导航:首页 > 源码编译 > 浙江高清人脸识别算法

浙江高清人脸识别算法

发布时间:2023-02-27 08:38:40

Ⅰ 手机人脸识别的原理是什么

人脸识别是一种软件层面的算法,用于通过处理视频帧或数字图像来验证或识别一个人的身份,其中该人的脸是可见的。
其实机器本来并不擅长识别图像,比如这张图片在机器眼里只是一串0和1组成的数据,机器并不能理解这个图像有什么含义。所以想让机器学会认识图像,就需要我们给它编写程序算法。
当我们描述一个人的长相的时候,大多会用到类似这样的词汇,比如瓜子脸、柳叶眼、蒜头鼻、樱桃嘴。所谓长相很大程度上取决于人脑袋和五官的形状。
最早的人脸识别就是采用这样的方法。首先机器会在图像中识别出脸所在的位置,然后描绘出这张脸上的五官的轮廓,获得人脸上五官的形状和位置信息。比如两个眼睛之间的距离,鼻尖嘴角连线在水平方向上的角度等等。

Ⅱ 人脸识别考勤系统一般用什么算法

主流的人脸识别系统基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。

1、基于几何特征的方法是早、传统的方法,通常需要和其他算法结合才能有比较好的效果;

2、基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。

3、基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。

基于几何特征的方法

人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。

几何特征早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显着点,并由这些显着点导出一组用于识别的特征度量如距离、角度等。Jia等由正面灰度图中线附近的积分投影模拟侧面轮廓图是一种很有新意的方法。

采用几何特征进行正面人脸识别系统一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但对几何特征提取的性进行了实验性的研究,结果不容乐观。

可变形模板法可以视为几何特征方法的一种改进,其基本思想是:设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数小化,此时的模型参数即做为该器官的几何特征。

人脸识别门禁机选择捷易科技,捷易科技人脸识别门禁机采用自主研发的极速人脸识别算法,优化升级人脸登记比对体验,结合红外大灯杯摄像,光线适应性强,可在室内全光线环境下快速准确识别人脸。


Ⅲ 人脸识别身份系统的工作原理是什么

Ⅳ 人脸识别技术中的1:1模式和1:N模式如何理解

我简单的回答一下你问题吧:
1:1 意思为“这人是不是某人?”
1:N 意思为“这人是谁?”

Ⅳ 人脸识别算法的难点

人脸识别算法研究已久,在背景简单的情形下,大部分算法都能很好的处理。但是,人脸识别的应用范围颇广,仅是简单图像测试,是远远不能满足现实需求的。所以人脸识别算法还是存在很多的难点。
光照
光照问题是机器视觉中的老问题,在人脸识别中的表现尤为明显,算法未能达到完美使用的程度。
姿态
与光照问题类似,姿态问题也是人脸识别研究中需要解决的一个技术难点。针对姿态的研究相对比较少,多数的人脸识别算法主要是针对正面,或接近正面的人脸图像,当发生俯仰或者左右侧而比较厉害的情况下,人脸识别算法的识别率也将会急剧下降。
遮挡
对于非配合情况下的人脸图像采集,遮挡问题是一个非常严重的问题,特别是在监控环境下,往往被监控对象都会带着眼镜﹑帽子等饰物,使得被采集出来的人脸图像有可能不完整,从而影响了后面的特征提取与识别,甚至会导致人脸识别算法的失效。
年龄变化
随着年龄的变化,面部外观也在变化,特别是对于青少年,这种变化更加的明显。对于不同的年龄段,人脸识别算法的识别率也不同。
图像质量
人脸图像的来源可能多种多样,由于采集设备的不同,得到的人脸图像质量也不同,特别是对于那些低分辨率﹑噪声大﹑质量差的人脸图像如何进行有效的人脸识别是个需要关注的问题。同样的,对于高分辨图像,对人脸识别算法的影响也需要进一步研究。
样本缺乏
基于统计学习的人脸识别算法是人脸识别领域中的主流算法,但是统计学习方法需要大量的培训。由于人脸图像在高维空间中的分布是一个不规则的流行分布,能得到的样本只是对人脸图像空间中的一个极小部分的采样,如何解决小样本下的统计学习问题有待进一步的研究。
海量数据
传统人脸识别算法如PCA、LDA等在小规模数据中可以很容易进行训练学习。但是对于海量数据,这些方法其训练过程难以进行,甚至有可能崩溃。
大规模人脸识别
随着人脸数据库规模的增长,人脸算法的性能将呈现下降。

