导航:首页 > 源码编译 > 适恰的算法

适恰的算法

发布时间:2023-03-01 13:44:22

㈠ 初学者如何选择合适的机器学习算法(附算法

如何为分类问题选择合适的机器学习算法 若要达到一定的准确率,需要尝试各种各样的分类器,并通过交叉验证选择最好的一个。但是,如果你只是为你的问题寻找一个“足够好”的算法或者一个起点,以下准则有利于选择合适的分类器:你的训练集有多大?如果训练集很小,那么高偏差/低方差分类器(如朴素贝叶斯分类器)要优于低偏差/高方差分类器(如k近邻分类器),因为后者容易过拟合。然而,随着训练集的增大,低偏差/高方差分类器将开始胜出(它们具有较低的渐近误差),因为高偏差分类器不足以提供准确的模型。这可以认为这是生成模型与判别模型的区别。一些特定算法比较朴素贝叶斯优点:简单;如果朴素贝叶斯(NB)条件独立性假设成立,相比于逻辑回归这类的判别模型,朴素贝叶斯分类器将收敛得更快,所以你只需要较小的训练集。而且,即使NB假设不成立,朴素贝叶斯分类器在实践方面仍然表现很好。如果想得到简单快捷的执行效果,这将是个好的选择。缺点:不能学习特征之间的相互作用(比如,它不能学习出:虽然你喜欢布拉德·皮特和汤姆·克鲁斯的电影,但却不喜欢他们一起合作的电影)。逻辑回归优点:有许多正则化模型的方法,不需要像在朴素贝叶斯分类器中那样担心特征间的相互关联性。与决策树和支持向量机 不同,有一个很好的概率解释,并能容易地更新模型来吸收新数据(使用一个在线梯度下降方法)。如果你想要一个概率框架(比如,简单地调整分类阈值,说出什么时候是不太确定的,或者获得置信区间),或你期望未来接收更多想要快速并入模型中的训练数据,就选择逻辑回归。决策树优点:易于说明和解释,很容易地处理特征间的相互作用,并且是非参数化的,不用担心异常值或者数据是否线性可分(比如,决策树可以很容易地某特征x的低端是类A,中间是类B,然后高端又是类A的情况)。缺点:1)不支持在线学习,当有新样本时需要重建决策树。2)容易过拟合,但这也正是诸如随机森林(或提高树)之类的集成方法的切入点。另外,随机森林适用于很多分类问题(通常略优于支持向量机)---快速并且可扩展,不像支持向量机那样调一堆参数。随机森林正渐渐开始偷走它的“王冠”。 SVMs 优点:高准确率,为过拟合提供了好的理论保证;即使数据在基础特征空间线性不可分,只要选定一个恰当的核函数,仍然能够取得很好的分类效果。它们在超高维空间是常态的文本分类问题中尤其受欢迎。然而,它们内存消耗大,难于解释,运行和调参 复杂,尽管如此,更好的数据往往胜过更好的算法,设计好的特征非常重要。如果有一个庞大数据集,这时使用哪种分类算法在分类性能方面可能并不要紧;因此,要基于速度和易用性选择算法。

㈡ 面试必会八大排序算法(python

一、插入排序

介绍

插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据。

算法适用于少量数据的排序,时间复杂度为O(n^2)。

插入排算法是稳定的排序方法。

步骤

①从第一个元素开始,该元素可以认为已经被排序

②取出下一个元素,在已经排序的元素序列中从后向前扫描

③如果该元素(已排序)大于新元素,将该元素移到下一位置

④重复步骤3,直到找到已排序的元素小于或者等于新元素的位置

⑤将新元素插入到该位置中

⑥重复步骤2

排序演示

算法实现

二、冒泡排序

介绍

冒泡排序(Bubble Sort)是一种简单的排序算法,时间复杂度为O(n^2)。

它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

原理

循环遍历列表,每次循环找出循环最大的元素排在后面;

需要使用嵌套循环实现:外层循环控制总循环次数,内层循环负责每轮的循环比较。

步骤

①比较相邻的元素。如果第一个比第二个大,就交换他们两个。

②对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。

③针对所有的元素重复以上的步骤,除了最后一个。

④持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

算法实现:

三、快速排序

介绍

快速排序(Quicksort)是对冒泡排序的一种改进,借用了分治的思想,由C. A. R. Hoare在1962年提出。

基本思想

快速排序的基本思想是:挖坑填数 + 分治法。

首先选出一个轴值(pivot,也有叫基准的),通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

实现步骤

①从数列中挑出一个元素,称为 “基准”(pivot);

②重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边);

