导航:首页 > 源码编译 > 智能优化算法处理离散问题

智能优化算法处理离散问题

发布时间:2023-02-26 21:11:36

❶ 智能优化算法解决了哪些问题

智能优化主要是用来求最优解的,通过多次迭代计算找出稳定的收敛的最优解或近似最优解,例如复杂的单模态或多模态函数的求最值问题。

❷ 多目标智能优化算法及其应用的序言

大多数工程和科学问题都是多目标优化问题,存在多个彼此冲突的目标,如何获取这些问题的最优解,一直都是学术界和工程界关注的焦点问题.与单目标优化问题不同,多目标优化的本质在于,大多数情况下,某目标的改善可能引起其他目标性能的降低,同时使多个目标均达到最优是不可能的,只能在各目标之间进行协调权衡和折中处理,使所有目标函数尽可能达到最优,而且问题的最优解由数量众多,甚至无穷大的Pareto最优解组成。
智能优化算法是一类通过模拟某一自然现象或过程而建立起来的优化方法’这类算法包括进化算法、粒子群算法、禁忌搜索、分散搜索、模拟退火、人工免疫系统和蚁群算法等。和传统的数学规划法相比,智能优化算法更适合求解多目标优化问题。首先,大多数智能优化算法能同时处理一组解,算法每运行一次,能获得多个有效解。其次,智能优化算法对Pareto最优前端的形状和连续性不敏感,能很好地逼近非凸或不连续的最优前端。目前,智能优化算法作为一类启发式搜索算法,已被成功应用于多目标优化领域,出现了一些热门的研究方向,如进化多目标优化,同时,多目标智能优化算法在电力系统、制造系统和控制系统等方面的应用研究也取得了很大的进展。
本书力图全面总结作者和国内外同行在多目标智能优化算法的理论与应用方面所取得的一系列研究成果。全书包括两部分,共8章。第一部分为第1-4主要介绍了各种多目标智能优化算法的理论。其中第1章为绪论,介绍各种智能优化算法的基本思想和原理。第2章介绍多目标进化算法,主要描述多目标进化算法的基本原理、典型算法和各种进化机制与策略,如混合策略、协同进化和动态进化策略等。第3章介绍多目标粒子群算法,包括基本原理、典型算法、混合算法和交互粒子群算法等。第4章描述除粒子群算法和进化算法之外的其他多目标智能优化算法,主要介绍多目标模拟退火算法、多目标蚁群算法、多目标免疫算法、多目标差分进化算法和多目标分散搜索等。
第二部分为第5-8章,主要介绍了多目标智能优化算法的应用’包括神经网络优化、生产调度、交通与物流系统优化、电力系统优化及其他。第5章描述人工神经网络的多目标优化,主要包括Pareto进化神经网络、径向基神经网络、递归神经网络和模糊神经网络。第6章介绍交通与物流系统优化,主要描述了智能优化算法在物流配送、城市公交路线网络和公共交通调度等方面的应用。

❸ 优化算法是什么

智能优化算法是一种启发式优化算法,包括遗传算法、蚁群算法、禁忌搜索算法、模拟退火算法、粒子群算法等。·智能优化算法一般是针对具体问题设计相关的算法,理论要求弱,技术性强。一般,我们会把智能算法与最优化算法进行比较,相比之下,智能算法速度快,应用性强。

群体智能优化算法是一类基于概率的随机搜索进化算法,各个算法之间存在结构、研究内容、计算方法等具有较大的相似性。

各个群体智能算法之间最大不同在于算法更新规则上,有基于模拟群居生物运动长更新的(如PSO,AFSA与SFLA),也有根据某种算法机理设置更新规则(如ACO)。

(3)智能优化算法处理离散问题扩展阅读:

优化算法有很多,关键是针对不同的优化问题,例如可行解变量的取值(连续还是离散)、目标函数和约束条件的复杂程度(线性还是非线性)等,应用不同的算法。 对于连续和线性等较简单的问题,可以选择一些经典算法,例如梯度、Hessian 矩阵、拉格朗日乘数、单纯形法、梯度下降法等;而对于更复杂的问题,则可考虑用一些智能优化算法。

