x的左边有数
{
int x_left;
t_x=a[x];
x_left=t_x.left;
t_k=a[x_left];
t_i.right=x;
t_i.left=t_x.left;
t_k.right=i;
t_x.left=i;
a[x]=t_x;
a[i]=t_i;
a[x_left]=t_k;
}
}
else//x的右边插入i
{
t=a[x];
if(t.right==0)//x的右边没有数
{
t_x.right=i;
t_i.left=x;
a[x]=t_x;
a[i]=t_i;
}
else//x的左边有数
{
int x_right;
t_x=a[x];
x_right=t_x.right;
t_k=a[x_right];
t_i.left=x;
t_i.right=t_x.right;
t_k.left=i;
t_x.right=i;
a[x]=t_x;
a[i]=t_i;
a[x_right]=t_k;
}
}
}
for(it=a.begin();it!=a.end();it++)//循环迭代打印各个数之间的关系
{
cout<<it->first<<" ";
cout<<"左边:";
cout<<it->second.left<<" ";
cout<<"右边:";
cout<<it->second.right<<endl;
}
input(a);//打印序列
return 0;
}
/*
4
1 0
2 1
1 0
2 3 4 1
*/
2. 请大家使用C语言完成电话号码查询系统。 设有一个电话号码薄,它
有虚的,原来的宪法的电话号码的查询的系统有设置一个电话号码和QQ号码不就可以完成了
3. C# 实现的手机打电话 源码
这个要跟网络服务商 联通 等等 以及 手机服务商沟通 。。 因为打电话是要收费的 。。 不是免费就能打电话的 !! 当然有专门做这样的软件的公司 。。
4. 求一个Camellia算法的VB源码
c++算法
#
include "pch.h"
#ifdef WORD64_AVAILABLE
#include "camellia.h"
#include "misc.h"
NAMESPACE_BEGIN(CryptoPP)
// Define internal Camellia function macros
inline word64 Camellia::Base::F(word64 X)
{
word32 t1 = (word32)(X >> 32);
word32 t2 = (word32)(X & 0xFFFFFFFFL);
t2= (s2[GETBYTE(t2, 3)] << 24) |
(s3[GETBYTE(t2, 2)] << 16) |
(s4[GETBYTE(t2, 1)] << 8) |
(s1[GETBYTE(t2, 0)]);
t1= (s1[GETBYTE(t1, 3)] << 24) |
(s2[GETBYTE(t1, 2)] << 16) |
(s3[GETBYTE(t1, 1)] << 8) |
(s4[GETBYTE(t1, 0)]);
t1 ^= rotlFixed(t2, 8);
t2 ^= rotlFixed(t1, 16);
t1 ^= rotlFixed(t2, 24);
t2 ^= rotlFixed(t1, 24);
return ((word64)t2 << 32) | (word64)t1;
}
#define ROUND2(Xp, K1, K2) \
{ (Xp)[1] ^= F((Xp)[0] ^ K1); (Xp)[0] ^= F((Xp)[1] ^ K2); }
inline void Camellia::Base::FLlayer(word64 *x, word64 K1, word64 K2)
{
word32 Xl = (word32)(x[0] >> 32);
word32 Xr = (word32)(x[0] & 0xFFFFFFFFL);
Xr ^= rotlFixed(Xl & (word32)(K1 >> 32), 1);
Xl ^= (Xr | (word32)(K1 & 0xFFFFFFFFL));
x[0] = ((word64)Xl << 32) | (word64)Xr;
Xl = (word32)(x[1] >> 32);
Xr = (word32)(x[1] & 0xFFFFFFFFL);
Xl ^= (Xr | (word32)(K2 & 0xFFFFFFFFL));
Xr ^= rotlFixed(Xl & (word32)(K2 >> 32), 1);
x[1] = ((word64)Xl << 32) | (word64)Xr;
}
inline void rotl128(word64 *x, unsigned int bits)
{
word64 temp = x[0] >> (64 - bits);
x[0] = (x[0] << bits) | (x[1] >> (64 - bits));
x[1] = (x[1] << bits) | temp;
}
void Camellia::Base::UncheckedSetKey(CipherDir dir, const byte *key, unsigned int keylen)
{
AssertValidKeyLength(keylen);
m_rounds = (keylen >= 24) ? 4 : 3;
