❶ 经典目标检测算法介绍
姓名:牛晓银;学号:20181213993;学院:计算机科学与技术
转自:https://zhuanlan.hu.com/p/34142321
【嵌牛导读】:目标检测,也叫目标提取,是一种基于目标几何和统计特征的图像分割。随着计算机技术的发展和计算机视觉原理的广泛应用,利用计算机图像处理技术对目标进行实时跟踪研究越来越热门,对目标进行动态实时跟踪定位在智能化交通系统、军事目标检测及医学导航手术中手术器械定位等方面具有广泛的应用价值。
【嵌牛鼻子】:目标检测、检测模型、计算机视觉
【嵌牛提问】:你知道或者用过哪些目标检测算法?
【嵌牛正文】:
(一)目标检测经典工作回顾
本文结构
两阶段模型因其对图片的两阶段处理得名,也称为基于区域(Region-based)的方法,我们选取R-CNN系列工作作为这一类型的代表。
R-CNN: R-CNN系列的开山之作
论文链接: Rich feature hierarchies for accurate object detection and semantic segmentation
本文的两大贡献:1)CNN可用于基于区域的定位和分割物体;2)监督训练样本数紧缺时,在额外的数据上预训练的模型经过fine-tuning可以取得很好的效果。第一个贡献影响了之后几乎所有2-stage方法,而第二个贡献中用分类任务(Imagenet)中训练好的模型作为基网络,在检测问题上fine-tuning的做法也在之后的工作中一直沿用。
传统的计算机视觉方法常用精心设计的手工特征(如SIFT, HOG)描述图像,而深度学习的方法则倡导习得特征,从图像分类任务的经验来看,CNN网络自动习得的特征取得的效果已经超出了手工设计的特征。本篇在局部区域应用卷积网络,以发挥卷积网络学习高质量特征的能力。
R-CNN将检测抽象为两个过程,一是基于图片提出若干可能包含物体的区域(即图片的局部裁剪,被称为Region Proposal),文中使用的是Selective Search算法;二是在提出的这些区域上运行当时表现最好的分类网络(AlexNet),得到每个区域内物体的类别。
另外,文章中的两个做法值得注意。
一是数据的准备。输入CNN前,我们需要根据Ground Truth对提出的Region Proposal进行标记,这里使用的指标是IoU(Intersection over Union,交并比)。IoU计算了两个区域之交的面积跟它们之并的比,描述了两个区域的重合程度。
文章中特别提到,IoU阈值的选择对结果影响显着,这里要谈两个threshold,一个用来识别正样本(如跟ground truth的IoU大于0.5),另一个用来标记负样本(即背景类,如IoU小于0.1),而介于两者之间的则为难例(Hard Negatives),若标为正类,则包含了过多的背景信息,反之又包含了要检测物体的特征,因而这些Proposal便被忽略掉。
另一点是位置坐标的回归(Bounding-Box Regression),这一过程是Region Proposal向Ground Truth调整,实现时加入了log/exp变换来使损失保持在合理的量级上,可以看做一种标准化(Normalization)操作。
小结
R-CNN的想法直接明了,即将检测任务转化为区域上的分类任务,是深度学习方法在检测任务上的试水。模型本身存在的问题也很多,如需要训练三个不同的模型(proposal, classification, regression)、重复计算过多导致的性能问题等。尽管如此,这篇论文的很多做法仍然广泛地影响着检测任务上的深度模型革命,后续的很多工作也都是针对改进这一工作而展开,此篇可以称得上"The First Paper"。
Fast R-CNN: 共享卷积运算
论文链接: Fast R-CNN
文章指出R-CNN耗时的原因是CNN是在每一个Proposal上单独进行的,没有共享计算,便提出将基础网络在图片整体上运行完毕后,再传入R-CNN子网络,共享了大部分计算,故有Fast之名。
上图是Fast R-CNN的架构。图片经过feature extractor得到feature map, 同时在原图上运行Selective Search算法并将RoI(Region of Interset,实为坐标组,可与Region Proposal混用)映射到到feature map上,再对每个RoI进行RoI Pooling操作便得到等长的feature vector,将这些得到的feature vector进行正负样本的整理(保持一定的正负样本比例),分batch传入并行的R-CNN子网络,同时进行分类和回归,并将两者的损失统一起来。
RoI Pooling 是对输入R-CNN子网络的数据进行准备的关键操作。我们得到的区域常常有不同的大小,在映射到feature map上之后,会得到不同大小的特征张量。RoI Pooling先将RoI等分成目标个数的网格,再在每个网格上进行max pooling,就得到等长的RoI feature vector。
文章最后的讨论也有一定的借鉴意义:
multi-loss traing相比单独训练classification确有提升
multi-scale相比single-scale精度略有提升,但带来的时间开销更大。一定程度上说明CNN结构可以内在地学习尺度不变性
在更多的数据(VOC)上训练后,精度是有进一步提升的
Softmax分类器比"one vs rest"型的SVM表现略好,引入了类间的竞争
更多的Proposal并不一定带来精度的提升
小结
Fast R-CNN的这一结构正是检测任务主流2-stage方法所采用的元结构的雏形。文章将Proposal, Feature Extractor, Object Classification&Localization统一在一个整体的结构中,并通过共享卷积计算提高特征利用效率,是最有贡献的地方。
Faster R-CNN: 两阶段模型的深度化
论文链接: Faster R-CNN: Towards Real Time Object Detection with Region Proposal Networks
Faster R-CNN是2-stage方法的奠基性工作,提出的RPN网络取代Selective Search算法使得检测任务可以由神经网络端到端地完成。粗略的讲,Faster R-CNN = RPN + Fast R-CNN,跟RCNN共享卷积计算的特性使得RPN引入的计算量很小,使得Faster R-CNN可以在单个GPU上以5fps的速度运行,而在精度方面达到SOTA(State of the Art,当前最佳)。
本文的主要贡献是提出Regional Proposal Networks,替代之前的SS算法。RPN网络将Proposal这一任务建模为二分类(是否为物体)的问题。
第一步是在一个滑动窗口上生成不同大小和长宽比例的anchor box(如上图右边部分),取定IoU的阈值,按Ground Truth标定这些anchor box的正负。于是,传入RPN网络的样本数据被整理为anchor box(坐标)和每个anchor box是否有物体(二分类标签)。RPN网络将每个样本映射为一个概率值和四个坐标值,概率值反应这个anchor box有物体的概率,四个坐标值用于回归定义物体的位置。最后将二分类和坐标回归的损失统一起来,作为RPN网络的目标训练。
由RPN得到Region Proposal在根据概率值筛选后经过类似的标记过程,被传入R-CNN子网络,进行多分类和坐标回归,同样用多任务损失将二者的损失联合。
小结
