㈠ GIS 学科都是有哪些重要的算法谢谢
一 空间数据压缩算法
1 基于矢量的压缩算法
2 基于栅格的压缩算法
二 空间数据内插算法
1 点的内插算法
2 区域内插算法
3 采样点曲线拟合
三 空间数据转换算法
1 矢量数据向栅格数据转换
2 栅格数据向矢量数据转换
3 TIN向规则格网DEM转换
四 空间数据误差分析算法
1 属性误差的分析算法
2 位置误差分析算法
五 多边形自动生成与裁剪算法
1 多边形性质及有关处理
2 弧-弧拓扑生成算法
3 多边形自动生成算法
4 多边形图裁剪算法
六 TIN的构建算法
1 基于离散点的构TIN算法
2 基于等高线的构TIN算法
七 Voronoi图构建算法
1 平面点集Voronoi图构建算法
2 线/面集Voronoi图构建算法
3 球面Voronoi图构建算法
八 空间变换算法
1 地图坐标变换算法
2 地图投影变换算法
3 透视投影变换算法
九 空间度量算法
1 空间距离与方向度量算法
2 面向度量算法
3 体积度量算法
4 坡度坡向度量算法
十 数字地形分析算法
1 基本地形因子分析算法
2 地形特征提取算法
3 数字地形典型应用算法
十一 空间统计分析算法
1 多变量统计分析算法
2 空间分类统计算法
3 层次分析算法
十二 空间分析算法
1 路径分析算法
2 资源分配算法
3 缓冲区分析算法
4 叠置分析算法
十三 GIS可视化操纵算法
1 地形简化算法
2 多分辨率纹理生成算法
3 纹理映射算法
4 光相关算法
十四 空间数据挖掘与知识发现算法
㈡ 数字图像处理的基本算法及要解决的主要问题
图像处理,是对图像进行分析、加工、和处理,使其满足视觉、心理以及其他要求的技术。图像处理是信号处理在图像域上的一个应用。目前大多数的图像是以数字形式存储,因而图像处理很多情况下指数字图像处理。此外,基于光学理论的处理方法依然占有重要的地位。
图像处理是信号处理的子类,另外与计算机科学、人工智能等领域也有密切的关系。
传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比如降噪、量化等。然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。
目录
[隐藏]
* 1 解决方案
* 2 常用的信号处理技术
o 2.1 从一维信号处理扩展来的技术和概念
o 2.2 专用于二维(或更高维)的技术和概念
* 3 典型问题
* 4 应用
* 5 相关相近领域
* 6 参见
[编辑] 解决方案
几十年前,图像处理大多数由光学设备在模拟模式下进行。由于这些光学方法本身所具有的并行特性,至今他们仍然在很多应用领域占有核心地位,例如 全息摄影。但是由于计算机速度的大幅度提高,这些技术正在迅速的被数字图像处理方法所替代。
从通常意义上讲,数字图像处理技术更加普适、可靠和准确。比起模拟方法,它们也更容易实现。专用的硬件被用于数字图像处理,例如,基于流水线的计算机体系结构在这方面取得了巨大的商业成功。今天,硬件解决方案被广泛的用于视频处理系统,但商业化的图像处理任务基本上仍以软件形式实现,运行在通用个人电脑上。
[编辑] 常用的信号处理技术
大多数用于一维信号处理的概念都有其在二维图像信号领域的延伸,它们中的一部分在二维情形下变得十分复杂。同时图像处理也具有自身一些新的概念,例如,连通性、旋转不变性,等等。这些概念仅对二维或更高维的情况下才有非平凡的意义。
图像处理中常用到快速傅立叶变换,因为它可以减小数据处理量和处理时间。
[编辑] 从一维信号处理扩展来的技术和概念
* 分辨率(Image resolution|Resolution)
* 动态范围(Dynamic range)
* 带宽(Bandwidth)
* 滤波器设计(Filter (signal processing)|Filtering)
* 微分算子(Differential operators)
* 边缘检测(Edge detection)
* Domain molation
* 降噪(Noise rection)
[编辑] 专用于二维(或更高维)的技术和概念
* 连通性(Connectedness|Connectivity)
* 旋转不变性(Rotational invariance)
[编辑] 典型问题
* 几何变换(geometric transformations):包括放大、缩小、旋转等。
* 颜色处理(color):颜色空间的转化、亮度以及对比度的调节、颜色修正等。
* 图像合成(image composite):多个图像的加、减、组合、拼接。