❹ 什么是智能优化算法

群体智能优化算法是一类基于概率的随机搜索进化算法,各个算法之间存在结构、研究内容、计算方法等具有较大的相似性。因此,群体智能优化算法可以建立一个基本的理论框架模式:

Step1:设置参数,初始化种群;

Step2:生成一组解,计算其适应值;

Step3:由个体最有适应着,通过比较得到群体最优适应值;

Step4:判断终止条件示否满足?如果满足,结束迭代;否则,转向Step2;

各个群体智能算法之间最大不同在于算法更新规则上,有基于模拟群居生物运动步长更新的(如PSO,AFSA与SFLA),也有根据某种算法机理设置更新规则(如ACO)。

(4)智能优化算法处理离散问题扩展阅读

优化算法有很多,经典算法包括:有线性规划,动态规划等;改进型局部搜索算法包括爬山法,最速下降法等,模拟退火、遗传算法以及禁忌搜索称作指导性搜索法。而神经网络,混沌搜索则属于系统动态演化方法。

优化思想里面经常提到邻域函数,它的作用是指出如何由当前解得到一个(组)新解。其具体实现方式要根据具体问题分析来定。

❺ 传统优化算法和现代优化算法包括哪些.区别是什么

1. 传统优化算法一般是针对结构化的问题,有较为明确的问题和条件描述,如线性规划,二次规划,整数规划,混合规划,带约束和不带约束条件等,即有清晰的结构信息;而智能优化算法一般针对的是较为普适的问题描述,普遍比较缺乏结构信息。

2. 传统优化算法不少都属于凸优化范畴,有唯一明确的全局最优点;而智能优化算法针对的绝大多数是多极值问题,如何防止陷入局部最优而尽可能找到全局最优是采纳智能优化算法的根本原因:对于单极值问题,传统算法大部分时候已足够好,而智能算法没有任何优势;对多极值问题,智能优化算法通过其有效设计可以在跳出局部最优和收敛到一个点之间有个较好的平衡,从而实现找到全局最优点,但有的时候局部最优也是可接受的,所以传统算法也有很大应用空间和针对特殊结构的改进可能。

3. 传统优化算法一般是确定性算法,有固定的结构和参数,计算复杂度和收敛性可做理论分析;智能优化算法大多属于启发性算法,能定性分析却难定量证明,且大多数算法基于随机特性,其收敛性一般是概率意义上的,实际性能不可控,往往收敛速度也比较慢,计算复杂度较高。