Faster R-CNN的成功之处在于用RPN网络完成了检测任务的"深度化"。使用滑动窗口生成anchor box的思想也在后来的工作中越来越多地被采用(YOLO v2等)。这项工作奠定了"RPN+RCNN"的两阶段方法元结构,影响了大部分后续工作。
单阶段(1-stage)检测模型
单阶段模型没有中间的区域检出过程,直接从图片获得预测结果,也被成为Region-free方法。
YOLO
论文链接: You Only Look Once: Unified, Real-Time Object Detection
YOLO是单阶段方法的开山之作。它将检测任务表述成一个统一的、端到端的回归问题,并且以只处理一次图片同时得到位置和分类而得名。
YOLO的主要优点:
快。
全局处理使得背景错误相对少,相比基于局部(区域)的方法, 如Fast RCNN。
泛化性能好,在艺术作品上做检测时,YOLO表现比Fast R-CNN好。
YOLO的工作流程如下:
1.准备数据:将图片缩放,划分为等分的网格,每个网格按跟Ground Truth的IoU分配到所要预测的样本。
2.卷积网络:由GoogLeNet更改而来,每个网格对每个类别预测一个条件概率值,并在网格基础上生成B个box,每个box预测五个回归值,四个表征位置,第五个表征这个box含有物体(注意不是某一类物体)的概率和位置的准确程度(由IoU表示)。测试时,分数如下计算:
等式左边第一项由网格预测,后两项由每个box预测,以条件概率的方式得到每个box含有不同类别物体的分数。 因而,卷积网络共输出的预测值个数为S×S×(B×5+C),其中S为网格数,B为每个网格生成box个数,C为类别数。
3.后处理:使用NMS(Non-Maximum Suppression,非极大抑制)过滤得到最后的预测框
损失函数的设计
损失函数被分为三部分:坐标误差、物体误差、类别误差。为了平衡类别不均衡和大小物体等带来的影响,损失函数中添加了权重并将长宽取根号。
小结
YOLO提出了单阶段的新思路,相比两阶段方法,其速度优势明显,实时的特性令人印象深刻。但YOLO本身也存在一些问题,如划分网格较为粗糙,每个网格生成的box个数等限制了对小尺度物体和相近物体的检测。
SSD: Single Shot Multibox Detector
论文链接: SSD: Single Shot Multibox Detector
SSD相比YOLO有以下突出的特点:
多尺度的feature map:基于VGG的不同卷积段,输出feature map到回归器中。这一点试图提升小物体的检测精度。
更多的anchor box,每个网格点生成不同大小和长宽比例的box,并将类别预测概率基于box预测(YOLO是在网格上),得到的输出值个数为(C+4)×k×m×n,其中C为类别数,k为box个数,m×n为feature map的大小。
小结
SSD是单阶段模型早期的集大成者,达到跟接近两阶段模型精度的同时,拥有比两阶段模型快一个数量级的速度。后续的单阶段模型工作大多基于SSD改进展开。
检测模型基本特点
最后,我们对检测模型的基本特征做一个简单的归纳。
检测模型整体上由基础网络(Backbone Network)和检测头部(Detection Head)构成。前者作为特征提取器,给出图像不同大小、不同抽象层次的表示;后者则依据这些表示和监督信息学习类别和位置关联。检测头部负责的类别预测和位置回归两个任务常常是并行进行的,构成多任务的损失进行联合训练。
相比单阶段,两阶段检测模型通常含有一个串行的头部结构,即完成前背景分类和回归后,把中间结果作为RCNN头部的输入再进行一次多分类和位置回归。这种设计带来了一些优点:
对检测任务的解构,先进行前背景的分类,再进行物体的分类,这种解构使得监督信息在不同阶段对网络参数的学习进行指导
RPN网络为RCNN网络提供良好的先验,并有机会整理样本的比例,减轻RCNN网络的学习负担
这种设计的缺点也很明显:中间结果常常带来空间开销,而串行的方式也使得推断速度无法跟单阶段相比;级联的位置回归则会导致RCNN部分的重复计算(如两个RoI有重叠)。
另一方面,单阶段模型只有一次类别预测和位置回归,卷积运算的共享程度更高,拥有更快的速度和更小的内存占用。读者将会在接下来的文章中看到,两种类型的模型也在互相吸收彼此的优点,这也使得两者的界限更为模糊。
❷ 目标检测算法之常见评价指标(mAP)的详细计算方法及代码解析
一个经典例子是存在一个测试集合,测试集合只有大雁和飞机两种图片组成,假设你的分类系统最终的目的是:能取出测试集中所有飞机的图片,而不是大雁的图片。然后就可以定义:
要得到Precision-Recall曲线(以下简称PR)曲线,首先要对检测模型的预测结果按照目标置信度降序排列。然后给定一个rank值,Recall和Precision仅在置信度高于该rank值的预测结果中计算,改变rank值会相应的改变Recall值和Precision值。这里选择了11个不同的rank值,也就得到了11组Precision和Recall值,然后AP值即定义为在这11个Recall下Precision值的平均值,其可以表征整个PR曲线下方的面积。即:
还有另外一种插值的计算方法,即对于某个Recall值r,Precision取所有Recall值大于r中的最大值,这样保证了PR曲线是单调递减的,避免曲线出现摇摆。另外需要注意的一点是在2010年后计算AP值时是取了所有的数据点,而不仅仅只是11个Recall值。我们在计算出AP之后,对所有类别求平均之后就是mAP值了,也是当前目标检测用的最多的评判标准。
❸ 目标检测算法---faster rcnn 知识简要回顾(测试篇)
Faster RCNN检测部分主要可以分为四个模块:
1.特征抽取:用于抽取图像特征,一般可以使用vgg、resnet和mobilenet等backbone;
2.RPN(Region Proposal Network):用于产生候选框,主要做一些粗糙的分类和回归操作;
3.RoI Pooling:主要是为了解决全连接层需要固定尺寸输入,而实际输入大小不一的问题;
4.Classification and Regression:精细化分类和回归。
faster rcnn算法大致流程如下:
彩色图像通过backbone进行特征提取,输出最后一层的feature map。接着将这些feature map进一步做基于3x3卷积核的特征提取,该目的是增强模型的鲁棒性。将输出送入两个分支,第一个分支跟类别有关,这里主要是用于简单分类,区分是背景还是物体,这是针对anchor而言的;第二个分支则是用于初步预测候选框的偏移量,这个也是基于anchor而言的;再将前两个分支的结果送入图中的proposal中,首先会根据positive类的score筛选前6000个候选框,再将anchor的坐标和得到的偏移进行整合,得到初步候选框坐标,接着在做NMS,除去重叠严重的框,再经过了NMS后的框中,根据类别score取前300个框。然后将结果送入roi pooing层,用于生成固定尺寸的特征区域,以方便后边的全连接层接受信息;全连接层用于最后提取特征,得到精细的类别和框的偏移量。
❹ R-CNN, Fast R-CNN, Faster R-CNN, YOLO:目标检测算法总结
参考链接
以下是文中涉及的算法的最原始的文章:
一个最直接的解决办法是从图中取不同的感兴趣区域,然后对这些区域用CNN进行分类,检测这些区域中是否有物体的存在。
但是待检测物体可能存在于图片的不同位置而且有不同的长宽比例。所以以上方法需要选取量非常大的区域并需要非常大的计算量。