unsigned int kslen = (8 * m_rounds + 2);
m_key.New(8 * kslen);
word64 *ks = m_key;
FixedSizeSecBlock<word64, 32> keyword;
word64 *kw = keyword;
#define KL (kw+0)
#define KR (kw+2)
#define KA (kw+4)
#define KB (kw+6)
if (keylen == 16)
{
GetUserKey(BIG_ENDIAN_ORDER, kw, 2, key, keylen);
KA[0] = KL[0];
KA[1] = KL[1];
}
else
{
if (keylen == 24)
{
GetUserKey(BIG_ENDIAN_ORDER, kw, 3, key, keylen);
KR[1] = ~KR[0];
}
else
{
GetUserKey(BIG_ENDIAN_ORDER, kw, 4, key, keylen);
}
KA[0] = KL[0] ^ KR[0];
KA[1] = KL[1] ^ KR[1];
}
ROUND2(KA, W64LIT(0xA09E667F3BCC908B), W64LIT(0xB67AE8584CAA73B2));
KA[0] ^= KL[0];
KA[1] ^= KL[1];
ROUND2(KA, W64LIT(0xC6EF372FE94F82BE), W64LIT(0x54FF53A5F1D36F1C));
if (keylen == 16)
{
ks[0] = KL[0]; ks[1] = KL[1];
rotl128(KL, 15);
ks[4] = KL[0]; ks[5] = KL[1];
rotl128(KL, 30);
ks[10] = KL[0]; ks[11] = KL[1];
rotl128(KL, 15);
ks[13] = KL[1];
rotl128(KL, 17);
ks[16] = KL[0]; ks[17] = KL[1];
rotl128(KL, 17);
ks[18] = KL[0]; ks[19] = KL[1];
rotl128(KL, 17);
ks[22] = KL[0]; ks[23] = KL[1];
ks[2] = KA[0]; ks[3] = KA[1];
rotl128(KA, 15);
ks[6] = KA[0]; ks[7] = KA[1];
rotl128(KA, 15);
ks[8] = KA[0]; ks[9] = KA[1];
rotl128(KA, 15);
ks[12] = KA[0];
rotl128(KA, 15);
ks[14] = KA[0]; ks[15] = KA[1];
rotl128(KA, 34);
ks[20] = KA[0]; ks[21] = KA[1];
rotl128(KA, 17);
ks[24] = KA[0]; ks[25] = KA[1];
}
else
{
KB[0] = KA[0] ^ KR[0];
KB[1] = KA[1] ^ KR[1];
ROUND2(KB, W64LIT(0x10E527FADE682D1D), W64LIT(0xB05688C2B3E6C1FD));
ks[0] = KL[0]; ks[1] = KL[1];
rotl128(KL, 45);
ks[12] = KL[0]; ks[13] = KL[1];
rotl128(KL, 15);
ks[16] = KL[0]; ks[17] = KL[1];
rotl128(KL, 17);
ks[22] = KL[0]; ks[23] = KL[1];
rotl128(KL, 34);
ks[30] = KL[0]; ks[31] = KL[1];
rotl128(KR, 15);
ks[4] = KR[0]; ks[5] = KR[1];
rotl128(KR, 15);
ks[8] = KR[0]; ks[9] = KR[1];
rotl128(KR, 30);
ks[18] = KR[0]; ks[19] = KR[1];
rotl128(KR, 34);
ks[26] = KR[0]; ks[27] = KR[1];
rotl128(KA, 15);
ks[6] = KA[0]; ks[7] = KA[1];
rotl128(KA, 30);
ks[14] = KA[0]; ks[15] = KA[1];
rotl128(KA, 32);
ks[24] = KA[0]; ks[25] = KA[1];
rotl128(KA, 17);
ks[28] = KA[0]; ks[29] = KA[1];
ks[2] = KB[0]; ks[3] = KB[1];
rotl128(KB, 30);
ks[10] = KB[0]; ks[11] = KB[1];
rotl128(KB, 30);
ks[20] = KB[0]; ks[21] = KB[1];
rotl128(KB, 51);
ks[32] = KB[0]; ks[33] = KB[1];
}
if (dir == DECRYPTION) // reverse key schele order
{
std::swap(ks[0], ks[kslen-2]);
std::swap(ks[1], ks[kslen-1]);
for (unsigned int i=2; i<kslen/2; i++)