❻ 离散粒子群优化算法的背景和意义是什么

定义粒子群优化算法(Particle Swarm optimization,PSO)又翻译为粒子群算法、微粒群算法、或微粒群优化算法。是通过模拟鸟群觅食行为而发展起来的一种基于群体协作的随机搜索算法。通常认为它是群集智能 (Swarm intelligence, SI) 的一种。它可以被纳入多主体优化系统 (Multiagent Optimization System, MAOS). 粒子群优化算法是由Eberhart博士和kennedy博士发明。PSO模拟鸟群的捕食行为PSO模拟鸟群的捕食行为。一群鸟在随机搜索食物,在这个区域里只有一块食物。所有的鸟都不知道食物在那里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢。最简单有效的就是搜寻目前离食物最近的鸟的周围区域。从模型中得到的启示PSO从这种模型中得到启示并用于解决优化问题。PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值(fitnessvalue),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。PSO初始化PSO初始化为一群随机粒子(随机解),然后通过叠代找到最优解,在每一次叠代中,粒子通过跟踪两个“极值”来更新自己。第一个就是粒子本身所找到的最优解,这个解叫做个体极值pBest,另一个极值是整个种群目前找到的最优解,这个极值是全局极值gBest。另外也可以不用整个种群而只是用其中一部分最优粒子的邻居,那么在所有邻居中的极值就是局部极值。编辑本段算法介绍在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)present[] = persent[] + v[] (b)v[] 是粒子的速度, persent[] 是当前粒子的位置. pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数. c1, c2 是学习因子. 通常 c1 = c2 = 2.程序的伪代码如下For each particle____Initialize particleENDDo____For each particle________Calculate fitness value________If the fitness value is better than the best fitness value (pBest) in history____________set current value as the new pBest____End____Choose the particle with the best fitness value of all the particles as the gBest____For each particle________Calculate particle velocity according equation (a)________Update particle position according equation (b)____EndWhile maximum iterations or minimum error criteria is not attained在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax。编辑本段遗传算法和PSO的比较共同点①种群随机初始化。②对种群内的每一个个体计算适应值(fitness value)。适应值与最优解的距离直接有关。③种群根据适应值进行复制 。④如果终止条件满足的话,就停止,否则转步骤② 。从以上步骤,我们可以看到PSO和遗传算法有很多共同之处。两者都随机初始化种群,而且都使用适应值来评价系统,而且都根据适应值来进行一定的随机搜索。两个系统都不是保证一定找到最优解。但是,PSO没有遗传操作如交叉(crossover)和变异(mutation),而是根据自己的速度来决定搜索。粒子还有一个重要的特点,就是有记忆。不同点与遗传算法比较,PSO的信息共享机制是很不同的。在遗传算法中,染色体(chromosomes)互相共享信息,所以整个种群的移动是比较均匀的向最优区域移动。在PSO中, 只有gBest (orlBest) 给出信息给其他的粒子, 这是单向的信息流动。整个搜索更新过程是跟随当前最优解的过程。与遗传算法比较, 在大多数的情况下,所有的粒子可能更快的收敛于最优解。编辑本段人工神经网络和PSO定义人工神经网络(ANN)是模拟大脑分析过程的简单数学模型,反向转播算法是最流行的神经网络训练算法。进来也有很多研究开始利用演化计算(evolutionary computation)技术来研究人工神经网络的各个方面。研究方面演化计算可以用来研究神经网络的三个方面:网络连接权重,网络结构(网络拓扑结构,传递函数),网络学习算法。不过大多数这方面的工作都集中在网络连接权重,和网络拓扑结构上。在GA中,网络权重和/或拓扑结构一般编码为染色体(Chromosome),适应函数(fitness function)的选择一般根据研究目的确定。例如在分类问题中,错误分类的比率可以用来作为适应值优缺点演化计算的优势在于可以处理一些传统方法不能处理的例子例如不可导的节点传递函数或者没有梯度信息存在。但是缺点在于:1、在某些问题上性能并不是特别好。2. 网络权重的编码而且遗传算子的选择有时比较麻烦。最近已经有一些利用PSO来代替反向传播算法来训练神经网络的论文。研究表明PSO 是一种很有潜力的神经网络算法。PSO速度比较快而且可以得到比较好的结果。而且还没有遗传算法碰到的问题。举例这里用一个简单的例子说明PSO训练神经网络的过程。这个例子使用分类问题的基准函数 (Benchmark function)IRIS数据集。(Iris 是一种鸢尾属植物) 在数据记录中,每组数据包含Iris花的四种属性:萼片长度,萼片宽度,花瓣长度,和花瓣宽度,三种不同的花各有50组数据. 这样总共有150组数据或模式。我们用3层的神经网络来做分类。现在有四个输入和三个输出。所以神经网络的输入层有4个节点,输出层有3个节点我们也可以动态调节隐含层节点的数目,不过这里我们假定隐含层有6个节点。我们也可以训练神经网络中其他的参数。不过这里我们只是来确定网络权重。粒子就表示神经网络的一组权重,应该是4*6+6*3=42个参数。权重的范围设定为[-100,100] (这只是一个例子,在实际情况中可能需要试验调整).在完成编码以后,我们需要确定适应函数。对于分类问题,我们把所有的数据送入神经网络,网络的权重有粒子的参数决定。然后记录所有的错误分类的数目作为那个粒子的适应值。现在我们就利用PSO来训练神经网络来获得尽可能低的错误分类数目。PSO本身并没有很多的参数需要调整。所以在实验中只需要调整隐含层的节点数目和权重的范围以取得较好的分类效果。