因此,R-CNN, Fast R-CNN, Faster R-CNN, YOLO被开发去又快又准地找物体。
为了解决上述提到的有大量区域被选择的问题, Ross Girshick et al 提出了一种方法:用了选择性搜索从图片提取了2000个区域,这些区域被称为”region proposals“。
用这种办法,我们不需要去分类巨大数量的区域了,我们只需要去处理2000个区域。这2000个区域是用如下的选择性搜索算法(selective search algorithm)来找到的:
这篇文章 介绍了更多关于选择性搜索算法(selective search algorithm)的内容。
RCNN步骤:
R-CNN存在的问题:
Fast R-CNN的几个改进:
The same author of the previous paper(R-CNN) solved some of the drawbacks of R-CNN to build a faster object detection algorithm and it was called Fast R-CNN. The approach is similar to the R-CNN algorithm.
Fast R-CNN更快的原因是:
Fast R-CNN更快:
From the above graphs, you can infer that Fast R-CNN is significantly faster in training and testing sessions over R-CNN. When you look at the performance of Fast R-CNN ring testing time, including region proposals slows down the algorithm significantly when compared to not using region proposals. Therefore, region proposals become bottlenecks in Fast R-CNN algorithm affecting its performance.
上面两个算法的缺点:
selective search耗时
Both of the above algorithms(R-CNN & Fast R-CNN) uses selective search to find out the region proposals . Selective search is a slow and time-consuming process affecting the performance of the network.
Faster R-CNN的改进:
不用selective search去找region proposals;
用network去找region proposals;
Therefore, Shaoqing Ren et al . came up with an object detection algorithm that eliminates the selective search algorithm and lets the network learn the region proposals .
Faster R-CNN的步骤:
时间上的对比:
Faster R-CNN最快并且能用作实时目标检测
之前几种算法的缺点:
产生region的时候没有纵览整幅图。其实图的某些部分有更高的可能性包含物体。
All of the previous object detection algorithms use regions to localize the object within the image. The network does not look at the complete image. Instead, parts of the image which have high probabilities of containing the object .
YOLO的思想:
用一个单独的网络去预测bounding boxes和bounding boxes中存在物体的概率
YOLO or You Only Look Once is an object detection algorithm much different from the region based algorithms seen above.
In YOLO, a single convolutional network predicts (1) the bounding boxes and (2)the class probabilities for these boxes.
YOLO的具体步骤:
How YOLO works is that:
YOLO的优缺点:
❺ YOLO 目标检测实战项目‘原理篇’
在目标检测中,IoU 为预测框 (Prediction) 和真实框 (Ground truth) 的交并比。如下图所示,在关于小猫的目标检测中,紫线边框为预测框 (Prediction),红线边框为真实框 (Ground truth)。
在目标检测任务中,通常取 IoU≥0.5,认为召回。如果 IoU 阈值设置更高,召回率将会降低,但定位框则更加精确。
理想的情况,当然是预测框与真实框重叠越多越好,如果两者完全重叠,则交集与并集面积相同,此时 IoU 等于 1。
之前的目标检测方法需要先产生候选区再检测的方法虽然有相对较高的检测准确率,但运行速度较慢。
YOLO 将识别与定位合二为一,结构简便,检测速度快,更快的 Fast YOLO 可以达到 155FPS。
YOLO 网络借鉴了 GoogLeNet 分类网络结构,不同的是 YOLO 使用 1x1 卷积层和 3x3 卷积层替代 inception mole。如下图所示,整个检测网络包括 24 个卷积层和 2 个全连接层。其中,卷积层用来提取图像特征,全连接层用来预测图像位置和类别概率值。
如上图所示,损失函数分为坐标预测(蓝色框)、含有物体的边界框的 confidence 预测(红色框)、不含有物体的边界框的 confidence 预测(黄色框)、分类预测(紫色框)四个部分。
由于不同大小的边界框对预测偏差的敏感度不同,小的边界框对预测偏差的敏感度更大。为了均衡不同尺寸边界框对预测偏差的敏感度的差异。作者巧妙的对边界框的 w,h 取均值再求 L2 loss. YOLO 中更重视坐标预测,赋予坐标损失更大的权重,记为 coord,在 pascal voc 训练中 coodd=5 ,classification error 部分的权重取 1。
某边界框的置信度定义为:某边界框的 confidence = 该边界框存在某类对象的概率 pr (object)* 该边界框与该对象的 ground truth 的 IOU 值 ,若该边界框存在某个对象 pr (object)=1 ,否则 pr (object)=0 。由于一幅图中大部分网格中是没有物体的,这些网格中的边界框的 confidence 置为 0,相比于有物体的网格,这些不包含物体的网格更多,对梯度更新的贡献更大,会导致网络不稳定。为了平衡上述问题,YOLO 损失函数中对没有物体的边界框的 confidence error 赋予较小的权重,记为 noobj,对有物体的边界框的 confidence error 赋予较大的权重。在 pascal VOC 训练中 noobj=0.5 ,有物体的边界框的 confidence error 的权重设为 1.
