㈠ 数据挖掘方法都有哪些
1、神经元网络办法
神经元网络由于本身优良的健壮性、自组织自适应性、并行计算、遍及贮存和高宽比容错机制等特色特别适合处理数据发掘的难题,因而近些年愈来愈遭受大家的关心。
2、遗传算法
遗传算法是一种依据微生物自然选择学说与基因遗传原理的恣意优化算法,是一种仿生技能全局性提升办法。遗传算法具有的暗含并行性、便于和其他实体模型交融等特性促使它在数据发掘中被多方面运用。
3、决策树算法办法
决策树算法是一种常见于预测模型的优化算法,它依据将很多数据信息有目地归类,从这当中寻找一些有使用价值的,潜在性的信息。它的要害优势是叙说简易,归类速度更快,十分适宜规模性的数据处理办法。
4、遮盖正例抵触典例办法
它是使用遮盖悉数正例、抵触悉数典例的观念来找寻规范。最先在正例结合中随意选择一个种子,到典例结合中逐一较为。与字段名赋值组成的选择子相溶则舍弃,反过来则保存。按此观念循环系统悉数正例种子,将获得正例的规范(选择子的合取式)。
5、数据剖析办法
在数据库查询字段名项中心存有二种相关:函数关系和相关剖析,对他们的剖析可选用应用统计学办法,即使用统计学原理对数据库查询中的信息展开剖析。可展开常见统计剖析、多元回归剖析、相关性剖析、差异剖析等。
6、含糊集办法
即使用含糊不清结合基础理论对具体难题展开含糊不清评定、含糊不清管理决策、含糊不清系统识别和含糊聚类剖析。系统软件的多元性越高,抽象性越强,一般含糊不清结合基础理论是用从属度来描绘含糊不清事情的亦此亦彼性的。
㈡ 数据挖掘的经典算法有哪些
1. C4.5
C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:
1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;
2) 在树构造过程中进行剪枝;
3) 能够完成对连续属性的离散化处理;
4) 能够对不完整数据进行处理。
2. The k-means algorithm 即K-Means算法
k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均 方误差总和最小。
3. Support vector machines
支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更 高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。
4. The Apriori algorithm
Apriori算法,它是一种最具影响力的挖掘布尔关联规则频繁项集的算法。它的算法核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。
关于数据挖掘的经典算法有哪些,该如何下手的内容,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
㈢ 大数据预测分析方法有哪些
1、可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2、数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3、预测性分析能力
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4、数据质量和数据管理
大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
这是一条来自#加米谷大数据-专注大数据人才培养#的小尾巴
㈣ 数据挖掘算法有哪些
以下主要是常见的10种数据挖掘的算法,数据挖掘分为:分类(Logistic回归模型、神经网络、支持向量机等)、关联分析、聚类分析、孤立点分析。每一大类下都有好几种算法,这个具体可以参考数据挖掘概论这本书(英文最新版)
㈤ 数据挖掘常用算法有哪些
1、 朴素贝叶斯
朴素贝叶斯(NB)属于生成式模型(即需要计算特征与类的联合概率分布),计算过程非常简单,只是做了一堆计数。NB有一个条件独立性假设,即在类已知的条件下,各个特征之间的分布是独立的。这样朴素贝叶斯分类器的收敛速度将快于判别模型,如逻辑回归,所以只需要较少的训练数据即可。即使NB条件独立假设不成立,NB分类器在实践中仍然表现的很出色。它的主要缺点是它不能学习特征间的相互作用,用mRMR中的R来讲,就是特征冗余。