❼ 智能算法的智能算法概述

智能优化算法要解决的一般是最优化问题。最优化问题可以分为(1)求解一个函数中,使得函数值最小的自变量取值的函数优化问题和(2)在一个解空间里面,寻找最优解,使目标函数值最小的组合优化问题。典型的组合优化问题有:旅行商问题(Traveling Salesman Problem,TSP),加工调度问题(Scheling Problem),0-1背包问题(Knapsack Problem),以及装箱问题(Bin Packing Problem)等。
优化算法有很多,经典算法包括:有线性规划,动态规划等;改进型局部搜索算法包括爬山法,最速下降法等,本文介绍的模拟退火、遗传算法以及禁忌搜索称作指导性搜索法。而神经网络,混沌搜索则属于系统动态演化方法。
优化思想里面经常提到邻域函数,它的作用是指出如何由当前解得到一个(组)新解。其具体实现方式要根据具体问题分析来定。
一般而言,局部搜索就是基于贪婪思想利用邻域函数进行搜索,若找到一个比现有值更优的解就弃前者而取后者。但是,它一般只可以得到“局部极小解”,就是说,可能这只兔子登“登泰山而小天下”,但是却没有找到珠穆朗玛峰。而模拟退火,遗传算法,禁忌搜索,神经网络等从不同的角度和策略实现了改进,取得较好的“全局最小解”。

❽ 智能优化算法及其应用的目录

第1章绪论1
1.1最优化问题及其分类1
1.1.1函数优化问题1
1.1.2组合优化问题10
1.2优化算法及其分类12
1.3邻域函数与局部搜索13
1.4计算复杂性与NP完全问题14
1.4.1计算复杂性的基本概念14
1.4.2P,NP,NP?C和NP?hard14
第2章模拟退火算法17
2.1模拟退火算法17
2.1.1物理退火过程和Metropolis准则17
2.1.2组合优化与物理退火的相似性18
2.1.3模拟退火算法的基本思想和步骤19
2.2模拟退火算法的马氏链描述20
2.3模拟退火算法的收敛性21
2.3.1时齐算法的收敛性21
2.3.2非时齐算法的收敛性26
2.3.3SA算法渐进性能的逼近26
2.4模拟退火算法关键参数和操作的设计27
2.5模拟退火算法的改进29
2.6并行模拟退火算法31
2.7算法实现与应用32
2.7.1组合优化问题的求解32
2.7.2函数优化问题的求解33
第3章遗传算法36
3.1遗传算法的基本流程36
3.2模式定理和隐含并行性38
3.3遗传算法的马氏链描述及其收敛性40
3.3.1预备知识40
3.3.2标准遗传算法的马氏链描述41
3.3.3标准遗传算法的收敛性42
3.4一般可测状态空间上遗传算法的收敛性44
3.4.1问题描述45
3.4.2算法及其马氏链描述45
3.4.3收敛性分析和收敛速度估计45
3.5算法关键参数与操作的设计47
3.6遗传算法的改进50
3.7免疫遗传算法51
3.7.1引言51
3.7.2免疫遗传算法及其收敛性52
3.7.3免疫算子的机理与构造54
3.7.4TSP问题的免疫遗传算法56
3.8并行遗传算法58
3.9算法实现与应用59
第4章禁忌搜索算法62
4?1禁忌搜索62
4?1?1引言62
4?1?2禁忌搜索示例63
4?1?3禁忌搜索算法流程67
4?2禁忌搜索的收敛性68
4?3禁忌搜索的关键参数和操作70
4?4并行禁忌搜索算法75
4?5禁忌搜索的实现与应用77
4?5?1基于禁忌搜索的组合优化77
4?5?2基于禁忌搜索的函数优化78
第5章神经网络与神经网络优化算法83
5.1神经网络简介83
5.1.1神经网络发展回顾83
5.1.2神经网络的模型84
5.2基于Hopfield反馈网络的优化策略89
5.2.1基于Hopfield模型优化的一般流程89
5.2.2基于Hopfield模型优化的缺陷90
5.2.3基于Hopfield模型优化的改进研究90
5.3动态反馈神经网络的稳定性研究94