{
std::swap(ks[i], ks[kslen-1-i]);
}
}
}
typedef BlockGetAndPut<word64, BigEndian> Block;
void Camellia::Base::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
{
FixedSizeSecBlock<word64, 16> mb;
word64 *m = mb;
const word64 *ks = m_key;
Block::Get(inBlock)(m[0])(m[1]);
m[0] ^= ks[0];
m[1] ^= ks[1];
ks += 2;
for (unsigned int i = m_rounds; i > 0; --i)
{
ROUND2(m, ks[0], ks[1]);
ROUND2(m, ks[2], ks[3]);
ROUND2(m, ks[4], ks[5]);
if (i != 1)
{
FLlayer(m, ks[6], ks[7]);
ks += 8;
}
else
{
m[0] ^= ks[7];
m[1] ^= ks[6];
}
}
Block::Put(xorBlock, outBlock)(m[1])(m[0]);
}
// The Camellia s-boxes
const byte Camellia::Base::s1[256] =
{
112,130,44,236,179,39,192,229,228,133,87,53,234,12,174,65,
35,239,107,147,69,25,165,33,237,14,79,78,29,101,146,189,
134,184,175,143,124,235,31,206,62,48,220,95,94,197,11,26,
166,225,57,202,213,71,93,61,217,1,90,214,81,86,108,77,
139,13,154,102,251,204,176,45,116,18,43,32,240,177,132,153,
223,76,203,194,52,126,118,5,109,183,169,49,209,23,4,215,
20,88,58,97,222,27,17,28,50,15,156,22,83,24,242,34,
254,68,207,178,195,181,122,145,36,8,232,168,96,252,105,80,
170,208,160,125,161,137,98,151,84,91,30,149,224,255,100,210,
16,196,0,72,163,247,117,219,138,3,230,218,9,63,221,148,
135,92,131,2,205,74,144,51,115,103,246,243,157,127,191,226,
82,155,216,38,200,55,198,59,129,150,111,75,19,190,99,46,
233,121,167,140,159,110,188,142,41,245,249,182,47,253,180,89,
120,152,6,106,231,70,113,186,212,37,171,66,136,162,141,250,
114,7,185,85,248,238,172,10,54,73,42,104,60,56,241,164,
64,40,211,123,187,201,67,193,21,227,173,244,119,199,128,158
};
const byte Camellia::Base::s2[256] =
{
224,5,88,217,103,78,129,203,201,11,174,106,213,24,93,130,
70,223,214,39,138,50,75,66,219,28,158,156,58,202,37,123,
13,113,95,31,248,215,62,157,124,96,185,190,188,139,22,52,
77,195,114,149,171,142,186,122,179,2,180,173,162,172,216,154,
23,26,53,204,247,153,97,90,232,36,86,64,225,99,9,51,
191,152,151,133,104,252,236,10,218,111,83,98,163,46,8,175,
40,176,116,194,189,54,34,56,100,30,57,44,166,48,229,68,
253,136,159,101,135,107,244,35,72,16,209,81,192,249,210,160,
85,161,65,250,67,19,196,47,168,182,60,43,193,255,200,165,
32,137,0,144,71,239,234,183,21,6,205,181,18,126,187,41,
15,184,7,4,155,148,33,102,230,206,237,231,59,254,127,197,
164,55,177,76,145,110,141,118,3,45,222,150,38,125,198,92,
211,242,79,25,63,220,121,29,82,235,243,109,94,251,105,178,