YOLOv1 虽然检测速度快,但在定位方面不够准确,并且召回率较低。为了提升定位准确度,改善召回率,YOLOv2 在 YOLOv1 的基础上提出了几种改进策略
YOLOv2 中在每个卷积层后加 Batch Normalization (BN) 层,去掉 dropout. BN 层可以起到一定的正则化效果,能提升模型收敛速度,防止模型过拟合。YOLOv2 通过使用 BN 层使得 mAP 提高了 2%。
目前的大部分检测模型都会使用主流分类网络(如 vgg、resnet)在 ImageNet 上的预训练模型作为特征提取器,而这些分类网络大部分都是以小于 256x256 的图片作为输入进行训练的,低分辨率会影响模型检测能力。YOLOv2 将输入图片的分辨率提升至 448x448,为了使网络适应新的分辨率,YOLOv2 先在 ImageNet 上以 448x448 的分辨率对网络进行 10 个 epoch 的微调,让网络适应高分辨率的输入。通过使用高分辨率的输入,YOLOv2 的 mAP 提升了约 4%。
YOLOv1 利用全连接层直接对边界框进行预测,导致丢失较多空间信息,定位不准。YOLOv2 去掉了 YOLOv1 中的全连接层,使用 Anchor Boxes 预测边界框,同时为了得到更高分辨率的特征图,YOLOv2 还去掉了一个池化层。由于图片中的物体都倾向于出现在图片的中心位置,若特征图恰好有一个中心位置,利用这个中心位置预测中心点落入该位置的物体,对这些物体的检测会更容易。所以总希望得到的特征图的宽高都为奇数。YOLOv2 通过缩减网络,使用 416x416 的输入,模型下采样的总步长为 32,最后得到 13x13 的特征图, 然后对 13x13 的特征图的每个 cell 预测 5 个 anchor boxes ,对每个 anchor box 预测边界框的位置信息、置信度和一套分类概率值。使用 anchor boxes 之后,YOLOv2 可以预测 13x13x5=845 个边界框,模型的召回率由原来的 81% 提升到 88%,mAP 由原来的 69.5% 降低到 69.2%. 召回率提升了 7%,准确率下降了 0.3%。
YOLOv2 采用 Darknet-19,其网络结构如下图所示,包括 19 个卷积层和 5 个 max pooling 层,主要采用 3x3 卷积和 1x1 卷积, 这里 1x1 卷积可以压缩特征图通道数以降低模型计算量和参数 ,每个卷积层后使用 BN 层 以加快模型收敛同时防止过拟合。最终采用 global avg pool 做预测。采用 YOLOv2,模型的 mAP 值没有显着提升,但计算量减少了。
在 Faster R-CNN 和 SSD 中,先验框都是手动设定的,带有一定的主观性。YOLOv2 采用 k-means 聚类算法对训练集中的边界框做了聚类分析,选用 boxes 之间的 IOU 值作为聚类指标。综合考虑模型复杂度和召回率,最终选择 5 个聚类中心,得到 5 个先验框,发现其中中扁长的框较少,而瘦高的框更多,更符合行人特征。通过对比实验,发现用聚类分析得到的先验框比手动选择的先验框有更高的平均 IOU 值,这使得模型更容易训练学习。
Faster R-CNN 使用 anchor boxes 预测边界框相对先验框的偏移量,由于没有对偏移量进行约束,每个位置预测的边界框可以落在图片任何位置,会导致模型不稳定,加长训练时间。YOLOv2 沿用 YOLOv1 的方法,根据所在网格单元的位置来预测坐标,则 Ground Truth 的值介于 0 到 1 之间。网络中将得到的网络预测结果再输入 sigmoid 函数中,让输出结果介于 0 到 1 之间。设一个网格相对于图片左上角的偏移量是 cx,cy。先验框的宽度和高度分别是 pw 和 ph,则预测的边界框相对于特征图的中心坐标 (bx,by) 和宽高 bw、bh 的计算公式如下图所示。
YOLOv2 结合 Dimention Clusters, 通过对边界框的位置预测进行约束,使模型更容易稳定训练,这种方式使得模型的 mAP 值提升了约 5%。
YOLOv2 借鉴 SSD 使用多尺度的特征图做检测,提出 pass through 层将高分辨率的特征图与低分辨率的特征图联系在一起,从而实现多尺度检测。YOLOv2 提取 Darknet-19 最后一个 max pool 层的输入,得到 26x26x512 的特征图。经过 1x1x64 的卷积以降低特征图的维度,得到 26x26x64 的特征图,然后经过 pass through 层的处理变成 13x13x256 的特征图(抽取原特征图每个 2x2 的局部区域组成新的 channel,即原特征图大小降低 4 倍,channel 增加 4 倍),再与 13x13x1024 大小的特征图连接,变成 13x13x1280 的特征图,最后在这些特征图上做预测。使用 Fine-Grained Features,YOLOv2 的性能提升了 1%.
YOLOv2 中使用的 Darknet-19 网络结构中只有卷积层和池化层,所以其对输入图片的大小没有限制。YOLOv2 采用多尺度输入的方式训练,在训练过程中每隔 10 个 batches , 重新随机选择输入图片的尺寸,由于 Darknet-19 下采样总步长为 32,输入图片的尺寸一般选择 32 的倍数 {320,352,…,608}。采用 Multi-Scale Training, 可以适应不同大小的图片输入,** 当采用低分辨率的图片输入时,mAP 值略有下降,但速度更快,当采用高分辨率的图片输入时,能得到较高 mAP 值,但速度有所下降。**
YOLOv2 借鉴了很多其它目标检测方法的一些技巧,如 Faster R-CNN 的 anchor boxes, SSD 中的多尺度检测。除此之外,YOLOv2 在网络设计上做了很多 tricks, 使它能在保证速度的同时提高检测准确率,Multi-Scale Training 更使得同一个模型适应不同大小的输入,从而可以在速度和精度上进行自由权衡。
YOLO v2 对 YOLO v1 的缺陷进行优化,大幅度高了检测的性能,但仍存在一定的问题, 如无法解决重叠问题的分类等 。
将 256x256 的图片分别输入以 Darknet-19,ResNet-101,ResNet-152 和 Darknet-53 为基础网络的分类模型中,实验得到的结果如下图所示。可以看到 Darknet-53 比 ResNet-101 的性能更好,而且速度是其 1.5 倍,Darknet-53 与 ResNet-152 性能相似但速度几乎是其 2 倍。注意到,Darknet-53 相比于其它网络结构实现了每秒最高的浮点计算量,说明其网络结构能更好的利用 GPU。
YOLOv3 借鉴了 FPN 的思想,从不同尺度提取特征。相比 YOLOv2,YOLOv3 提取最后 3 层特征图,不仅在每个特征图上分别独立做预测,同时通过将小特征图上采样到与大的特征图相同大小,然后与大的特征图拼接做进一步预测。用维度聚类的思想聚类出 9 种尺度的 anchor box,将 9 种尺度的 anchor box 均匀的分配给 3 种尺度的特征图 .