5.3.1动态反馈网络的稳定性分析94
5.3.1.1离散对称动态反馈网络的渐近稳定性分析95
5.3.1.2非对称动态反馈网络的全局渐近稳定性分析99
5.3.1.3时延动态反馈网络的全局渐近稳定性分析101
5.3.2动态反馈神经网络的收敛域估计103
5.4基于混沌动态的优化研究概述105
5.4.1基于混沌神经网络的组合优化概述106
5.4.2基于混沌序列的函数优化研究概述108
5.4.3混沌优化的发展性研究109
5.5一类基于混沌神经网络的优化策略110
5.5.1ACNN模型的描述110
5.5.2ACNN模型的优化机制111
5.5.3计算机仿真研究与分析112
5.5.4模型参数对算法性能影响的几点结论116
第6章广义邻域搜索算法及其统一结构118
6.1广义邻域搜索算法118
6.2广义邻域搜索算法的要素119
6.3广义邻域搜索算法的统一结构120
6?4优化算法的性能评价指标123
6?5广义邻域搜索算法研究进展125
6.5.1理论研究概述125
6.5.2应用研究概述128
6.5.3发展性研究129
第7章混合优化策略130
7.1引言130
7.2基于统一结构设计混合优化策略的关键问题131
7.3一类GASA混合优化策略132
7.3.1GASA混合优化策略的构造出发点132
7.3.2GASA混合优化策略的流程和特点133
7.3.3GASA混合优化策略的马氏链描述135
7.3.4GASA混合优化策略的收敛性136
7.3.5GASA混合优化策略的效率定性分析141
第8章混合优化策略的应用143
8.1基于模拟退火?单纯形算法的函数优化143
8.1.1单纯形算法简介143
8.1.2SMSA混合优化策略144
8.1.3算法操作与参数设计145
8.1.4数值仿真与分析146
8.2基于混合策略的控制器参数整定和模型参数估计研究149
8.2.1引言149
8.2.2模型参数估计和PID参数整定149
8.2.3混合策略的操作与参数设计150
8.2.4数值仿真与分析151
8.3基于混合策略的TSP优化研究154
8.3.1TSP的混合优化策略设计154
8.3.2基于典型算例的仿真研究156
8.3.3对TSP的进一步讨论158
8.4基于混合策略的加工调度研究159
8.4.1基于混合策略的Job?shop优化研究159
8.4.1.1引言159
8.4.1.2JSP的析取图描述和编码161
8.4.1.3JSP的混合优化策略设计163
8.4.1.4基于典型算例的仿真研究166
8.4.2基于混合策略的置换Flow?shop优化研究170
8.4.2.1混合优化策略170
8.4.2.2算法操作与参数设计172
8.4.2.3数值仿真与分析172
8.4.3基于混合策略的一类批量可变流水线调度问题的优化研究174
8.4.3.1问题描述及其性质174
8.4.3.2混合优化策略的设计175
8.4.3.3仿真结果和分析177
8.5基于混合策略的神经网络权值学习研究177
8.5.1BPSA混合学习策略178
8.5.2GASA混合学习策略178
8.5.3GATS混合学习策略179
8.5.4编码和优化操作设计180
8.5.5仿真结果与分析180
8.6基于混合策略的神经网络结构学习研究184
8.6.1RBF网络简介184
8.6.2RBF网络结构优化的编码和操作设计184
8.6.3RBF网络结构的混合优化策略186
8.6.4计算机仿真与分析187
8.7基于混合策略的光学仪器设计研究189
8.7.1引言189
8.7.2模型设计190
8.7.3仿真研究和设计结果191
附录Benchmark问题193
A:TSP Benchmark问题193
B: 置换Flow?shop Benchmark问题195
C:Job?shop Benchmark问题211
参考文献217