③对所有两个小数列重复第二步,直至各区间只有一个数。

排序演示

算法实现

四、希尔排序

介绍

希尔排序(Shell Sort)是插入排序的一种,也是缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法,时间复杂度为:O(1.3n)。

希尔排序是基于插入排序的以下两点性质而提出改进方法的:

·插入排序在对几乎已经排好序的数据操作时, 效率高, 即可以达到线性排序的效率;

·但插入排序一般来说是低效的, 因为插入排序每次只能将数据移动一位。

基本思想

①希尔排序是把记录按下标的一定量分组,对每组使用直接插入算法排序;

②随着增量逐渐减少,每组包1含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法被终止。

排序演示

算法实现

五、选择排序

介绍

选择排序(Selection sort)是一种简单直观的排序算法,时间复杂度为Ο(n2)。

基本思想

选择排序的基本思想:比较 + 交换。

第一趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;

第二趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;

以此类推,第 i 趟,在待排序记录ri ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。

排序演示

选择排序的示例动画。红色表示当前最小值,黄色表示已排序序列,蓝色表示当前位置。

算法实现

六、堆排序

介绍

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。

利用数组的特点快速指定索引的元素。

基本思想

堆分为大根堆和小根堆,是完全二叉树。

大根堆的要求是每个节点的值不大于其父节点的值,即A[PARENT[i]] >=A[i]。

在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。

排序演示

算法实现

七、归并排序

介绍

归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

基本思想

归并排序算法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。

算法思想

自上而下递归法(假如序列共有n个元素)

① 将序列每相邻两个数字进行归并操作,形成 floor(n/2)个序列,排序后每个序列包含两个元素;

② 将上述序列再次归并,形成 floor(n/4)个序列,每个序列包含四个元素;

③ 重复步骤②,直到所有元素排序完毕。

自下而上迭代法

① 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;

② 设定两个指针,最初位置分别为两个已经排序序列的起始位置;

③ 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;

④ 重复步骤③直到某一指针达到序列尾;

⑤ 将另一序列剩下的所有元素直接复制到合并序列尾。

排序演示

算法实现

八、基数排序

介绍

基数排序(Radix Sort)属于“分配式排序”,又称为“桶子法”。

基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m) ,其中 r 为采取的基数,而m为堆数。

在某些时候,基数排序法的效率高于其他的稳定性排序法。

基本思想

将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。

基数排序按照优先从高位或低位来排序有两种实现方案:

MSD(Most significant digital) 从最左侧高位开始进行排序。先按k1排序分组, 同一组中记录, 关键码k1相等,再对各组按k2排序分成子组, 之后, 对后面的关键码继续这样的排序分组, 直到按最次位关键码kd对各子组排序后. 再将各组连接起来,便得到一个有序序列。MSD方式适用于位数多的序列。

LSD (Least significant digital)从最右侧低位开始进行排序。先从kd开始排序,再对kd-1进行排序,依次重复,直到对k1排序后便得到一个有序序列。LSD方式适用于位数少的序列。

排序效果

算法实现

九、总结

各种排序的稳定性、时间复杂度、空间复杂度的总结:

平方阶O(n²)排序:各类简单排序:直接插入、直接选择和冒泡排序;

从时间复杂度来说:

线性对数阶O(nlog₂n)排序:快速排序、堆排序和归并排序;

O(n1+§))排序,§是介于0和1之间的常数:希尔排序 ;

线性阶O(n)排序:基数排序,此外还有桶、箱排序。

㈢ 常用优化器算法归纳介绍

优化器是神经网络训练过程中,进行梯度下降以寻找最优解的优化方法。不同方法通过不同方式(如附加动量项,学习率自适应变化等)侧重于解决不同的问题,但最终大都是为了加快训练速度。

这里就介绍几种常见的优化器,包括其原理、数学公式、核心思想及其性能;

核心思想: 即针对每次输入的训练数据,计算输出预测与真值的Loss的梯度;

从表达式来看,网络中参数的更新,是不断向着最小化Loss函数的方向移动的:

优点:
简单易懂,即对于相应的最优解(这里认为是Loss的最小函数),每次变量更新都是沿着局部梯度下降最快的方向,从而最小化损失函数。

缺点:

不同于标准梯度下降法(Gradient Descent)一次计算所有数据样本的Loss并计算相应的梯度,批量梯度下降法(BGD, Batch Gradient Descent)每次只取一个小批次的数据及其真实标签进行训练,称这个批次为mini-batch;

优点:

缺点:
随机梯度下降法的 batch size 选择不当可能导致模型难以收敛;由于这种方法是在一次更新中,就对整个数据集计算梯度,所以计算起来非常慢,遇到很大量的数据集也会非常棘手,而且不能投入新数据实时更新模型。