* 降噪(image denoising):研究各种针对二维图像的去噪滤波器或者信号处理技术。
* 边缘检测(edge detection):进行边缘或者其他局部特征提取。
* 分割(image segmentation):依据不同标准,把二维图像分割成不同区域。
* 图像制作(image editing):和计算机图形学有一定交叉。
* 图像配准(image registration):比较或集成不同条件下获取的图像。
* 图像增强(image enhancement):
* 图像数字水印(image watermarking):研究图像域的数据隐藏、加密、或认证。
* 图像压缩(image compression):研究图像压缩。
[编辑] 应用
* 摄影及印刷 (Photography and printing)
* 卫星图像处理 (Satellite image processing)
* 医学图像处理 (Medical image processing)
* 面孔识别, 特征识别 (Face detection, feature detection, face identification)
* 显微图像处理 (Microscope image processing)
* 汽车障碍识别 (Car barrier detection)
[编辑] 相关相近领域
* 分类(Classification)
* 特征提取(Feature extraction)
* 模式识别(Pattern recognition)
* 投影(Projection)
* 多尺度信号分析(Multi-scale signal analysis)
* 离散余弦变换(The Discrete Cosine Transform)
㈢ 立体通的六大核心算法引擎是什么
瞳孔跟踪算法引擎、高精度AI给图算法引擎、自动补偿算法引擎、收录算法引擎、横竖屏切换算法引擎、自动校准算法引擎,它们与裸视三维智慧膜相结合实现了:无需黄金视角,任意角度观看;解决困扰3D显示多年的重影、眩晕问题;低成本爆品,便于快速消费普及;一链自动校准,使用简单方便;适配全球主流存量、增量手机,人人手机均可秒变3D神机;横竖屏切换自由,满足观影、游戏、直播、购物等不同场景需求
㈣ 在图像处理中有哪些算法
1、图像变换:
由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,可减少计算量,获得更有效的处理。它在图像处理中也有着广泛而有效的应用。
2、图像编码压缩:
图像编码压缩技术可减少描述图像的数据量,以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3、图像增强和复原:
图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
4、图像分割:
图像分割是数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
5、图像描述:
图像描述是图像识别和理解的必要前提。
一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。
6、图像分类:
图像分类属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。
图像分类常采用经典的模式识别方法,有统计模式分类和句法模式分类。
图像处理主要应用在摄影及印刷、卫星图像处理、医学图像处理、面孔识别、特征识别、显微图像处理和汽车障碍识别等。
数字图像处理技术源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约传输了一幅照片,采用了数字压缩技术。
数字图像处理技术可以帮助人们更客观、准确地认识世界,人的视觉系统可以帮助人类从外界获取3/4以上的信息,而图像、图形又是所有视觉信息的载体,尽管人眼的鉴别力很高,可以识别上千种颜色,
但很多情况下,图像对于人眼来说是模糊的甚至是不可见的,通过图象增强技术,可以使模糊甚至不可见的图像变得清晰明亮。
㈤ 图像分割算法总结
图像处理的很多任务都离不开图像分割。因为图像分割在cv中实在太重要(有用)了,就先把图像分割的常用算法做个总结。
接触机器学习和深度学习时间已经不短了。期间看过各种相关知识但从未总结过。本文过后我会尽可能详细的从工程角度来总结,从传统机器学习算法,传统计算机视觉库算法到深度学习目前常用算法和论文,以及模型在各平台的转化,量化,服务化部署等相关知识总结。