240,49,12,212,207,140,226,117,169,74,87,132,17,69,27,245,
228,14,115,170,241,221,89,20,108,146,84,208,120,112,227,73,
128,80,167,246,119,147,134,131,42,199,91,233,238,143,1,61
};
const byte Camellia::Base::s3[256] =
{
56,65,22,118,217,147,96,242,114,194,171,154,117,6,87,160,
145,247,181,201,162,140,210,144,246,7,167,39,142,178,73,222,
67,92,215,199,62,245,143,103,31,24,110,175,47,226,133,13,
83,240,156,101,234,163,174,158,236,128,45,107,168,43,54,166,
197,134,77,51,253,102,88,150,58,9,149,16,120,216,66,204,
239,38,229,97,26,63,59,130,182,219,212,152,232,139,2,235,
10,44,29,176,111,141,136,14,25,135,78,11,169,12,121,17,
127,34,231,89,225,218,61,200,18,4,116,84,48,126,180,40,
85,104,80,190,208,196,49,203,42,173,15,202,112,255,50,105,
8,98,0,36,209,251,186,237,69,129,115,109,132,159,238,74,
195,46,193,1,230,37,72,153,185,179,123,249,206,191,223,113,
41,205,108,19,100,155,99,157,192,75,183,165,137,95,177,23,
244,188,211,70,207,55,94,71,148,250,252,91,151,254,90,172,
60,76,3,53,243,35,184,93,106,146,213,33,68,81,198,125,
57,131,220,170,124,119,86,5,27,164,21,52,30,28,248,82,
32,20,233,189,221,228,161,224,138,241,214,122,187,227,64,79
};
const byte Camellia::Base::s4[256] =
{
112,44,179,192,228,87,234,174,35,107,69,165,237,79,29,146,
134,175,124,31,62,220,94,11,166,57,213,93,217,90,81,108,
139,154,251,176,116,43,240,132,223,203,52,118,109,169,209,4,
20,58,222,17,50,156,83,242,254,207,195,122,36,232,96,105,
170,160,161,98,84,30,224,100,16,0,163,117,138,230,9,221,
135,131,205,144,115,246,157,191,82,216,200,198,129,111,19,99,
233,167,159,188,41,249,47,180,120,6,231,113,212,171,136,141,
114,185,248,172,54,42,60,241,64,211,187,67,21,173,119,128,
130,236,39,229,133,53,12,65,239,147,25,33,14,78,101,189,
184,143,235,206,48,95,197,26,225,202,71,61,1,214,86,77,
13,102,204,45,18,32,177,153,76,194,126,5,183,49,23,215,
88,97,27,28,15,22,24,34,68,178,181,145,8,168,252,80,
208,125,137,151,91,149,255,210,196,72,247,219,3,218,63,148,
92,2,74,51,103,243,127,226,155,38,55,59,150,75,190,46,
121,140,110,142,245,182,253,89,152,106,70,186,37,66,162,250,
7,85,238,10,73,104,56,164,40,123,201,193,227,244,199,158
};
NAMESPACE_END
#endif // WORD64_AVAILABLE
5. 软电话开发SIp软电话源码在哪有免费下载android软电话,vc软电话,sip协议