在实际应用场合中,一个物体有可能输入多个类别,单纯的单标签分类在实际场景中存在一定的限制。举例来说,一辆车它既可以属于 car(小汽车)类别,也可以属于 vehicle(交通工具),用单标签分类只能得到一个类别。因此在 YOLO v3 在网络结构中把原先的 softmax 层换成了逻辑回归层,从而实现把单标签分类改成多标签分类。用多个 logistic 分类器代替 softmax 并不会降低准确率,可以维持 YOLO 的检测精度不下降。
对于对象检测,不仅要考虑精度,还要考虑实时运行的性能,虽然现在算力大幅度上升,但是普通的设备跑起来还是有点吃力。提高精度和加快速率仍是目标检测的重大课题,道阻且长!
参考:
YOLOv1 参考
YOLOv2 参考
YOLOv3 参考
https://mp.weixin.qq.com/s/yccBloK5pOVxDIFkmoY7xg :非极大抑制
❻ 计算机视觉——典型的目标检测算法(OverFeat算法)(二)
【嵌牛导读】目标检测在现实中的应用很广泛,我们需要检测数字图像中的物体位置以及类别,它需要我们构建一个模型,模型的输入一张图片,模型的输出需要圈出图片中所有物体的位置以及物体所属的类别。在深度学习浪潮到来之前,目标检测精度的进步十分缓慢,靠传统依靠手工特征的方法来提高精度已是相当困难的事。而ImageNet分类大赛出现的卷积神经网络(CNN)——AlexNet所展现的强大性能,吸引着学者们将CNN迁移到了其他的任务,这也包括着目标检测任务,近年来,出现了很多目标检测算法。
【嵌牛鼻子】计算机视觉
【嵌牛提问】如何理解目标检测算法——OverFeat
【嵌牛正文】
一、深度学习的典型目标检测算法
深度学习目标检测算法主要分为 双阶段检测算法 和 单阶段检测算法 ,如图1所示。
双阶段目标检测算法先对图像提取候选框,然后基于候选区域做二次修正得到检测结果,检测精度较高,但检测速度较慢;单阶段目标验测算法直接对图像进行计算生成检测结果,检测速度快,但检测精度低。
1、双阶段目标检测算法
双阶段目标检测方法主要通过选择性搜索(Selective Search)或者Edge Boxes等算法对输入图像选取可能包含检测目标的候选区域(Region Proposal),再对候选区域进行分类和位置回归以得到检测结果。
1.1 OverFeat 算法
《OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks》
Sermanet 等改进AlexNet 提出 OverFeat 算法。该算法结合AlexNet通过多尺度滑动窗口实现特征提取功能,并且共享特征提取层,应用于图像分类、定位和目标检测等任务。
关键技术:
1、FCN( 全卷积神经网络 )
对于一个各层参数结构都设计好的网络模型,要求输入图片的尺寸是固定的(例如,Alexnet要求输入图片的尺寸为227px*227px)。如果输入一张500*500的图片,希望模型仍然可以一直前向传导,即一个已经设计完毕的网络,可以输入任意大小的图片,这就是FCN。
FCN的思想在于:
1、从卷积层到全连接层,看成是对一整张图片的卷积层运算。
2、从全连接层到全连接层,看成是采用1*1大小的卷积核,进行卷积层运算。
如上图所示,绿色部分代表卷积核大小。假设一个CNN模型,其输入图片大小是14*14,通过第一层卷积后得到10*10大小的图片,然后接着通过池化得到了5*5大小的图片。像但是对于像素值为5*5的图片到像素值为1*1的图片的过程中:
(1)传统的CNN:如果从以前的角度进行理解的话,那么这个过程就是全连接层,我们会把这个5*5大小的图片,展平成为一维向量进行计算。
(2)FCN:FCN并不是把5*5的图片展平成一维向量再进行计算,而是直接采用5*5的卷积核,对一整张图片进行卷积运算。
二者本质上是相同的,只是角度不同,FCN把这个过程当成了对一整张特征图进行卷积,同样,后面的全连接层也是把它当做是以1*1大小的卷积核进行卷积运算。
当输入一张任意大小的图片,就需要利用以上所述的网络,例如输入一张像素为16*16的图片:
根据上图,该网络最后的输出是一张2*2的图片。可见采用FCN网络可以输入任意大小的图片。同时需要注意的是网络最后输出的图片大小不在是一个1*1大小的图片,而是一个与输入图片大小息息相关的一张图片。
Overfeat就是把采用FCN的思想把全连接层看成了卷积层,在网络测试阶段可以输入任意大小的图片。
2、offset max-pooling
简单起见,不用二维的图像作为例子,而是采用一维作为示例:
如上图所示,在X轴上有20个神经元,并且选择池化size=3的非重叠池化,那么根据之前所学的方法应该是:对上面的20个神经元,从1位置开始进行分组,每3个连续的神经元为一组,然后计算每组的最大值(最大池化),19、20号神经元将被丢弃,如下图所示:
或者可以在20号神经元后面,添加一个数值为0的神经元编号21,与19、20成为一组,这样可以分成7组:[1,2,3],[4,5,6]……,
[16,17,18],[19,20,21],最后计算每组的最大值。
如果只分6组,除了以1作为初始位置进行连续组合之外,也可以从位置2或者3开始进行组合。也就是说其实有3种池化组合方法:
A、△=0分组:[1,2,3],[4,5,6]……,[16,17,18];
B、△=1分组:[2,3,4],[5,6,7]……,[17,18,19];
C、△=2分组:[3,4,5],[6,7,8]……,[18,19,20];
对应图片如下:
以往的CNN中,一般只用△=0的情况,得到池化结果后,就送入了下一层。但是该文献的方法是,把上面的△=0、△=1、△=2的三种组合方式的池化结果,分别送入网络的下一层。这样的话,网络在最后输出的时候,就会出现3种预测结果了。