Ⅵ 人脸识别的识别算法

人脸识别的基本方法

人脸识别的方法很多,以下介绍一些主要的人脸识别方法。

(1)几何特征的人脸识别方法

几何特征可以是眼、鼻、嘴等的形状和它们之间的几何关系(如相互之间的距离)。这些算法识别速度快,需要的内存小,但识别率较低。

(2)基于特征脸(PCA)的人脸识别方法

特征脸方法是基于KL变换的人脸识别方法,KL变换是图像压缩的一种最优正交变换。高维的图像空间经过KL变换后得到一组新的正交基,保留其中重要的正交基,由这些基可以张成低维线性空间。如果假设人脸在这些低维线性空间的投影具有可分性,就可以将这些投影用作识别的特征矢量,这就是特征脸方法的基本思想。这些方法需要较多的训练样本,而且完全是基于图像灰度的统计特性的。目前有一些改进型的特征脸方法。

(3)神经网络的人脸识别方法

神经网络的输入可以是降低分辨率的人脸图像、局部区域的自相关函数、局部纹理的二阶矩等。这类方法同样需要较多的样本进行训练,而在许多应用中,样本数量是很有限的。

(4)弹性图匹配的人脸识别方法

弹性图匹配法在二维的空间中定义了一种对于通常的人脸变形具有一定的不变性的距离,并采用属性拓扑图来代表人脸,拓扑图的任一顶点均包含一特征向量,用来记录人脸在该顶点位置附近的信息。该方法结合了灰度特性和几何因素,在比对时可以允许图像存在弹性形变,在克服表情变化对识别的影响方面收到了较好的效果,同时对于单个人也不再需要多个样本进行训练。

(5)线段Hausdorff 距离(LHD) 的人脸识别方法

心理学的研究表明,人类在识别轮廓图(比如漫画)的速度和准确度上丝毫不比识别灰度图差。LHD是基于从人脸灰度图像中提取出来的线段图的,它定义的是两个线段集之间的距离,与众不同的是,LHD并不建立不同线段集之间线段的一一对应关系,因此它更能适应线段图之间的微小变化。实验结果表明,LHD在不同光照条件下和不同姿态情况下都有非常出色的表现,但是它在大表情的情况下识别效果不好。

(6)支持向量机(SVM) 的人脸识别方法

近年来,支持向量机是统计模式识别领域的一个新的热点,它试图使得学习机在经验风险和泛化能力上达到一种妥协,从而提高学习机的性能。支持向量机主要解决的是一个2分类问题,它的基本思想是试图把一个低维的线性不可分的问题转化成一个高维的线性可分的问题。通常的实验结果表明SVM有较好的识别率,但是它需要大量的训练样本(每类300个),这在实际应用中往往是不现实的。而且支持向量机训练时间长,方法实现复杂,该函数的取法没有统一的理论。

人脸识别的方法很多,当前的一个研究方向是多方法的融合,以提高识别率。

在人脸识别中,第一类的变化是应该放大而作为区分个体的标准的,而第二类的变化应该消除,因为它们可以代表同一个个体。通常称第一类变化为类间变化,而称第二类变化为类内变化。对于人脸,类内变化往往大于类间变化,从而使在受类内变化干扰的情况下利用类间变化区分个体变得异常困难。正是基于上述原因,一直到21 世纪初,国外才开始出现人脸识别的商用,但由于人脸识别算法非常复杂,只能采用庞大的服务器,基于强大的计算机平台。



如果可以的话,可以Te一下colorreco,更好的技术解答。

阅读全文

与浙江高清人脸识别算法相关的资料

热点内容
zigbee加密算法 浏览:461
柏杨版资治通鉴pdf 浏览:393
事业编程序员下班时间 浏览:8
linux中命令大全 浏览:36
pic单片机学习网站 浏览:163
843除6的算法 浏览:377
arduino编程视频 浏览:744
pdf背景绿色 浏览:612
记事本dos命令 浏览:274
服务器如何搭建多个节点 浏览:326
acx算法 浏览:258
幽冥诡匠漫画全集用什么app可以看 浏览:1003
租用服务器为什么越来越慢 浏览:962
算法创新就业方向 浏览:424
算法最优解作者 浏览:870
通达信红绿宝塔线指标源码 浏览:669
app是什么东西合法吗 浏览:234
怎么锁app视频教程 浏览:843
迅捷pdf注册码生成器 浏览:750
androidsdkosx 浏览:305