2、逻辑回归(logistic regression)
逻辑回归是一个分类方法,属于判别式模型,有很多正则化模型的方法(L0,L1,L2),而且不必像在用朴素贝叶斯那样担心特征是否相关。与决策树与SVM相比,还会得到一个不错的概率解释,甚至可以轻松地利用新数据来更新模型(使用在线梯度下降算法online gradient descent)。如果需要一个概率架构(比如,简单地调节分类阈值,指明不确定性,或者是要获得置信区间),或者希望以后将更多的训练数据快速整合到模型中去,那么可以使用它。
3、 线性回归
线性回归是用于回归的,而不像Logistic回归是用于分类,其基本思想是用梯度下降法对最小二乘法形式的误差函数进行优化。
4、最近邻算法——KNN
KNN即最近邻算法,其主要过程为:计算训练样本和测试样本中每个样本点的距离(常见的距离度量有欧式距离,马氏距离等);对上面所有的距离值进行排序;选前k个最小距离的样本;根据这k个样本的标签进行投票,得到最后的分类类别;如何选择一个最佳的K值,这取决于数据。
5、决策树
决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。
6、SVM支持向量机
高准确率,为避免过拟合提供了很好的理论保证,而且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在动辄超高维的文本分类问题中特别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,而随机森林却刚好避开了这些缺点,比较实用。
㈥ 数据挖掘的方法有哪些
数据挖掘的的方法主要有以下几点:
1.分类挖掘方法。分类挖掘方法主要利用决策树进行分类,是一种高效且在数据挖掘方法中占有重要地位的挖掘方法。为了对数据进行较为准确的测试并据此分类,我们采用决策树算法,而决策树中比较典型的几种方法为:ID3算法,此方法具有较强的实用性,适用于大规模数据处理;KNN算法,此方法算量较大,适用于分别类别的数据处理。
2..聚类分析挖掘方法。聚类分析挖掘方法主要应用于样品与指标分类研究领域,是一种典型的统计方法,广泛应用于商业领域。此聚类分析方法根据适用对象不同又可分为四种分析挖掘方法:基于网格的聚类分析方法、基于分层的聚类方法、基于密度的聚类挖掘方法和基于模型的聚类方法。
3.预测方法。预测方法主要用于对知识的预测以及对连续数值型数据的挖掘,传统的预测方法主要分为:时间序列方法、回归模型分析法、灰色系统模型分析。而现在预测方法主要采用神经网络与支持向量机算法,进行数据分析计算,同时可预测未来数据的走向趋势。
关于大数据挖掘工程师的课程推荐CDA数据分析师的相关课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”点击预约免费试听课。
㈦ 大数据挖掘有哪些方法
方法1.可视化分析
无论是日志数据分析专家还是普通用户,数据可视化都是数据分析工具的最基本要求。可视化可以直观地显示数据,让数据自己说话,让听众看到结果。
方法2.数据挖掘算法
如果说可视化用于人们观看,那么数据挖掘就是给机器看的。集群、分割、孤立点分析和其他算法使我们能够深入挖掘数据并挖掘价值。这些算法不仅要处理大量数据,还必须尽量缩减处理大数据的速度。
方法3.预测分析能力
数据挖掘使分析师可以更好地理解数据,而预测分析则使分析师可以根据可视化分析和数据挖掘的结果做出一些预测性判断。
方法4.语义引擎
由于非结构化数据的多样性给数据分析带来了新挑战,因此需要一系列工具来解析,提取和分析数据。需要将语义引擎设计成从“文档”中智能地提取信息。
方法5.数据质量和主数据管理
数据质量和数据管理是一些管理方面的最佳实践。通过标准化流程和工具处理数据可确保获得预定义的高质量分析结果。
㈧ 大数据挖掘常用的算法有哪些
1、预测建模:将已有数据和模型用于对未知变量的语言。
分类,用于预测离散的目标变量。
回归,用于预测连续的目标变量。
2、聚类分析:发现紧密相关的观测值组群,使得与属于不同簇的观测值相比,属于同一簇的观测值相互之间尽可能类似。
3、关联分析(又称关系模式):反映一个事物与其他事物之间的相互依存性和关联性。用来发现描述数据中强关联特征的模式。
4、异常检测:识别其特征显着不同于其他数据的观测值。
有时也把数据挖掘分为:分类,回归,聚类,关联分析。
㈨ 常用的数据挖掘算法有哪几类
常用的数据挖掘算法分为以下几类:神经网络,遗传算法,回归算法,聚类分析算法,贝耶斯算法。
