导航:首页 > 源码编译 > cure算法思想

cure算法思想

发布时间:2023-02-28 17:14:27

① 聚类算法有哪些

聚类算法有:划分法、层次法、密度算法、图论聚类法、网格算法、模型算法。

1、划分法

划分法(partitioning methods),给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。使用这个基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、CLARANS算法。

2、层次法

层次法(hierarchical methods),这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。具体又可分为“自底向上”和“自顶向下”两种方案。代表算法有:BIRCH算法、CURE算法、CHAMELEON算法等。

3、密度算法

基于密度的方法(density-based methods),基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。代表算法有:DBSCAN算法、OPTICS算法、DENCLUE算法等。

4、图论聚类法

图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。因此,每一个最小处理单元数据之间都会有一个度量表达,这就确保了数据的局部特性比较易于处理。图论聚类法是以样本数据的局域连接特征作为聚类的主要信息源,因而其主要优点是易于处理局部数据的特性。

5、网格算法

基于网格的方法(grid-based methods),这种方法首先将数据空间划分成为有限个单元(cell)的网格结构,所有的处理都是以单个的单元为对象的。代表算法有:STING算法、CLIQUE算法、WAVE-CLUSTER算法。

6、模型算法

基于模型的方法(model-based methods),基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。通常有两种尝试方向:统计的方案和神经网络的方案。

(1)cure算法思想扩展阅读:

聚类分析起源于分类学,在古老的分类学中,人们主要依靠经验和专业知识来实现分类,很少利用数学工具进行定量的分类。随着人类科学技术的发展,对分类的要求越来越高,以致有时仅凭经验和专业知识难以确切地进行分类,于是人们逐渐地把数学工具引用到了分类学中,形成了数值分类学,之后又将多元分析的技术引入到数值分类学形成了聚类分析。聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。

在商业上,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一类消费者的消费模式或者说习惯。它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现数据库中分布的一些深层的信息,并且概括出每一类的特点,或者把注意力放在某一个特定的类上以作进一步的分析;并且,聚类分析也可以作为数据挖掘算法中其他分析算法的一个预处理步骤。

② 利用CURE算法进行文本聚类的java实现代码

为什么不用kmeans呢。

by 矩网智慧

③ 数据挖掘干货总结(四)--聚类算法

本文共计2680字,预计阅读时长七分钟

聚类算法

 

本质

将数据划分到不同的类里,使相似的数据在同一类里,不相似的数据在不同类里

 

分类算法用来解决什么问题

文本聚类、图像聚类和商品聚类,便于发现规律,以解决数据稀疏问题

聚类算法基础知识

1. 层次聚类 vs 非层次聚类

– 不同类之间有无包含关系

2. 硬聚类 vs 软聚类

– 硬聚类:每个对象只属于一个类

– 软聚类:每个对象以某个概率属于每个类

3. 用向量表示对象

– 每个对象用一个向量表示,可以视为高维空间的一个点

– 所有对象形成数据空间(矩阵)

– 相似度计算:Cosine、点积、质心距离

4. 用矩阵列出对象之间的距离、相似度

5. 用字典保存上述矩阵(节省空间)

    D={(1,1):0,(1,2):2,(1,3):6...(5,5):0}

6. 评价方法

– 内部评价法(Internal Evalution):

• 没有外部标准,非监督式

• 同类是否相似,跨类是否相异

DB值越小聚类效果越好,反之,越不好

– 外部评价法(External Evalution):

• 准确度(accuracy): (C11+C22) / (C11 + C12 + C21 + C22)

• 精度(Precision): C11 / (C11 + C21 )

• 召回(Recall): C11 / (C11 + C12 )

• F值(F-measure):

β表示对精度P的重视程度,越大越重视,默认设置为1,即变成了F值,F较高时则能说明聚类效果较好。

有哪些聚类算法


主要分为 层次化聚类算法 划分式聚类算法 基于密度的聚类算法 基于网格的聚类算法 基于模型的聚类算法等

4.1 层次化聚类算法

又称树聚类算法,透过一种层次架构方式,反复将数据进行分裂或聚合。典型的有BIRCH算法,CURE算法,CHAMELEON算法,Sequence data rough clustering算法,Between groups average算法,Furthest neighbor算法,Neares neighbor算法等。