❾ pso的离散算法

很多优化问题涉及到离散或二值的变量,典型的例子包括调度问题或路由问题。而PSO算法的更新公式和过程是面向连续空间并为其设计的,因此需要做一些修改使之适应离散空间的情况。编码的修改可能很简单,难点在于定义速度的意义和确定轨迹的变化。
Kennedy定义了第一个离散二进制版本的PSO算法。微粒使用二进制字符串进行编码。通过使用sigmoid函数,速度被限制在[0, 1]区间之内,并被解释为“概率的变化”。Yang对该方法在量子空间进行了扩展。
Mohan提出了几种二进制方法(直接方法、量子方法、正则方法、偏差向量方法以及混合方法),但是从有限的实验中没有得出什么结论。Clerc对一些专用于某些约束优化问题如TSP问题的PSO算法变种进行了试验,结果显示该方法比较有前途。Pang使用模糊矩阵来表示微粒的位置和速度,对PSO算法的算符进行了重定义,并将其应用到TSP问题的求解。Pampara将PSO算法与信号处理中的角调制技术结合起来,将高维二进制问题降维为一个在连续空间中定义的四维问题,并通过求解该四维问题来获得原问题的解。Afshinmanesh重新定义了离散PSO算法中的加法与乘法,并使用人工免疫系统中的阴性选择来实现速度限制Vmax。
Hu提出了一种改进PSO算法来处理排列问题。微粒被定义为一组特定值的排列,速度基于两个微粒的相似度重新定义,微粒根据由它们的速度所定义的随机率来变换到一个新的排列。引入了一个变异因子来防止当前的pBest陷入局部最小。在n皇后问题上的初步研究显示改进的PSO算法在解决约束满意问题方面很有前途。
Migliore对原始的二进制PSO算法进行了一些改进,提出了可变行为二进制微粒群算法(VB-BPSO)和可变动态特性二进制微粒群算法(VD-BPSO)。VB-BPSO算法按照连续PSO算法的速度更新公式的思想设计了一个新的速度更新公式,用来确定微粒位置向量每一位为1的概率。而VD-BPSO算法则是根据一定规则在两组不同参数确定的VB-BPSO算法之间切换。Migliore应用该算法设计出一种简单鲁棒的自适应无源天线。
Parsopoulos以标准函数为例测试微粒群优化算法解决整数规划问题的能力。Salman将任务分配问题抽象为整数规划模型并提出基于微粒群优化算法的解决方法。两者对迭代产生的连续解均进行舍尾取整后评价其质量。但是PSO算法生成的连续解与整数规划问题的目标函数评价值之间存在多对一的映射,以整型变量表示的目标函数不能准确反映算法中连续解的质量,而由此导致的冗余解空间与相应的冗余搜索降低了算法的收敛效率。
高尚采用交叉策略和变异策略,将PSO算法用来解决集合划分问题。赵传信重新定义了微粒群位置和速度的加法与乘法操作,并将PSO算法应用到0/1背包问题求解中。EL-Gallad在PSO算法中引入探索和勘探两个算子,用于求解排序问题。Firpi提出了BPSO算法的一种保证收敛的版本(但是并未证明其保证收敛性),并将其应用到特征选择问题。
上述离散PSO算法都是间接的优化策略,根据概率而非算法本身确定二进制变量,未能充分利用PSO算法的性能。在处理整数变量时,PSO算法有时候很容易陷入局部最小。原始PSO算法的思想是从个体和同伴的经验进行学习,离散PSO算法也应该借鉴该思想。高海兵基于传统算法的速度—位移更新操作,在分析微粒群优化机理的基础上提出了广义微粒群优化模型(GPSO),使其适用于解决离散及组合优化问题。GPSO 模型本质仍然符合微粒群优化机理,但是其微粒更新策略既可根据优化问题的特点设计,也可实现与已有方法的融合。基于类似的想法,Goldbarg将局部搜索和路径重连过程定义为速度算子,来求解TSP问题。

❿ 群智能算法及其应用的介绍

群智能算法作为一种新兴的演化计算技术,已成为越来越多研究者的关注焦点,它与人工生命,特别是进化策略以及遗传算法有着极为特殊的联系。群智能理论研究领域主要有两种算法:蚁群算法和粒子群优化算法。蚁群算法是对蚂蚁群落食物采集过程的模拟,已成功应用于许多离散优化问题。粒子群优化算法也是起源于对简单社会系统的模拟,最初是模拟鸟群觅食的过程,但后来发现它是一种很好的优化工具。

阅读全文

与智能优化算法处理离散问题相关的资料

热点内容
库房管理系统源码 浏览:59
安卓应用多为什么会卡 浏览:10
php程序员工作职责 浏览:306
程序员可以转行做运维吗 浏览:323
如何检测到服务器端口是否通 浏览:851
linuxsed正则 浏览:109
linux安装gz文件 浏览:357
linux如何卸载编译的软件 浏览:929
高三解压活动视频 浏览:780
如何把服务器卡爆 浏览:949
饿了么java程序员 浏览:960
python编译时找不到路径 浏览:910
jpg转换pdf软件 浏览:103
php读取json文件 浏览:866
螺杆压缩机的功率计算 浏览:74
谷轮压缩机c 浏览:338
苹果app如何复制到另一个手机 浏览:834
javasession超时 浏览:831
易金通app怎么更改手机号 浏览:493
plc数控编程的方法 浏览:989