目前已经进入大数据的时代,所以数据挖掘和大数据分析的就业前景非常好,学好大数据分析和数据挖掘可以在各个领域中发挥自己的价值;同时,大数据分析并不是一蹴而就的事情,而是需要你日积月累的数据处理经验,不是会被轻易替代的。一家公司的各项工作,基本上都都用数据体现出来,一位高级的数据分析师职位通常是数据职能架构中领航者,拥有较高的分析和思辨能力,对于业务的理解到位,并且深度知晓公司的管理和商业行为,他可以负责一个子产品或模块级别的项目,带领团队来全面解决问题,把控手下数据分析师的工作质量。
想要了解更多有关数据挖掘算法的信息,可以了解一下CDA数据分析师的课程。课程教你学企业需要的敏捷算法建模能力,可以学到前沿且实用的技术,挖掘数据的魅力;教你用可落地、易操作的数据科学思维和技术模板构建出优秀模型,只教实用干货,以专精技术能力提升业务效果与效率。点击预约免费试听课。
㈩ 数据挖掘十大算法-
整理里一晚上的数据挖掘算法,其中主要引自wiki和一些论坛。发布到上作为知识共享,但是发现Latex的公式转码到网页的时候出现了丢失,暂时没找到解决方法,有空再回来填坑了。
——编者按
一、 C4.5
C4.5算法是由Ross Quinlan开发的用于产生决策树的算法[1],该算法是对Ross Quinlan之前开发的ID3算法的一个扩展。C4.5算法主要应用于统计分类中,主要是通过分析数据的信息熵建立和修剪决策树。
1.1 决策树的建立规则
在树的每个节点处,C4.5选择最有效地方式对样本集进行分裂,分裂规则是分析所有属性的归一化的信息增益率,选择其中增益率最高的属性作为分裂依据,然后在各个分裂出的子集上进行递归操作。
依据属性A对数据集D进行分类的信息熵可以定义如下:
划分前后的信息增益可以表示为:
那么,归一化的信息增益率可以表示为:
1.2 决策树的修剪方法
C4.5采用的剪枝方法是悲观剪枝法(Pessimistic Error Pruning,PEP),根据样本集计算子树与叶子的经验错误率,在满足替换标准时,使用叶子节点替换子树。
不妨用K表示训练数据集D中分类到某一个叶子节点的样本数,其中其中错误分类的个数为J,由于用估计该节点的样本错误率存在一定的样本误差,因此用表示修正后的样本错误率。那么,对于决策树的一个子树S而言,设其叶子数目为L(S),则子树S的错误分类数为:
设数据集的样本总数为Num,则标准错误可以表示为:
那么,用表示新叶子的错误分类数,则选择使用新叶子节点替换子树S的判据可以表示为:
二、KNN
最近邻域算法(k-nearest neighbor classification, KNN)[2]是一种用于分类和回归的非参数统计方法。KNN算法采用向量空间模型来分类,主要思路是相同类别的案例彼此之间的相似度高,从而可以借由计算未知样本与已知类别案例之间的相似度,来实现分类目标。KNN是一种基于局部近似和的实例的学习方法,是目前最简单的机器学习算法之一。
在分类问题中,KNN的输出是一个分类族群,它的对象的分类是由其邻居的“多数表决”确定的,k个最近邻居(k为正整数,通常较小)中最常见的分类决定了赋予该对象的类别。若k = 1,则该对象的类别直接由最近的一个节点赋予。在回归问题中,KNN的输出是其周围k个邻居的平均值。无论是分类还是回归,衡量邻居的权重都非常重要,目标是要使较近邻居的权重比较远邻居的权重大,例如,一种常见的加权方案是给每个邻居权重赋值为1/d,其中d是到邻居的距离。这也就自然地导致了KNN算法对于数据的局部结构过于敏感。
三、Naive Bayes
在机器学习的众多分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)[3]。朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。
在假设各个属性相互独立的条件下,NBC模型的分类公式可以简单地表示为:
但是实际上问题模型的属性之间往往是非独立的,这给NBC模型的分类准确度带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型;而在属性相关性较小时,NBC模型的性能最为良好。
四、CART
CART算法(Classification And Regression Tree)[4]是一种二分递归的决策树,把当前样本划分为两个子样本,使得生成的每个非叶子结点都有两个分支,因此CART算法生成的决策树是结构简洁的二叉树。由于CART算法构成的是一个二叉树,它在每一步的决策时只能是“是”或者“否”,即使一个feature有多个取值,也是把数据分为两部分。在CART算法中主要分为两个步骤:将样本递归划分进行建树过程;用验证数据进行剪枝。