我们会事先定义一个迭代次数 epoch,首先计算梯度向量 params_grad,然后沿着梯度的方向更新参数 params,learning rate 决定了我们每一步迈多大。

Batch gradient descent 对于凸函数可以收敛到全局极小值,对于非凸函数可以收敛到局部极小值。

和 BGD 的一次用所有数据计算梯度相比,SGD 每次更新时对每个样本进行梯度更新,对于很大的数据集来说,可能会有相似的样本,这样 BGD 在计算梯度时会出现冗余,而 SGD 一次只进行一次更新,就没有冗余,而且比较快,并且可以新增样本。

即训练时,每次只从一批训练样本中随机选取一个样本进行梯度下降;对随机梯度下降来说,只需要一次关注一个训练样本,一点点把参数朝着全局最小值的方向进行修改了。

整体数据集是个循环,其中对每个样本进行一次参数更新

缺点:

梯度下降速度比较慢,而且每次梯度更新时往往只专注与局部最优点,而不会恰好指向全局最优点;

单样本梯度更新时会引入许多噪声(跟训练目标无关的特征也会被归为该样本分类的特征);

SGD 因为更新比较频繁,会造成 cost function 有严重的震荡。

BGD 可以收敛到局部极小值,当然 SGD 的震荡可能会跳到更好的局部极小值处。

当我们稍微减小 learning rate,SGD 和 BGD 的收敛性是一样的。

优点:

当处理大量数据时,比如SSD或者faster-rcnn等目标检测模型,每个样本都有大量候选框参与训练,这时使用随机梯度下降法能够加快梯度的计算。

随机梯度下降是通过每个样本来迭代更新一次,如果样本量很大的情况,那么可能只用其中部分的样本,就已经将 迭代到最优解了,对比上面的批量梯度下降,迭代一次需要用到十几万训练样本,一次迭代不可能最优,如果迭代10次的话就需要遍历训练样本10次。缺点是SGD的噪音较BGD要多,使得SGD并不是每次迭代都向着整体最优化方向。所以虽然训练速度快,但是准确度下降,并不是全局最优。虽然包含一定的随机性,但是从期望上来看,它是等于正确的导数的。

梯度更新规则:

MBGD 每一次利用一小批样本,即 n 个样本进行计算,这样它可以降低参数更新时的方差,收敛更稳定,另一方面可以充分地利用深度学习库中高度优化的矩阵操作来进行更有效的梯度计算。

和 SGD 的区别是每一次循环不是作用于每个样本,而是具有 n 个样本的批次。

超参数设定值: n 一般取值在 50~256

缺点:(两大缺点)

鞍点就是:一个光滑函数的鞍点邻域的曲线,曲面,或超曲面,都位于这点的切线的不同边。例如这个二维图形,像个马鞍:在x-轴方向往上曲,在y-轴方向往下曲,鞍点就是(0,0)。

为了应对上面的两点挑战就有了下面这些算法

核心思想:

不使用动量优化时,每次训练的梯度下降方向,都是按照当前批次训练数据计算的,可能并不能代表整个数据集,并且会有许多噪声,下降曲线波动较大:

添加动量项之后,能够有效减小波动,从而加快训练速度:

当我们将一个小球从山上滚下来时,没有阻力的话,它的动量会越来越大,但是如果遇到了阻力,速度就会变小。
加入的这一项,可以使得梯度方向不变的维度上速度变快,梯度方向有所改变的维度上的更新速度变慢,这样就可以加快收敛并减小震荡。

优点:

通过动量更新,参数向量会在有持续梯度的方向上增加速度;
使梯度下降时的折返情况减轻,从而加快训练速度;

缺点:

如果数据集分类复杂,会导致 和 时刻梯度 向量方向相差较大;在进行向量求和时,得到的 会非常小,反而使训练速度大大下降甚至模型难以收敛。

这种情况相当于小球从山上滚下来时是在盲目地沿着坡滚,如果它能具备一些先知,例如快要上坡时,就知道需要减速了的话,适应性会更好。

目前为止,我们可以做到,在更新梯度时顺应 loss function 的梯度来调整速度,并且对 SGD 进行加速。

核心思想:

自适应学习率优化算法针对于机器学习模型的学习率,采用不同的策略来调整训练过程中的学习率,从而大大提高训练速度。

这个算法就可以对低频的参数做较大的更新,对高频的做较小的更新,也因此,对于稀疏的数据它的表现很好,很好地提高了 SGD 的鲁棒性,例如识别 Youtube 视频里面的猫,训练 GloVe word embeddings,因为它们都是需要在低频的特征上有更大的更新。