图像分割常用算法大致分为下面几类。由于图像的能量范函,边缘追踪等方法的效果往往只能解决特定问题,效果并不理想,这里不再阐述。当然二值化本身也可以分割一些简单图像的。但是二值化算法较多,我会专门做一个文章来总结。这里不再赘述。
1.基于边缘的图像分割算法:
有利用图像梯度的传统算法算子的sobel,roberts,prewitt,拉普拉斯以及canny等。
这些算法的基本思想都是采用合适的卷积算子,对图像做卷积。从而求出图像对应的梯度图像。(至于为什么通过如图1这样的算子卷积,即可得到图像的梯度图像,请读者复习下卷积和倒数的概念自行推导)由于图像的边缘处往往是图像像素差异较大,梯度较大地方。因此我们通过合适的卷积核得到图像的梯度图像,即得到了图像的边缘图像。至于二阶算子的推导,与一阶类似。优点:传统算子梯度检测,只需要用合适的卷积核做卷积,即可快速得出对应的边缘图像。缺点:图像边缘不一定准确,复杂图像的梯度不仅仅出现在图像边缘,可以能出现在图像内部的色彩和纹理上。
也有基于深度学习方法hed,rcf等。由于这类网络都有同一个比较严重的缺陷,这里只举例hed网络。hed是基于FCN和VGG改进,同时引出6个loss进行优化训练,通过多个层输出不同scale的粒度的边缘,然后通过一个训练权重融合各个层的边缘结果。hed网络结构如下:
可以得到一个比较完整的梯度图像,可参考github的hed实现。优点:图像的梯度细节和边缘完整性,相比传统的边缘算子要好很多。但是hed对于边缘的图像内部的边缘并不能很好的区分。当然我们可以自行更改loss来尝试只拟合外部的图像边缘。但最致命的问题在于,基于vgg的hed的网络表达能力有限,对于图像和背景接近,或者图像和背景部分相融的图片,hed似乎就有点无能为力了。
2.基于区域分割的算法:
区域分割比较常用的如传统的算法结合遗传算法,区域生长算法,区域分裂合并,分水岭算法等。这里传统算法的思路是比较简单易懂的,如果有无法理解的地方,欢迎大家一起讨论学习。这里不再做过多的分析。
基于区域和语意的深度学习分割算法,是目前图像分割成果较多和研究的主要方向。例如FCN系列的全卷积网络,以及经典的医学图像分割常用的unet系列,以及rcnn系列发展下的maskrcnn,以及18年底的PAnet。基于语意的图像分割技术,无疑会成为图像分割技术的主流。
其中,基于深度学习语意的其他相关算法也可以间接或直接的应用到图像分割。如经典的图像matting问题。18年又出现了许多非常优秀的算法和论文。如Deep-Image-Matting,以及效果非常优秀的MIT的 semantic soft segmentation(sss).
基于语意的图像分割效果明显要好于其他的传统算法。我在解决图像分割的问题时,首先尝试用了hed网络。最后的效果并不理想。虽然也参考github,做了hed的一些fine-tune,但是还是上面提到的原因,在我多次尝试后,最终放弃。转而适用FCN系列的网络。但是fcn也无法解决图像和背景相融的问题。图片相融的分割,感觉即需要大的感受野,又需要未相融部分原图像细节,所以单原FCN的网络,很难做出准确的分割。中间还测试过很多其他相关的网络,但都效果不佳。考虑到感受野和原图像细节,尝试了resnet和densenet作为图像特征提取的底层。最终我测试了unet系列的网络:
unet的原始模型如图所示。在自己拍照爬虫等手段采集了将近1000张图片。去掉了图片质量太差的,图片内容太过类似的。爬虫最终收集160多张,自己拍照收集200张图片后,又用ps手动p了边缘图像,采用图像增强变换,大约有300*24张图片。原生unet网络的表现比较一般。在将unet普通的卷积层改为resnet后,网络的表达能力明显提升。在将resnet改为resnet101,此时,即使对于部分相融的图像,也能较好的分割了。但是unet的模型体积已经不能接受。
在最后阶段,看到maskrcnn的实例分割。maskrcnn一路由rcnn,fasterrcnn发展过来。于是用maskrcnn来加入自己的训练数据和label图像进行训练。maskrcnn的结果表现并不令人满意,对于边缘的定位,相比于其他算法,略显粗糙。在产品应用中,明显还不合适。
3.基于图的分割算法
基于深度学习的deepgrab,效果表现并不是十分理想。deepgrab的git作者backbone采用了deeplabv2的网络结构。并没有完全安装原论文来做。
论文原地址参考: https://arxiv.org/pdf/1707.00243.pdf
整体结构类似于encode和decoder。并没有太仔细的研究,因为基于resent101的结构,在模型体积,速度以及deeplab的分割精度上,都不能满足当前的需求。之前大致总结过计算机视觉的相关知识点,既然目前在讨论移动端模型,那后面就分模块总结下移动端模型的应用落地吧。