五、K-means
k-平均算法(k-means clustering)[5]是源于信号处理中的一种向量量化方法,现在则更多地作为一种聚类分析方法流行于数据挖掘领域。k-means的聚类目标是:把n个点(可以是样本的一次观察或一个实例)划分到k个聚类中,使得每个点都属于离他最近的均值(此即聚类中心)对应的聚类。
5.1 k-means的初始化方法
通常使用的初始化方法有Forgy和随机划分(Random Partition)方法。Forgy方法随机地从数据集中选择k个观测作为初始的均值点;而随机划分方法则随机地为每一观测指定聚类,然后执行“更新”步骤,即计算随机分配的各聚类的图心,作为初始的均值点。Forgy方法易于使得初始均值点散开,随机划分方法则把均值点都放到靠近数据集中心的地方;随机划分方法一般更适用于k-调和均值和模糊k-均值算法。对于期望-最大化(EM)算法和标准k-means算法,Forgy方法作为初始化方法的表现会更好一些。
5.2 k-means的标准算法
k-means的标准算法主要包括分配(Assignment)和更新(Update),在初始化得出k个均值点后,算法将会在这两个步骤中交替执行。
分配(Assignment):将每个观测分配到聚类中,使得组内平方和达到最小。
更新(Update):对于上一步得到的每一个聚类,以聚类中观测值的图心,作为新的均值点。
六、Apriori
Apriori算法[6]是一种最有影响的挖掘布尔关联规则频繁项集的算法,其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。Apriori采用自底向上的处理方法,每次只扩展一个对象加入候选集,并且使用数据集对候选集进行检验,当不再产生匹配条件的扩展对象时,算法终止。
Apriori的缺点在于生成候选集的过程中,算法总是尝试扫描整个数据集并尽可能多地添加扩展对象,导致计算效率较低;其本质上采用的是宽度优先的遍历方式,理论上需要遍历次才可以确定任意的最大子集S。
七、SVM
支持向量机(Support Vector Machine, SVM)[7]是在分类与回归分析中分析数据的监督式学习模型与相关的学习算法。给定一组训练实例,每个训练实例被标记为属于两个类别中的一个或另一个,SVM训练算法创建一个将新的实例分配给两个类别之一的模型,使其成为非概率二元线性分类器。SVM模型是将实例表示为空间中的点,这样映射就使得单独类别的实例被尽可能宽的明显的间隔分开。然后,将新的实例映射到同一空间,并基于它们落在间隔的哪一侧来预测所属类别。
除了进行线性分类之外,SVM还可以使用所谓的核技巧有效地进行非线性分类,将其输入隐式映射到高维特征空间中,即支持向量机在高维或无限维空间中构造超平面或超平面集合,用于分类、回归或其他任务。直观来说,分类边界距离最近的训练数据点越远越好,因为这样可以缩小分类器的泛化误差。
八、EM
最大期望算法(Expectation–Maximization Algorithm, EM)[7]是从概率模型中寻找参数最大似然估计的一种算法。其中概率模型依赖于无法观测的隐性变量。最大期望算法经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值。M步上找到的参数估计值被用于下一个E步计算中,这个过程不断交替进行。
九、PageRank
PageRank算法设计初衷是根据网站的外部链接和内部链接的数量和质量对网站的价值进行衡量。PageRank将每个到网页的链接作为对该页面的一次投票,被链接的越多,就意味着被其他网站投票越多。
算法假设上网者将会不断点网页上的链接,当遇到了一个没有任何链接出页面的网页,这时候上网者会随机转到另外的网页开始浏览。设置在任意时刻,用户到达某页面后并继续向后浏览的概率,该数值是根据上网者使用浏览器书签的平均频率估算而得。PageRank值可以表示为:
其中,是被研究的页面集合,N表示页面总数,是链接入页面的集合,是从页面链接处的集合。
PageRank算法的主要缺点是的主要缺点是旧的页面等级会比新页面高。因为即使是非常好的新页面也不会有很多外链,除非它是某个站点的子站点。
十、AdaBoost