Adagrad 的优点是减少了学习率的手动调节

式中, 表示第 个分类, 表示第 迭代同时也表示分类 累计出现的次数。 表示初始的学习率取值(一般为0.01)

AdaGrad的核心思想: 缩放每个参数反比于其所有梯度历史平均值总和的平方根。具有代价函数最大梯度的参数相应地有较大的学习率,而具有小梯度的参数又较小的学习率。

缺点:

它的缺点是分母会不断积累,这样学习率就会收缩并最终会变得非常小。

这个算法是对 Adagrad 的改进,

和 Adagrad 相比,就是分母的 换成了过去的梯度平方的衰减平均值,指数衰减平均值

这个分母相当于梯度的均方根 root mean squared (RMS),在数据统计分析中,将所有值平方求和,求其均值,再开平方,就得到均方根值 ,所以可以用 RMS 简写:

其中 的计算公式如下, 时刻的依赖于前一时刻的平均和当前的梯度:

梯度更新规则:

此外,还将学习率 换成了 RMS[Δθ],这样的话,我们甚至都不需要提前设定学习率了:

超参数设定值: 一般设定为 0.9

RMSprop 是 Geoff Hinton 提出的一种自适应学习率方法。

RMSprop 和 Adadelta 都是为了解决 Adagrad 学习率急剧下降问题的,

梯度更新规则:

RMSprop 与 Adadelta 的第一种形式相同:(使用的是指数加权平均,旨在消除梯度下降中的摆动,与Momentum的效果一样,某一维度的导数比较大,则指数加权平均就大,某一维度的导数比较小,则其指数加权平均就小,这样就保证了各维度导数都在一个量级,进而减少了摆动。允许使用一个更大的学习率η)

超参数设定值:

Hinton 建议设定 为 0.9, 学习率 为 0.001。

这个算法是另一种计算每个参数的自适应学习率的方法。相当于 RMSprop + Momentum

除了像 Adadelta 和 RMSprop 一样存储了过去梯度的平方 vt 的指数衰减平均值 ,也像 momentum 一样保持了过去梯度 mt 的指数衰减平均值:

如果 和 被初始化为 0 向量,那它们就会向 0 偏置,所以做了偏差校正,通过计算偏差校正后的 和 来抵消这些偏差:

梯度更新规则:

超参数设定值:
建议

示例一

示例二

示例三

上面情况都可以看出,Adagrad, Adadelta, RMSprop 几乎很快就找到了正确的方向并前进,收敛速度也相当快,而其它方法要么很慢,要么走了很多弯路才找到。

由图可知自适应学习率方法即 Adagrad, Adadelta, RMSprop, Adam 在这种情景下会更合适而且收敛性更好。

如果数据是稀疏的,就用自适用方法,即 Adagrad, Adadelta, RMSprop, Adam。

RMSprop, Adadelta, Adam 在很多情况下的效果是相似的。

Adam 就是在 RMSprop 的基础上加了 bias-correction 和 momentum,

随着梯度变的稀疏,Adam 比 RMSprop 效果会好。

整体来讲,Adam 是最好的选择。

很多论文里都会用 SGD,没有 momentum 等。SGD 虽然能达到极小值,但是比其它算法用的时间长,而且可能会被困在鞍点。

如果需要更快的收敛,或者是训练更深更复杂的神经网络,需要用一种自适应的算法。

各种优化器Optimizer原理:从SGD到AdamOptimizer

深度学习——优化器算法Optimizer详解(BGD、SGD、MBGD、Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam)

㈣ 数据挖掘十大经典算法(1)——朴素贝叶斯(Naive Bayes)

在此推出一个算法系列的科普文章。我们大家在平时埋头工程类工作之余,也可以抽身对一些常见算法进行了解,这不仅可以帮助我们拓宽思路,从另一个维度加深对计算机技术领域的理解,做到触类旁通,同时也可以让我们搞清楚一些既熟悉又陌生的领域——比如数据挖掘、大数据、机器学习——的基本原理,揭开它们的神秘面纱,了解到其实很多看似高深的领域,其实背后依据的基础和原理也并不复杂。而且,掌握各类算法的特点、优劣和适用场景,是真正从事数据挖掘工作的重中之重。只有熟悉算法,才可能对纷繁复杂的现实问题合理建模,达到最佳预期效果。

本系列文章的目的是力求用最干练而生动的讲述方式,为大家讲解由国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 于2006年12月评选出的数据挖掘领域的十大经典算法。它们包括:

本文作为本系列的第一篇,在介绍具体算法之前,先简单为大家铺垫几个数据挖掘领域的常见概念:

在数据挖掘领域,按照算法本身的行为模式和使用目的,主要可以分为分类(classification),聚类(clustering)和回归(regression)几种,其中:

打几个不恰当的比方

另外,还有一个经常有人问起的问题,就是 数据挖掘 机器学习 这两个概念的区别,这里一句话阐明我自己的认识:机器学习是基础,数据挖掘是应用。机器学习研制出各种各样的算法,数据挖掘根据应用场景把这些算法合理运用起来,目的是达到最好的挖掘效果。

当然,以上的简单总结一定不够准确和严谨,更多的是为了方便大家理解打的比方。如果大家有更精当的理解,欢迎补充和交流。

好了,铺垫了这么多,现在终于进入正题!
作为本系列入门的第一篇,先为大家介绍一个容易理解又很有趣的算法—— 朴素贝叶斯

先站好队,朴素贝叶斯是一个典型的 有监督的分类算法

光从名字也可以想到,要想了解朴素贝叶斯,先要从 贝叶斯定理 说起。
贝叶斯定理是我们高中时代学过的一条概率学基础定理,它描述了条件概率的计算方式。不要怕已经把这些知识还给了体育老师,相信你一看公式就能想起来。

P(A|B)表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式为:

其中,P(AB)表示A和B同时发生的概率,P(B)标识B事件本身的概率。

贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A)。

而贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。
下面不加证明地直接给出贝叶斯定理:

有了贝叶斯定理这个基础,下面来看看朴素贝叶斯算法的基本思路。

你看,其思想就是这么的朴素。那么,属于每个分类的概率该怎么计算呢?下面我们先祭出形式化语言!

那么现在的关键就是如何计算第3步中的各个条件概率。我们可以这么做:

因为分母对于所有类别为常数,因为我们只要将分子最大化皆可。又因为各特征属性是条件独立的,所以有:

如果你也跟我一样,对形式化语言有严重生理反应,不要怕,直接跳过前面这一坨,我们通过一个鲜活的例子,用人类的语言再解释一遍这个过程。

某个医院早上收了六个门诊病人,如下表。

现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他最有可能患有何种疾病?

本质上,这就是一个典型的分类问题, 症状 职业 是特征属性, 疾病种类 是目标类别

根据 贝叶斯定理

可得

假定"打喷嚏"和"建筑工人"这两个特征是独立的,因此,上面的等式就变成了

这是可以计算的。

因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。

接下来,我们再举一个朴素贝叶斯算法在实际中经常被使用的场景的例子—— 文本分类器 ,通常会用来识别垃圾邮件。
首先,我们可以把一封邮件的内容抽象为由若干关键词组成的集合,这样是否包含每种关键词就成了一封邮件的特征值,而目标类别就是 属于垃圾邮件 不属于垃圾邮件

假设每个关键词在一封邮件里出现与否的概率相互之间是独立的,那么只要我们有若干已经标记为垃圾邮件和非垃圾邮件的样本作为训练集,那么就可以得出,在全部垃圾邮件(记为Trash)出现某个关键词Wi的概率,即 P(Wi|Trash)

而我们最重要回答的问题是,给定一封邮件内容M,它属于垃圾邮件的概率是多大,即 P(Trash|M)

根据贝叶斯定理,有

我们先来看分子:
P(M|Trash) 可以理解为在垃圾邮件这个范畴中遇见邮件M的概率,而一封邮件M是由若干单词Wi独立汇聚组成的,只要我们所掌握的单词样本足够多,因此就可以得到

这些值我们之前已经可以得到了。

再来看分子里的另一部分 P(Trash) ,这个值也就是垃圾邮件的总体概率,这个值显然很容易得到,用训练集中垃圾邮件数除以总数即可。

而对于分母来说,我们虽然也可以去计算它,但实际上已经没有必要了,因为我们要比较的 P(Trash|M) 和 P(non-Trash|M) 的分母都是一样的,因此只需要比较分子大小即可。

这样一来,我们就可以通过简单的计算,比较邮件M属于垃圾还是非垃圾二者谁的概率更大了。

朴素贝叶斯的英文叫做 Naive Bayes ,直译过来其实是 天真的贝叶斯 ,那么他到底天真在哪了呢?

这主要是因为朴素贝叶斯的基本假设是所有特征值之间都是相互独立的,这才使得概率直接相乘这种简单计算方式得以实现。然而在现实生活中,各个特征值之间往往存在一些关联,比如上面的例子,一篇文章中不同单词之间一定是有关联的,比如有些词总是容易同时出现。

因此,在经典朴素贝叶斯的基础上,还有更为灵活的建模方式—— 贝叶斯网络(Bayesian Belief Networks, BBN) ,可以单独指定特征值之间的是否独立。这里就不展开了,有兴趣的同学们可以做进一步了解。

最后我们来对这个经典算法做个点评:

优点:

缺点:

好了,对于 朴素贝叶斯 的介绍就到这里,不知道各位看完之后是否会对数据挖掘这个领域产生了一点兴趣了呢?