前面所述是一维的情况,如果是2维图片的话,那么(△x,△y)就会有9种取值情况(3*3);如果我们在做图片分类的时候,在网络的某一个池化层加入了这种offset 池化方法,然后把这9种池化结果,分别送入后面的网络层,最后的图片分类输出结果就可以得到9个预测结果(每个类别都可以得到9种概率值,然后我们对每个类别的9种概率,取其最大值,做为此类别的预测概率值)。
算法原理:
文献中的算法,就是把这两种思想结合起来,形成了文献最后测试阶段的算法。
1、论文的网络架构与训练阶段
(1)网络架构
对于网络的结构,文献给出了两个版本——快速版、精确版,一个精度比较高但速度慢;另外一个精度虽然低但是速度快。下面是高精度版本的网络结构表相关参数:
表格参数说明:
网络输入:图片大小为221px*221px;
网络结构方面基本上和AlexNet相同,使用了ReLU激活,最大池化。不同之处在于:(a)作者没有使用局部响应归一化层;(b)然后也没有采用重叠池化的方法;(c)在第一层卷积层,stride作者是选择了2,这个与AlexNet不同(AlexNet选择的跨步是4,在网络中,如果stride选择比较大得话,虽然可以减少网络层数,提高速度,但是却会降低精度)。
需要注意的是把f7这一层,看成是卷积核大小为5*5的卷积层,总之就是需要把网络看成前面所述的FCN模型,去除了全连接层的概念,因为在测试阶段可不是仅仅输入221*221这样大小的图片,在测试阶段要输入各种大小的图片,具体请看后面测试阶段的讲解。
(2)网络训练
训练输入:对于每张原图片为256*256,然后进行随机裁剪为221*221的大小作为CNN输入,进行训练。
优化求解参数设置:训练的min-batchs选择128,权重初始化选择高斯分布的随机初始化:
然后采用随机梯度下降法,进行优化更新,动量项参数大小选择0.6,L2权重衰减系数大小选择10-5次方。学习率初始化值为0.05,根据迭代次数的增加,每隔几十次的迭代后,就把学习率的大小减小一半。
然后就是DropOut,这个只有在最后的两个全连接层,才采用dropout,dropout比率选择0.5。
2、网络测试阶段
在Alexnet的文献中,预测方法是输入一张图片256*256,然后进行multi-view裁剪,也就是从图片的四个角进行裁剪,还有就是一图片的中心进行裁剪,这样可以裁剪到5张224*224的图片。然后把原图片水平翻转一下,再用同样的方式进行裁剪,又可以裁剪到5张图片。把这10张图片作为输入,分别进行预测分类,在后在softmax的最后一层,求取个各类的总概率,求取平均值。
然而Alexnet这种预测方法存在两个问题:
一方面这样的裁剪方式,把图片的很多区域都给忽略了,这样的裁剪方式,刚好把图片物体的一部分给裁剪掉了;
另一方面,裁剪窗口重叠存在很多冗余的计算,像上面要分别把10张图片送入网络,可见测试阶段的计算量还是较大的。
Overfeat算法:
训练完上面所说的网络之后,在测试阶段不再是用一张221*221大小的图片了作为网络的输入,而是用了6张大小都不相同的图片,也就是所谓的多尺度输入预测,如下表格所示:
当网络前向传导到layer 5的时候,就利用了前面所述的FCN、offset pooling这两种思想的相结合。现以输入一张图片为例(6张图片的计算方法都相同),讲解layer 5后面的整体过程,具体流程示意图如下:
步骤一:
对于某个尺度的图片,经过前五层的卷积后得到特征图。上图中特征图的分辨率是20x23,256个通道。
步骤二:
对于该特征图,重复多次使用非重叠的池化,每次池化的偏置不同,有行偏置和列偏置。上图中偏置池化3次,偏置分别为为(0,1,2)。这就是offset pooling,也被称为fine stride。offset pooling得到的特征图的维度为6x7x3x3xD,其中6x7是特征图的分辨率,3x3是偏置池化的次数,D是通道数。上图中是以1维显示的。
步骤三:
池化后得到的特征图将被送入分类器。
步骤四:
分类器的输入是的5x5xD,输出是C(类别数)维向量。但是offset pooling后得到的特征图并不是5x5xD,比如上图中的特征图大小为6x7xD,因此分类器以滑动窗口的方式应用在特征图上,每个滑动窗口经过分类器输出一个C维向量。比如上图中输入的6x7xD的特征图最终得到2x3xC的输出,其中2x3是滑动窗口的个数。
步骤五:
而2x3xC只是一组偏置池化的输出,总的输出为2x3x3x3xC,将输出的张量reshape,得到6x9xC输出张量。最终输出分类张量为3d张量,即两个分辨率维度 x C维。
然后需要在后面把它们拉成一维向量,这样在一个尺度上,可以得到一个C*N个预测值矩阵,每一列就表示图片属于某一类别的概率值,并且求取每一列的最大值,作为本尺度的每个类别的概率值。
最后一共用了6种不同尺度(文献使用了12张,另外6张是水平翻转的图片)进行做预测,然后把这六种尺度结果再做一个平均,作为最最后的结果。
从上面过程可以看到整个网络分成两部分:layer 1~5这五层称之为特征提取层;layer 6~output称之为分类层。
六、定位任务
用于定位任务的时候,就把分类层(上面的layer 6~output)给重新设计一下,把分类改成回归问题,然后在各种不同尺度上训练预测物体的bounding box。
❼ 目标跟踪检测算法(一)——传统方法
姓名:刘帆;学号:20021210609;学院:电子工程学院
https://blog.csdn.net/qq_34919792/article/details/89893214
【嵌牛导读】目标跟踪算法研究难点与挑战在于实际复杂的应用环境 、背景相似干扰、光照条件的变化、遮挡等外界因素以及目标姿态变化,外观变形,尺度变化、平面外旋转、平面内旋转、出视野、快速运动和运动模糊等。而且当目标跟踪算法投入实际应用时,不可避免的一个问题——实时性问题也是非常的重要。正是有了这些问题,才使得算法研究充满着难点和挑战。
【嵌牛鼻子】目标跟踪算法,传统算法
【嵌牛提问】利用目标跟踪检测算法要达到何目的?第一阶段的单目标追踪算法包括什么?具体步骤有哪些?它们有何特点?