思思软电话V2.0功能列表: 1、支持SIP协议。 2、支持录音功能。 3、支持电话本功能。 4、支持通话记录功能。 5、DTMF方式支持 RFC2833 或者 SIP INFO 6、语音编码方式支持 G729a或者G711方式 7、支持 不加密、RC4加密、VOS加密三种加密方式。 8、支持显余额功能。(目前支持SVSS、VOS显余额,需要在服务器上额外安装局端程序) 9、支持最小化与来电弹屏。 10、支持windows xp,win2000,win2003,win vista,win7 11、支持绿色安装版(也可制作安装包)。 12、支持保存多条账户信息。 13、支持广告弹窗功能。(需在服务器安装局端程序) 14、支持显示网络质量状态图。 15、支持最快服务器搜索功能。
请网络搜索思思软电话就可以找到卖家了。
6. excel表格电话簿怎么做 来个示例
准备工具/材料:装有windows 10的电脑一台,Microsoft Office 家庭和学生版 2016 excel软件。
excel表格电话簿做法如下:
1、首先,根据要设置的项目,选择第一行中的单元格作为标题行。
7. 谁能用C++帮我编写电话号码拨薄程序啊
最好先自己写,不正确贴上来我没给你参谋一下~
先给你一段参考,试着自己改改吧~
#include<iostream>
using namespace std;
struct tel
{
char name[20];
char number[15];// 此处用用字符型处理数字
};
void search1(tel toatal[],char name[], int n)
{
int intsearch=0;
for(int i=0;i<n;i++)
{
if(strcmp(toatal[i].name,name)==0)//姓名的精确查找
{
cout<<"你输入的姓名是:"<<toatal[i].name<<" "<<"对应的号码是:"<<toatal[i].number<<endl;
intsearch++;
}
}
if(intsearch==0)
{
cout<<"对不起,你输入的姓名没有在资料库里面,请重新选择功能1键,进行重新查找"<<endl;
}
}
void search2(tel toatal[],char number[], int n)//号码的精确查找
{
int intsearch=0;
for(int i=0;i<n;i++)
{
if(strcmp(toatal[i].number,number)==0)
{
cout<<toatal[i].name<<" "<<toatal[i].number<<endl;
intsearch++;
}
}
if(intsearch==0)
cout<<"对不起,没有你要找的记录"<<endl;
else
cout<<"共找到了"<<intsearch<<"条记录"<<endl;
}
void search3(tel toatal[],char name[], int n)//姓名模糊查询
{
int intsearch=0;
for(int i=0;i<n;i++)
{
if((toatal[i].name[0]==name[0])&&(toatal[i].name[1]==name[1]))// 直接判断
{
cout<<"姓名:"<<toatal[i].name<<" "<<"学号:"<<toatal[i].number<<endl;
intsearch++;
}
}
if(intsearch==0)
cout<<"对不起,没有找到相关的记录!"<<endl;
else
cout<<"总共找到"<<intsearch<<"记录"<<endl;
}
void search4(tel toatal[],char number[], int n)//号码的模糊查询
{
int intsearch=0;
for(int i=0;i<n;i++)
for(int j=0;j<3;j++)
{
if(toatal[i].number[j]==number[j])//此可以把号码前三位一样的输出
{
if(j==2)
{
cout<<"学号对应的姓名:"<<toatal[i].name<<" "<<"对应的学号是"<<toatal[i].number<<endl;
intsearch++;
}
}
else
break;
}
if(intsearch==0)
cout<<"对不起,没有这样的学号"<<endl;
else
cout<<"总共找到"<<intsearch<<"条记录"<<endl;
}
main()
{
tel toatal[100];
char name[10], number[15];
int i=0;
int iSelect;
cout<<"请输入数据:"<<endl;
cout<<"注释:当输入的姓名为0时,而且输入的学号为0时,输入结束"<<endl;
for(;i<100;i++)
{
cout<<"请输入第"<<i+1<<"个姓名:";
cin>>toatal[i].name;
cout<<endl;
cout<<"请输入第"<<i+1<<"个号码:";
cin>>toatal[i].number;
cout<<endl;
if(toatal[i].name[0]=='0')
break;
}
cout<<"please input the number that your want to do:"<<endl;
cout<<"***********************************"<<endl;
cout<<" ***0:退出查询系统***"<<endl;
cout<<"***********************************"<<endl;
cout<<" ***1:姓名精确查找***"<<endl;