由于时间实在有限。这里并没有针对每个算法进行详细的讲解。后续我会从基础的机器学习算法开始总结。
㈥ 图的图的遍历
常见的图遍历方式有两种:深度优先遍历和广度优先遍历,这两种遍历方式对有向图和无向图均适用。 深度优先遍历的思想类似于树的先序遍历。其遍历过程可以描述为:从图中某个顶点v出发,访问该顶点,然后依次从v的未被访问的邻接点出发继续深度优先遍历图中的其余顶点,直至图中所有与v有路径相通的顶点都被访问完为止。
深度优先遍历算法实现:
为了便于在算法中区分顶点是否已被访问过,需要创建一个一维数组visited[0..n-1](n是图中顶点的数目),用来设置访问标志,其初始值visited(0≤i≤n-1)为"0",表示邻接表中下标值为i的顶点没有被访问过,一旦该顶点被访问,将visited置成"1"。
int visited[0..n-1]={0,0,...0};
void DFS(AdjList adj,int v)
{//v是遍历起始点的在邻接表中的下标值,其下标从0开始
visited[v]=1; visited(adj[v].elem);
for (w=adj[v].firstedge;w;w=w->next)
if (!visited[w->adjvex]) DFS(adj,w->adjvex);
}
对于无向图,这个算法可以遍历到v顶点所在的连通分量中的所有顶点,而与v顶点不在一个连通分量中的所有顶点遍历不到;而对于有向图可以遍历到起始顶点v能够到达的所有顶点。若希望遍历到图中的所有顶点,就需要在上述深度优先遍历算法的基础上,增加对每个顶点访问状态的检测: intvisited[0..n-1]={0,0,...0};voidDFSTraverse(AdjListadj){for(v=0;v<n;v++)if(!visited[v])DFS(adj,v);} 对图的广度优先遍历方法描述为:从图中某个顶点v出发,在访问该顶点v之后,依次访问v的所有未被访问过的邻接点,然后再访问每个邻接点的邻接点,且访问顺序应保持先被访问的顶点其邻接点也优先被访问,直到图中的所有顶点都被访问为止。下面是对一个无向图进行广度优先遍历的过程。
下面我们讨论一下实现广度优先遍历算法需要考虑的几个问题:
(1)在广度优先遍历中,要求先被访问的顶点其邻接点也被优先访问,因此,必须对每个顶点的访问顺序进行记录,以便后面按此顺序访问各顶点的邻接点。应利用一个队列结构记录顶点访问顺序,就可以利用队列结构的操作特点,将访问的每个顶点入队,然后,再依次出队,并访问它们的邻接点;
(2)在广度优先遍历过程中同深度优先遍历一样,为了避免重复访问某个顶点,也需要创建一个一维数组visited[0..n-1](n是图中顶点的数目),用来记录每个顶点是否已经被访问过。
int visited[0..n-1]={0,0,...0};
void BFS(AdjList adj,int v)
{//v是遍历起始点在邻接表中的下标,邻接表中下标从0开始
InitQueue(Q); //Q是队列
visited[v]=1; visite(adj[v].elem); EnQueue(Q,v);
while (!QueueEmpty(Q)) {
DeQueue(Q,v);
for (w=adj[v].firstedge;w;w=w->next)
if (!visited[w->adjvex]) {
visited[w->adjvex]=1;
visite(adj[w->adjvex].elem);
EnQueue(Q,w->adjvex); }
}
}
㈦ 图遍历算法之DFS/BFS
在计算机科学, 图遍历(Tree Traversal,也称图搜索)是一系列图搜索的算法, 是单次访问树结构类型数据(tree data structure)中每个节点以便检查或更新的一系列机制。图遍历算法可以按照节点访问顺序进行分类,根据访问目的或使用场景的不同,算法大致可分为28种:
图遍历即以特定方式访问图中所有节点,给定节点下有多种可能的搜索路径。假定以顺序方式进行(非并行),还未访问的节点就需通过堆栈(LIFO)或队列(FIFO)规则来确定访问先后。由于树结构是一种递归的数据结构,在清晰的定义下,未访问节点可存储在调用堆栈中。本文介绍了图遍历领域最流行的广度优先搜索算法BFS和深度优先搜索算法DFS,对其原理、应用及实现进行了阐述。通常意义上而言,深度优先搜索(DFS)通过递归调用堆栈比较容易实现,广义优先搜索通过队列实现。