AdaBoost方法[10]是一种迭代算法,在每一轮中加入一个新的弱分类器,直到达到某个预定的足够小的错误率。每一个训练样本都被赋予一个权重,表明它被某个分类器选入训练集的概率。如果某个样本点已经被准确地分类,那么在构造下一个训练集中,它被选中的概率就被降低;相反,如果某个样本点没有被准确地分类,那么它的权重就得到提高。通过这样的方式,AdaBoost方法能“聚焦于”那些较难分的样本上。在具体实现上,最初令每个样本的权重都相等,对于第k次迭代操作,我们就根据这些权重来选取样本点,进而训练分类器Ck。然后就根据这个分类器,来提高被它分错的的样本的权重,并降低被正确分类的样本权重。然后,权重更新过的样本集被用于训练下一个分类器Ck[,并且如此迭代地进行下去。
AdaBoost方法的自适应在于:前一个分类器分错的样本会被用来训练下一个分类器。AdaBoost方法对于噪声数据和异常数据很敏感。但在一些问题中,AdaBoost方法相对于大多数其它学习算法而言,不会很容易出现过拟合现象。AdaBoost方法中使用的分类器可能很弱(比如出现很大错误率),但只要它的分类效果比随机好一点(比如两类问题分类错误率略小于0.5),就能够改善最终得到的模型。而错误率高于随机分类器的弱分类器也是有用的,因为在最终得到的多个分类器的线性组合中,可以给它们赋予负系数,同样也能提升分类效果。
引用
[1] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993.
[2] Altman, N. S. An introction to kernel and nearest-neighbor nonparametric regression. The American Statistician. 1992, 46 (3): 175–185. doi:10.1080/00031305.1992.10475879
[3] Webb, G. I.; Boughton, J.; Wang, Z. Not So Naive Bayes: Aggregating One-Dependence Estimators. Machine Learning (Springer). 2005, 58 (1): 5–24. doi:10.1007/s10994-005-4258-6
[4] decisiontrees.net Interactive Tutorial
[5] Hamerly, G. and Elkan, C. Alternatives to the k-means algorithm that find better clusterings (PDF). Proceedings of the eleventh international conference on Information and knowledge management (CIKM). 2002
[6] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in large databases. Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, pages 487-499, Santiago, Chile, September 1994.
[7] Cortes, C.; Vapnik, V. Support-vector networks. Machine Learning. 1995, 20 (3): 273–297. doi:10.1007/BF00994018
[8] Arthur Dempster, Nan Laird, and Donald Rubin. "Maximum likelihood from incomplete data via the EM algorithm". Journal of the Royal Statistical Society, Series B, 39 (1):1–38, 1977
[9] Susan Moskwa. PageRank Distribution Removed From WMT. [October 16, 2009]
[10] Freund, Yoav; Schapire, Robert E. A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting. 1995. CiteSeerX: 10.1.1.56.9855