cout<<"***********************************"<<endl;
cout<<" ***2:号码精确查找***"<<endl;
cout<<"***********************************"<<endl;
cout<<" ***3:姓名模糊查找***"<<endl;
cout<<"***********************************"<<endl;
cout<<" ***4:号码模糊查找***"<<endl;
cout<<"***********************************"<<endl;
cout<<" ****** ****** "<<endl;
while(cin>>iSelect)
{
switch(iSelect)
{
case 0:
cout<<"!!!"<<endl;
return 0;
case 1:
cout<<"enter the search name(请输入要寻找的姓名信息):::"<<endl;//姓名的精确查找,输入全名
cin>>name;
search1(toatal,name,i);
break;
case 2:
cout<<"enter the search number(请输入要寻找的学号信息):::"<<endl;//号码的精确查找,输入全号码
cin>>number;
search2(toatal,number,i);
break;
case 3:
cout<<"enter the vague name(请输入一个姓氏):::"<<endl;//姓名模糊查找,只输入姓
cin>>name;
search3(toatal,name,i);
break;
case 4:
cout<<"enter the vague number(请输入号码的前三位):::"<<endl;//号码模糊查找,只输入号码前三位
cin>>number;
search4(toatal,number,i);
break;
default :
cout<<"please input the right number!!"<<endl;
break;
}
cout<<"请输入你要选择的功能键(0---4)"<<endl;
}
}
8. 在电话号码薄中任取一个电话号码,设后面4个数中的每一个数是等可能地取自0,1,2,…9,则后面四个
排列组合
如图
如果你认可我的回答,请点击“采纳答案”,祝学习进步!
手机提问的朋友在客户端右上角评价点【采纳】即可
9. 图解查找算法之插值查找(带源码)
在前面我们了解了二分查找,就是把一个集合的元素一分为二,用中间值和目标查找值相比较,直到要查找的值和中间值相等,则表示查找成功,反之表示不成功。为什么这里会再次提到二分查找呢?事实上,插值查找是二分查找的升级版。
用一个很简单的例子就可以把插值查找解释的很清楚。在字典里面找”boy”这个单词时,我们肯定不会从第一页开始找,而是从首字母为b的位置开始查找,然后再找到第二个字母在字母表中的位置,找到对应的位置后,重复这个过程,这样就可以快速的找到目标单词。
接下来就介绍一下插值查找吧。
我们知道的的二分查找有一个必要的前提,必须是有序的数组才可以进行二分查找,同样插值查找也只能用于一个呈线性增长的有序数组中。
首先我们在数组中找到左边索引low和右边的索引high,目标查找值key
在二分查找中mid表示数组的中间值,而插值查找中mid表示一个自适应处,插值查找每次是从自适应mid处开始查找,mid的计算方式为:low + (key – arr[low]) / (arr[high] – arr[low]) * (high - low);在这里mid表示的就是目标值key在序列总的所占比。
源码:
int func(int arr[], int len, int key)
{
int low,high,mid;
low = 0;
high = len-1;
int h = (key-arr[low])/(arr[high]-arr[low]);
while(low <= high)
{
mid = h * (high - low);
if(key < arr[mid])
{
high = mid - 1;
}
else if(key > arr[mid])
{
low = mid + 1;
}
else
{
return mid;
}
}
return -1;
}
10. c语言编写一个程序,电话薄排序
修改后的程序
#include <stdio.h>
#define n 7
int main()
{
int i,j,ptr_2=0;
int a[n],*ptr_1;
ptr_1=&a[0];
printf("输入%d个数:",n);
for (i=0;i<n;i++)
{
scanf("%d",&a[i]);
}
printf("ok1\n");
for(i=0;i<n;i++)
{
for(j=0;j<n-i-1;j++)
{
if (*(ptr_1+j) < *(ptr_1+j+1))
{
ptr_2=*(ptr_1+j+1);
*(ptr_1+j+1)=*(ptr_1+j);
*(ptr_1+j)=ptr_2;
}
}
}
printf("排序后的数为: ");
for(i=0;i<n;i++)
{
printf("%d ",*ptr_1);
ptr_1++;
}
printf("\n");
return 0;
}
注意ptr_2是指针,未申请空间不能*ptr_2复值。