㈤ python中有哪些简单的算法

你好:
跟你详细说一下python的常用8大算法:
1、插入排序
插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。
2、希尔排序
希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
3、冒泡排序
它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
4、快速排序
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
5、直接选择排序
基本思想:第1趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;第2趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;以此类推,第i趟在待排序记录r[i] ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。
6、堆排序
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。
7、归并排序
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。
8、基数排序
基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部分资讯,将要排序的元素分配至某些“桶”中,借以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。

㈥ 优化算法笔记(一)优化算法的介绍

(以下描述,均不是学术用语,仅供大家快乐的阅读)

        我们常见常用的算法有排序算法,字符串遍历算法,寻路算法等。这些算法都是为了解决特定的问题而被提出。

        算法本质是一种按照固定步骤执行的过程。

        优化算法也是这样一种过程,是一种根据概率按照固定步骤寻求问题的最优解的过程。与常见的排序算法、寻路算法不同的是,优化算法不具备等幂性,是一种 概率算法 。算法不断的 迭代 执行同一步骤直到结束,其流程如下图。

        等幂性即 对于同样的输入,输出是相同的 。

        比如图1,对于给定的鱼和给定的熊掌,我们在相同的条件下一定可以知道它们谁更重,当然,相同的条件是指鱼和熊掌处于相同的重力作用下,且不用考虑水分流失的影响。在这些给定的条件下,我们(无论是谁)都将得出相同的结论,鱼更重或者熊掌更重。我们可以认为,秤是一个等幂性的算法(工具)。

        现在把问题变一变,问鱼与熊掌你更爱哪个,那么现在,这个问题,每个人的答案可能不会一样,鱼与熊掌各有所爱。说明喜爱这个算法不是一个等幂性算法。当然你可能会问,哪个更重,和更喜欢哪个这两个问题一个是客观问题,一个是主观问题,主观问题没有确切的答案的。当我们处理主观问题时,也会将其转换成客观问题,比如给喜欢鱼和喜欢熊掌的程度打个分,再去寻求答案,毕竟计算机没有感情,只认0和1(量子计算机我不认识你)。

        说完了等幂性,再来说什么是概率算法。简单来说就是看脸、看人品、看运气的算法。

        有一场考试,考试的内容全部取自课本,同时老师根据自己的经验给同学们划了重点,但是因为试卷并不是该老师所出,也会有考试内容不在重点之内,老师估计试卷中至少80%内容都在重点中。学霸和学渣参加了考试,学霸为了考满分所以无视重点,学渣为了pass,因此只看了重点。这样做的结果一定是score(学霸)>=score(学渣)。

        当重点跟上图一样的时候,所有的内容都是重点的时候,学霸和学渣的学习策略变成了相同的策略,则score(学霸)=score(学渣)。但同时,学渣也要付出跟学霸相同的努力去学习这些内容,学渣心里苦啊。

        当课本如下图时

        学霸?学霸人呢,哪去了快来学习啊,不是说学习一时爽,一直学习一直爽吗,快来啊,还等什么。

        这时,如果重点内容远少于书本内容时,学渣的学习策略有了优势——花费的时间和精力较少。但是同时,学渣的分数也是一个未知数,可能得到80分也可能拿到100分,分数完全取决于重点内容与题目的契合度,契合度越高,分数越高。对学渣来说,自己具体能考多少分无法由自己决定,但是好在能够知道大概的分数范围。

        学霸的学习策略是一种遍历性算法,他会遍历、通读全部内容,以保证满分。

        学渣的学习策略则是一种概率算法,他只会遍历、学习重点内容,但至于这些重点是不是真重点他也不知道。

        与遍历算法相比,概率算法的结果具有不确定性,可能很好,也可能很差,但是会消耗更少的资源,比如时间(人生),空间(记忆)。概率算法的最大优点就是 花费较少的代价来获取最高的收益 ,在现实中体现于节省时间,使用很少的时间得到一个不与最优解相差较多的结果。

        “庄子:吾生也有涯,而知也无涯;以有涯随无涯,殆矣。”的意思是:人生是有限的,但知识是无限的(没有边界的),用有限的人生追求无限的知识,是必然失败的。

        生活中概率算法(思想)的应用其实比较广泛,只是我们很少去注意罢了。关于概率算法还衍生出了一些有趣的理论,比如墨菲定律和幸存者偏差,此处不再详述。

        上面说到,优化算法就是不停的执行同样的策略、步骤直到结束。为什么要这样呢?因为优化算法是一种概率算法,执行一次操作就得到最优结果几乎是不可能的,重复多次取得最优的概率也会增大。