凝聚型层次聚类

先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。

算法流程:

1. 将每个对象看作一类,计算两两之间的最小距离;

2. 将距离最小的两个类合并成一个新类;

3. 重新计算新类与所有类之间的距离;

4. 重复2、3,直到所有类最后合并成一类。

特点:

1. 算法简单

2. 层次用于概念聚类(生成概念、文档层次树)

3. 聚类对象的两种表示法都适用

4. 处理大小不同的簇

5. 簇选取步骤在树状图生成之后

4.2 划分式聚类算法

预先指定聚类数目或聚类中心,反复迭代逐步降低目标函数误差值直至收敛,得到最终结果。K-means,K-modes-Huang,K-means-CP,MDS_CLUSTER, Feature weighted fuzzy clustering,CLARANS等

经典K-means:

算法流程:

1. 随机地选择k个对象,每个对象初始地代表了一个簇的中心;

2. 对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;

3. 重新计算每个簇的平均值,更新为新的簇中心;

4. 不断重复2、3,直到准则函数收敛。

特点:

1.K的选择

2.中心点的选择

– 随机

– 多轮随机:选择最小的WCSS

3.优点

– 算法简单、有效

– 时间复杂度:O(nkt)

4.缺点

– 不适于处理球面数据

– 密度、大小不同的聚类,受K的限制,难于发现自然的聚类


4.3 基于模型的聚类算法

为每簇假定了一个模型,寻找数据对给定模型的最佳拟合,同一”类“的数据属于同一种概率分布,即假设数据是根据潜在的概率分布生成的。主要有基于统计学模型的方法和基于神经网络模型的方法,尤其以基于概率模型的方法居多。一个基于模型的算法可能通过构建反应数据点空间分布的密度函数来定位聚类。基于模型的聚类试图优化给定的数据和某些数据模型之间的适应性。

SOM 神经网络算法

该算法假设在输入对象中存在一些拓扑结构或顺序,可以实现从输入空间(n维)到输出平面(2维)的降维映射,其映射具有拓扑特征保持性质,与实际的大脑处理有很强的理论联系。

SOM网络包含输入层和输出层。输入层对应一个高维的输入向量,输出层由一系列组织在2维网格上的有序节点构成,输入节点与输出节点通过权重向量连接。学习过程中,找到与之距离最短的输出层单元,即获胜单元,对其更新。同时,将邻近区域的权值更新,使输出节点保持输入向量的拓扑特征。

算法流程:

1. 网络初始化,对输出层每个节点权重赋初值;

2. 将输入样本中随机选取输入向量,找到与输入向量距离最小的权重向量;

3. 定义获胜单元,在获胜单元的邻近区域调整权重使其向输入向量靠拢;

4. 提供新样本、进行训练;

5. 收缩邻域半径、减小学习率、重复,直到小于允许值,输出聚类结果。

4.4 基于密度聚类算法

只要邻近区域的密度(对象或数据点的数目)超过某个阈值,就继续聚类,擅于解决不规则形状的聚类问题,广泛应用于空间信息处理,SGC,GCHL,DBSCAN算法、OPTICS算法、DENCLUE算法。

DBSCAN:

对于集中区域效果较好,为了发现任意形状的簇,这类方法将簇看做是数据空间中被低密度区域分割开的稠密对象区域;一种基于高密度连通区域的基于密度的聚类方法,该算法将具有足够高密度的区域划分为簇,并在具有噪声的空间数据中发现任意形状的簇。

4.5 基于网格的聚类算法

    基于网格的方法把对象空间量化为有限数目的单元,形成一个网格结构。所有的聚类操作都在这个网格结构(即量化空间)上进行。这种方法的主要优点是它的处理 速度很快,其处理速度独立于数据对象的数目,只与量化空间中每一维的单元数目有关。但这种算法效率的提高是以聚类结果的精确性为代价的。经常与基于密度的算法结合使用。代表算法有STING算法、CLIQUE算法、WAVE-CLUSTER算法等。 