【嵌牛正文】
第一阶段
目标跟踪分为两个部分,一个是对指定目标寻找可以跟踪的特征,常用的有颜色,轮廓,特征点,轨迹等,另一个是对目标特征进行跟踪。
1、静态背景
1)背景差: 对背景的光照变化、噪声干扰以及周期性运动等进行建模。通过当前帧减去背景图来捕获运动物体的过程。
2)帧差: 由于场景中的目标在运动,目标的影像在不同图像帧中的位置不同。该类算法对时间上连续的两帧或三帧图像进行差分运算,不同帧对应的像素点相减,判断灰度差的绝对值,当绝对值超过一定阈值时,即可判断为运动目标,从而实现目标的检测功能。
与二帧差分法不同的是,三帧差分法(交并运算)去除了重影现象,可以检测出较为完整的物体。帧间差分法的原理简单,计算量小,能够快速检测出场景中的运动目标。但帧间差分法检测的目标不完整,内部含有“空洞”,这是因为运动目标在相邻帧之间的位置变化缓慢,目标内部在不同帧图像中相重叠的部分很难检测出来。帧间差分法通常不单独用在目标检测中,往往与其它的检测算法结合使用。
3)Codebook
算法为图像中每一个像素点建立一个码本,每个码本可以包括多个码元(对应阈值范围),在学习阶段,对当前像素点进行匹配,如果该像素值在某个码元的学习阈值内,也就是说与之前出现过的某种历史情况偏离不大,则认为该像素点符合背景特征,需要更新对应点的学习阈值和检测阈值。
如果新来的像素值与每个码元都不匹配,则可能是由于动态背景导致,这种情况下,我们需要为其建立一个新的码元。每个像素点通过对应多个码元,来适应复杂的动态背景。
在应用时,每隔一段时间选择K帧通过更新算法建立CodeBook背景模型,并且删除超过一段时间未使用的码元。
4)GMM
混合高斯模型(Gaussian of Micture Models,GMM)是较常用的背景去除方法之一(其他的还有均值法、中值法、滑动平均滤波等)。
首先我们需要了解单核高斯滤波的算法步骤:
混合高斯建模GMM(Gaussian Mixture Model)作为单核高斯背景建模的扩展,是目前使用最广泛的一种方法,GMM将背景模型描述为多个分布,每个像素的R、G、B三个通道像素值的变化分别由一个混合高斯模型分布来刻画,符合其中一个分布模型的像素即为背景像素。作为最常用的一种背景建模方法,GMM有很多改进版本,比如利用纹理复杂度来更新差分阈值,通过像素变化的剧烈程度来动态调整学习率等。
5)ViBe(2011)
ViBe算法主要特点是随机背景更新策略,这和GMM有很大不同。其步骤和GMM类似。具体的思想就是为每个像素点存储了一个样本集,样本集中采样值就是该像素点过去的像素值和其邻居点的像素值,然后将每一个新的像素值和样本集进行比较来判断是否属于背景点。
其中pt(x)为新帧的像素值,R为设定值,p1、p2、p3….为样本集中的像素值,以pt(x)为圆心R为半径的圆被认为成一个集,当样本集与此集的交集大于设定的阈值#min时,可认为此为背景像素点(交集越大,表示新像素点与样本集越相关)。我们可以通过改变#min的值与R的值来改变模型的灵敏度。
Step1:初始化单帧图像中每个像素点的背景模型。假设每一个像素和其邻域像素的像素值在空域上有相似的分布。基于这种假设,每一个像素模型都可以用其邻域中的像素来表示。为了保证背景模型符合统计学规律,邻域的范围要足够大。当输入第一帧图像时,即t=0时,像素的背景模型。其中,NG(x,y)表示空域上相邻的像素值,f(xi,yi)表示当前点的像素值。在N次的初始化的过程中,NG(x,y)中的像素点(xi,yi)被选中的可能次数为L=1,2,3,…,N。
Step2:对后续的图像序列进行前景目标分割操作。当t=k时,像素点(x,y)的背景模型为BKm(x,y),像素值为fk(x,y)。按照下面判断该像素值是否为前景。这里上标r是随机选的;T是预先设置好的阈值。当fk(x,y)满足符合背景#N次时,我们认为像素点fk(x,y)为背景,否则为前景。
Step3:ViBe算法的更新在时间和空间上都具有随机性。每一个背景点有1/ φ的概率去更新自己的模型样本值,同时也有1/ φ的概率去更新它的邻居点的模型样本值。更新邻居的样本值利用了像素值的空间传播特性,背景模型逐渐向外扩散,这也有利于Ghost区域的更快的识别。同时当前景点计数达到临界值时将其变为背景,并有1/ φ的概率去更新自己的模型样本值(为了减少缓慢移动物体的影响和摄像机的抖动)。
可以有如下总结,ViBe中的每一个像素点在更新的时候都有一个时间和空间上随机影响的范围,这个范围很小,大概3x3的样子,这个是考虑到摄像头抖动时会有坐标的轻微来回变化,这样虽然由于ViBe的判别方式仍认为是背景点,但是也会对后面的判别产生影响,为了保证空间的连续性,随机更新减少了这个影响。而在样本值保留在样本集中的概率随着时间的增大而变小,这就保证了像素模型在时间上面的延续特性。
6)光流
光流是由物体或相机的运动引起的图像对象在两个连续帧之间的视在运动模式。它是2D矢量场,其中每个矢量是一个位移矢量,显示点从第一帧到第二帧的移动。
光流实际上是一种特征点跟踪方法,其计算的为向量,基于三点假设:
1、场景中目标的像素在帧间运动时亮度(像素值或其衍生值)不发生变化;2、帧间位移不能太大;3、同一表面上的邻近点都在做相同的运动;
光流跟踪过程:1)对一个连续视频帧序列进行处理;2)对每一帧进行前景目标检测;3)对某一帧出现的前景目标,找出具有代表性的特征点(Harris角点);4)对于前后帧做像素值比较,寻找上一帧在当前帧中的最佳位置,从而得到前景目标在当前帧中的位置信息;5)重复上述步骤,即可实现目标跟踪
2、运动场(分为相机固定,但是视角变化和相机是运动的)
1)运动建模(如视觉里程计运动模型、速度运动模型等)
运动学是对进行刚性位移的相机进行构型,一般通过6个变量来描述,3个直角坐标,3个欧拉角(横滚、俯仰、偏航)。
Ⅰ、对相机的运动建模