深度优先搜索(DFS)是用于遍历或搜索图数据结构的算法,该算法从根节点开始(图搜索时可选择任意节点作为根节点)沿着每个分支进行搜索,分支搜索结束后在进行回溯。在进入下一节点之前,树的搜索尽可能的加深。
DFS的搜索算法如下(以二叉树为例):假定根节点(图的任意节点可作为根节点)标记为 ,
(L) : 递归遍历左子树,并在节点 结束。
(R): 递归遍历右子树,并在节点 结束。
(N): 访问节点 。
这些步骤可以以任意次序排列。如果(L)在(R)之前,则该过程称为从左到右的遍历;反之,则称为从右到左的遍历。根据访问次序的不同,深度优先搜索可分为 pre-order、in-order、out-order以及post-order遍历方式。
(a)检查当前节点是否为空;
(b)展示根节点或当前节点数据;
(c)递归调用pre-order函数遍历左子树;
(d)递归调用pre-order函数遍历右子树。
pre-order遍历属于拓扑排序后的遍历,父节点总是在任何子节点之前被访问。该遍历方式的图示如下:
遍历次序依次为:F -B -A-D- C-E-G- I-H.
(a)检查当前节点是否为空;
(b)递归调用in-order函数遍历左子树;
(c)展示根节点或当前节点数据;
(d)递归调用in-order函数遍历右子树。
在二叉树搜索中,in-order遍历以排序顺序访问节点数据。该遍历方式的图示如下:
遍历次序依次为:A -B - C - D - E - F - G -H-I
(a)检查当前节点是否为空;
(b)递归调用out-order函数遍历右子树;
(c)展示根节点或当前节点数据;
(d)递归调用out-order函数遍历左子树。
该遍历方式与LNR类似,但先遍历右子树后遍历左子树。仍然以图2为例,遍历次序依次为:H- I-G- F- B- E- D- C- A.
(a)检查当前节点是否为空;
(b)递归调用post-order函数遍历左子树;
(c)递归调用post-order函数遍历右子树;
(d)展示根节点或当前节点数据。
post-order遍历图示如下:
遍历次序依次为:A-C-E-D-B-H-I-G-F.
pre-order遍历方式使用场景:用于创建树或图的副本;
in-order遍历使用场景:二叉树遍历;
post-order遍历使用场景:删除树
遍历追踪也称树的序列化,是所访问根节点列表。无论是pre-order,in-order或是post-order都无法完整的描述树特性。给定含有不同元素的树结构,pre-order或post-order与in-order遍历方式结合起来使用才可以描述树的独特性。
树或图形的访问也可以按照节点所处的级别进行遍历。在每次访问下一层级节点之前,遍历所在高层级的所有节点。BFS从根节点(图的任意节点可作为根节点)出发,在移动到下一节点之前访问所有相同深度水平的相邻节点。
BFS的遍历方法图示如下:
遍历次序依次为: F-B-G-A-D-I-C-E-H.
图算法相关的R包为igraph,主要包括图的生成、图计算等一系列算法的实现。
使用方法:
参数说明:
示例:
结果展示:
DFS R输出节点排序:
使用方法:
参数含义同dfs
示例:
结果展示:
BFS R输出节点排序:
以寻找两点之间的路径为例,分别展示BFS及DFS的实现。图示例如下:
示例:
输出结果:
示例:
输出结果:
[1] 维基网络: https://en.wikipedia.org/wiki/Tree_traversal
[2] GeeksforGeeks: https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/
[3] http://webdocs.cs.ualberta.ca/~holte/T26/tree-traversal.html
[4]Martin Broadhurst, Graph Algorithm: http://www.martinbroadhurst.com/Graph-algorithms.html#section_1_1
[5]igraph: https://igraph.org/r/doc/dfs.html
[6]igraph: https://igraph.org/r/doc/bfs.html
[7] Depth-First Search and Breadth-First Search in python: https://eddmann.com/posts/depth-first-search-and-breadth-first-search-in-python/