④ 常用的聚类方法有哪几种

聚类分析的算法可以分为划分法、层次法、基于密度的方法、基于网格的方法、基于模型的方法。

1、划分法,给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。

2、层次法,这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。

3、基于密度的方法,基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。

4、图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。

5、基于网格的方法,这种方法首先将数据空间划分成为有限个单元的网格结构,所有的处理都是以单个的单元为对象的。

6、基于模型的方法,基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。

(4)cure算法思想扩展阅读:

在商业上,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一类消费者的消费模式或者说习惯。

它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现数据库中分布的一些深层的信息,并且概括出每一类的特点,或者把注意力放在某一个特定的类上以作进一步的分析;并且,聚类分析也可以作为数据挖掘算法中其他分析算法的一个预处理步骤。

许多聚类算法在小于 200 个数据对象的小数据集合上工作得很好;但是,一个大规模数据库可能包含几百万个对象,在这样的大数据集合样本上进行聚类可能会导致有偏的结果。

许多聚类算法在聚类分析中要求用户输入一定的参数,例如希望产生的簇的数目。聚类结果对于输入参数十分敏感。参数通常很难确定,特别是对于包含高维对象的数据集来说。这样不仅加重了用户的负担,也使得聚类的质量难以控制。

⑤ 对聚类中心过于依赖的聚类算法有哪些

层次聚类分析:
是创建一个层次以分解给定的数据集。该方法可以分为自上而下(分解)和自下而上(合并)两种操作方式。为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。典型的这类方法包括:
第一个是;BIRCH(Balanced Iterative Recing and Clustering using Hierarchies) 方法,它首先利用树的结构对对象集进行划分;然后再利用其它聚类方法对这些聚类进行优化。
第二个是CURE(Clustering Using REprisentatives) 方法,它利用固定数目代表对象来表示相应聚类;然后对各聚类按照指定量(向聚类中心)进行收缩。
第三个是ROCK方法,它利用聚类间的连接进行聚类合并。
最后一个CHEMALOEN,它则是在层次聚类时构造动态模型。

⑥ 用于数据挖掘的聚类算法有哪些,各有何优势

聚类方法的分类,主要分为层次化聚类算法,划分式聚类算法,基于密度的聚类算法,基于网格的聚类算法,基于模型的聚类算法等。

而衡量聚类算法优劣的标准主要是这几个方面:处理大的数据集的能力;处理任意形状,包括有间隙的嵌套的数据的能力;算法处理的结果与数据输入的顺序是否相关,也就是说算法是否独立于数据输入顺序;处理数据噪声的能力;是否需要预先知道聚类个数,是否需要用户给出领域知识;算法处理有很多属性数据的能力,也就是对数据维数是否敏感。

.聚类算法主要有两种算法,一种是自下而上法(bottom-up),一种是自上而下法(top-down)。这两种路径本质上各有优势,主要看实际应用的时候要根据数据适用于哪一种,Hierarchical methods中比较新的算法有BIRCH主要是在数据体量很大的时候使用;ROCK优势在于异常数据抗干扰性强……

关于数据挖掘的相关学习,推荐CDA数据师的相关课程,课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。这种教学方式能够引发学员的独立思考及主观能动性,学员掌握的技能知识可以快速转化为自身能够灵活应用的技能,在面对不同场景时能够自由发挥。点击预约免费试听课。

阅读全文

与cure算法思想相关的资料

热点内容
记事本dos命令 浏览:274
服务器如何搭建多个节点 浏览:326
acx算法 浏览:258
幽冥诡匠漫画全集用什么app可以看 浏览:1001
租用服务器为什么越来越慢 浏览:960
算法创新就业方向 浏览:423
算法最优解作者 浏览:868
通达信红绿宝塔线指标源码 浏览:667
app是什么东西合法吗 浏览:231
怎么锁app视频教程 浏览:841
迅捷pdf注册码生成器 浏览:749
androidsdkosx 浏览:303
压缩面膜纸荧光 浏览:841
app怎么分身三个 浏览:744
电影bt下载源码 浏览:422
iwatch屏幕加密芯片 浏览:570
公安主题网站源码 浏览:986
天津市服务器供应商云服务器 浏览:117
数控车床子程序编程 浏览:112
floydwarshall算法 浏览:720