        栗子又来了,要从1-10这10个数中取出一个大于9的数,只取1次,达到要求的概率为10%,取2次,达到要求的概率为19%。

        可以看出取到第10次时,达到要求的概率几乎65%,取到100次时,达到要求的概率能接近100%。优化算法就是这样简单粗暴的来求解问题的吗?非也,这并不是一个恰当的例子,因为每次取数的操作之间是相互独立的,第2次取数的结果不受第1次取数结果的影响,假设前99次都没达到要求,那么再取一次达到要求的概率跟取一次达到要求的概率相同。

        优化算法中,后一次的计算会依赖前一次的结果,以保证后一次的结果不会差于前一次的结果。这就不得不谈到马尔可夫链了。

        由铁组成的链叫做铁链,同理可得,马尔可夫链就是马尔可夫组成的链。

        言归正传, 马尔可夫链(Markov Chain, MC) ,描述的是 状态转移的过程中,当前状态转移的概率只取决于上一步的状态,与其他步的状态无关 。简单来说就是当前的结果只受上一步的结果的影响。每当我看到马尔可夫链时,我都会陷入沉思,生活中、或者历史中有太多太多与马尔可夫链相似的东西。西欧封建等级制度中“附庸的附庸不是我的附庸”与“昨天的努力决定今天的生活,今天的努力决定明天的生活”,你的下一份工作的工资大多由你当前的工资决定,这些都与马尔可夫链有异曲同工之处。

        还是从1-10这10个数中取出一个大于9的数的这个例子。基于马尔可夫链的概率算法在取数时需要使当前取的数不小于上一次取的数。比如上次取到了3,那么下次只能在3-10这几个数中取,这样一来,达到目标的概率应该会显着提升。还是用数据说话。

        取1次达到要求的概率仍然是

        取2次内达到要求的概率为

        取3次内达到要求的概率为

        取4次内……太麻烦了算了不算了

        可以看出基于马尔可夫链来取数时,3次内能达到要求的概率与不用马尔可夫链时取6次的概率相当。说明基于马尔可夫链的概率算法求解效率明显高于随机概率算法。那为什么不将所有的算法都基于马尔可夫链呢?原因一,其实现方式不是那么简单,例子中我们规定了取数的规则是复合马尔可夫链的,而在其他问题中我们需要建立适当的复合马尔科夫链的模型才能使用。原因二,并不是所有的问题都符合马尔科夫链条件,比如原子内电子出现的位置,女朋友为什么会生(lou)气,彩票号码的规律等,建立模型必须与问题有相似之处才能较好的解决问题。

        介绍完了优化算法,再来讨论讨论优化算法的使用场景。

        前面说了优化算法是一种概率算法,无法保证一定能得到最优解,故如果要求结果必须是确定、稳定的值,则无法使用优化算法求解。

        例1,求城市a与城市b间的最短路线。如果结果用来修建高速、高铁,那么其结果必定是唯一确定的值,因为修路寸土寸金,必须选取最优解使花费最少。但如果结果是用来赶路,那么即使没有选到最优的路线,我们可能也不会有太大的损失。

        例2,求城市a与城市b间的最短路线,即使有两条路径,路径1和路径2,它们从a到b的距离相同,我们也可以得出这两条路径均为满足条件的解。现在将问题改一下,求城市a到城市b耗时最少的线路。现在我们无法马上得出确切的答案,因为最短的线路可能并不是最快的路线,还需要考虑到天气,交通路况等因素,该问题的结果是一个动态的结果,不同的时间不同的天气我们很可能得出不同的结果。

        现实生产、生活中,也有不少的场景使用的优化算法。例如我们的使用的美图软件,停车场车牌识别,人脸识别等,其底层参数可能使用了优化算法来加速参数计算,其参数的细微差别对结果的影响不太大,需要较快的得出误差范围内的参数即可;电商的推荐系统等也使用了优化算法来加速参数的训练和收敛,我们会发现每次刷新时,推给我们的商品都有几个会发生变化,而且随着我们对商品的浏览,系统推给我们的商品也会发生变化,其结果是动态变化的;打车软件的订单系统,会根据司机和客人的位置,区域等来派发司机给客人,不同的区域,不同的路况,派发的司机也是动态变化的。