由于这个不是我们本次所要讨论的重点,但是在《概率机器人》一书中提出了很多很好的方法,相机的运动需要对图像内的像素做位移矩阵和旋转矩阵的坐标换算。除了对相机建立传统的速度运动模型外,也可以用视觉里程计等通关过置信度的更新来得到概率最大位置。
Ⅱ、对于跟踪目标的运动建模
该方法需要提前通过先验知识知道所跟踪的目标对象是什么,比如车辆、行人、人脸等。通过对要跟踪的目标进行建模,然后再利用该模型来进行实际的跟踪。该方法必须提前知道要跟踪的目标对象是什么,然后再去跟踪指定的目标,这是它的局限性,因而其推广性相对比较差。(比如已知跟踪的物体是羽毛球,那很容易通过前几帧的取点,来建立整个羽毛球运动的抛物线模型)
2)核心搜索算法(常见的预测算法有Kalman(卡尔曼)滤波、扩展卡尔曼滤波、粒子滤波)
Ⅰ、Kalman 滤波
Kalman滤波器是通过前一状态预测当前状态,并使用当前观测状态进行校正,从而保证输出状态平稳变化,可有效抵抗观测误差。因此在运动目标跟踪中也被广泛使用。
在视频处理的运动目标跟踪里,每个目标的状态可表示为(x,y,w,h),x和y表示目标位置,w和h表示目标宽高。一般地认为目标的宽高是不变的,而其运动速度是匀速,那么目标的状态向量就应该扩展为(x,y,w,h,dx,dy),其中dx和dy是目标当前时刻的速度。通过kalman滤波器来估计每个时刻目标状态的大致过程为:
对视频进行运动目标检测,通过简单匹配方法来给出目标的第一个和第二个状态,从第三个状态开始,就先使用kalman滤波器预测出当前状态,再用当前帧图像的检测结果作为观测值输入给kalman滤波器,得到的校正结果就被认为是目标在当前帧的真实状态。(其中,Zt为测量值,为预测值,ut为控制量,Kt为增益。)
Ⅱ、扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)
由于卡尔曼滤波的假设为线性问题,无法直接用在非线性问题上,EKF和UKF解决了这个问题(这个线性问题体现在用测量量来计算预测量的过程中)。EKF是通过构建线性函数g(x),与非线性函数相切,并对每一时刻所求得的g(x)做KF,如下图所示。
UKF与EKF去求解雅可比矩阵拟合线性方程的方法不同,通过对那个先验分布中的采集点,来线性化随机变量的非线性函数。与EKF所用的方法不同,UKF产生的高斯分布和实际高斯分布更加接近,其引起的近似误差也更小。
Ⅲ、粒子滤波
1、初始状态:基于粒子滤波的目标追踪方法是一种生成式跟踪方法,所以要有一个初始化的阶段。对于第一帧图像,人工标定出待检测的目标,对该目标区域提出特征;
2、搜索阶段:现在已经知道了目标的特征,然后就在目标的周围撒点(particle), 如:a)均匀的撒点;b)按高斯分布撒点,就是近的地方撒得多,远的地方撒的少。论文里使用的是后一种方法。每一个粒子都计算所在区域内的颜色直方图,如初始化提取特征一样,然后对所有的相似度进行归一化。文中相似性使用的是巴氏距离;
3、重采样:根据粒子权重对粒子进行筛选,筛选过程中,既要大量保留权重大的粒子,又要有一小部分权重小的粒子;
4、状态转移:将重采样后的粒子带入状态转移方程得到新的预测粒子;
5、测量及更新:对目标点特征化,并计算各个粒子和目标间的巴氏距离,更新粒子的权重;
6、决策阶段:每个粒子都获得一个和目标的相似度,相似度越高,目标在该范围出现的可能性越高,将保留的所有粒子通过相似度加权后的结果作为目标可能的位置。
3)Meanshift算法
MeanShift算法属于核密度估计法,它不需要任何先验知识而完全依靠特征空间中样本点的计算其密度函数值。对于一组采样数据,直方图法通常把数据的值域分成若干相等的区间,数据按区间分成若干组,每组数据的个数与总参数个数的比率就是每个单元的概率值;核密度估计法的原理相似于直方图法,只是多了一个用于平滑数据的核函数。采用核函数估计法,在采样充分的情况下,能够渐进地收敛于任意的密度函数,即可以对服从任何分布的数据进行密度估计。
Meanshift算法步骤
1、通过对初始点(或者上一帧的目标点)为圆心,绘制一个半径为R的圆心,寻找特征和该点相似的点所构成的向量;
2、所有向量相加,可以获得一个向量叠加,这个向量指向特征点多的方向;
3、取步骤二的向量终点为初始点重复步骤一、二,直到得到的向量小于一定的阈值,也就是说明当前位置是特征点密度最密集的地方,停止迭代,认为该点为当前帧的目标点;
4)Camshift算法
Camshift算法是MeanShift算法的改进,称为连续自适应的MeanShift算法。Camshift 是由Meanshift 推导而来 Meanshift主要是用在单张影像上,但是独立一张影像分析对追踪而言并无意义,Camshift 就是利用MeanShift的方法,对影像串行进行分析。
1、首先在影像串行中选择目标区域。
2、计算此区域的颜色直方图(特征提取)。
3、用MeanShift算法来收敛欲追踪的区域。
4、通过目标点的位置和向量信息计算新的窗口大小,并标示之。
5、以此为参数重复步骤三、四。
Camshift 关键就在于当目标的大小发生改变的时候,此算法可以自适应调整目标区域继续跟踪。
3、小结
第一阶段的单目标追踪算法基本上都是传统方法,计算量小,在嵌入式等设备中落地较多,opencv中也预留了大量的接口。通过上面的两节的介绍,我们不难发现,目标检测算法的步骤分为两部分,一部分是对指定目标寻找可以跟踪的特征,常用的有颜色,轮廓,特征点,轨迹等,另一部分是对目标特征进行跟踪,如上文所提及的方法。所以目标检测方法的发展,也可总结为两个方面,一个是如何去获得更加具有区分性的可跟踪的稳定特征,另一个是如何建立帧与帧之间的数据关联,保证跟踪目标是正确的。
随着以概率为基础的卡尔曼滤波、粒子滤波或是以Meanshift为代表向量叠加方法在目标检测的运用,使得目标检测不再需要假设自身的一个状态为静止的,而是可以是运动的,更加符合复杂场景中的目标跟踪。