        综上我们可以大致总结一下推荐、不推荐使用优化算法的场景的特点。

        前面说过,优化算法处理的问题都是客观的问题,如果遇到主观的问题,比如“我孰与城北徐公美”,我们需要将这个问题进行量化而转换成客观的问题,如身高——“修八尺有余”,“外貌——形貌昳丽”,自信度——“明日徐公来,孰视之,自以为不如;窥镜而自视,又弗如远甚”,转化成客观问题后我们可以得到各个解的分数,通过比较分数,我们就能知道如何取舍如何优化。这个转化过程叫做问题的建模过程,建立的问题模型实际上是一个函数,这个函数对优化算法来说是一个黑盒函数,即不需要知道其内部实现只需要给出输入,得到输出。

        在优化算法中这个黑盒函数叫做 适应度函数 , 优化算法的求解过程就是寻找适应度函数最优解的过程 ,使用优化算法时我们最大的挑战就是如何将抽象的问题建立成具体的模型,一旦合适的模型建立完成,我们就可以愉快的使用优化算法来求解问题啦。(“合适”二字谈何容易)

        优化算法的大致介绍到此结束,后面我们会依次介绍常见、经典的优化算法,并探究其参数对算法性能的影响。

——2019.06.20

[目录]

[下一篇 优化算法笔记(二)优化算法的分类]

㈦ 常见排序算法归纳

排序算法一般分类:

比较两个相邻的元素,将值大的元素交换至右端。

依次比较两个相邻的数,将小数放到前面,大数放到后面

即在第一趟:首先比较第1个数和第2个数,将小数放前,大数放后。然后比较第2个数和第3个数,将小数放前,大数放后,如此一直继续下去,直到比较最后两个数,将小数放前,大数放后。然后重复第一趟步骤,直到所有排序完成。

第一趟比较完成后,最后一个数一定是数组中最大的一个数,所以第二趟比较的时候最后一个数不参与比较。

第二趟完成后,倒数第二个数也一定是数组中第二大的数,所以第三趟比较的时候最后两个数不参与比较。

依次类推......

输出结果:

冒泡排序的优点: 每进行一趟排序,就会少比较一次,因为每进行一趟排序都会找出一个较大值。如上例:第一趟比较之后,排在最后的一个数一定是最大的一个数,第二趟排序的时候,只需要比较除了最后一个数以外的其他的数,同样也能找出一个最大的数排在参与第二趟比较的数后面,第三趟比较的时候,只需要比较除了最后两个数以外的其他的数,以此类推……也就是说,没进行一趟比较,每一趟少比较一次,一定程度上减少了算法的量。

用时间复杂度来说:

从一个数组中随机选出一个数N,通过一趟排序将数组分割成三个部分,1、小于N的区域 2、等于N的区域 3、大于N的区域,然后再按照此方法对小于区的和大于区分别递归进行,从而达到整个数据变成有序数组。

如下图:

假设最开始的基准数据为数组的第一个元素23,则首先用一个临时变量去存储基准数据,即 tmp=23 ,然后分别从数组的两端扫描数组,设两个指示标志: low 指向起始位置, high 指向末尾。

首先从后半部分开始,如果 扫描到的值大于基准数据 就让 high-1 ,如果发现有元素比该基准数据的值小,比如上面的 18 <= tmp ,就让 high位置的值赋值给low位置 ,结果如下:

然后开始从前往后扫描,如果扫描到的值小于基准数据就让 low+1 ,如果发现有元素大于基准数据的值,比如上图 46 >= tmp ,就再将 low 位置的值赋值给 high 位置的值,指针移动并且数据交换后的结果如下:

然后再开始从前往后遍历,直到 low=high 结束循环,此时low或者high的下标就是 基准数据23在该数组中的正确索引位置 ,如下图所示:

这样一遍遍的走下来,可以很清楚的知道,快排的本质就是把比基准数据小的都放到基准数的左边,比基准数大的数都放到基准数的右边,这样就找到了该数据在数组中的正确位置。

然后采用递归的方式分别对前半部分和后半部分排序,最终结果就是自然有序的了。

输出结果:

最好情况下快排每次能恰好均分序列,那么时间复杂度就是O(nlogn),最坏情况下,快排每次划分都只能将序列分为一个元素和其它元素两部分,这时候的快排退化成冒泡排序,时间复杂度为O(n^2)。

插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。

将一个数据插入到 已经排好序的有序数据

第一趟排序:

用数组的第二个数与第一个数( 看成是已有序的数据 )比较

第二趟排序:

用数组的第三个数与已是有序的数据 {2,3} (刚才在第一趟排的)比较

在第二步中:

...

后面依此类推

输出结果:

选择排序是一种简单直观的排序算法。它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到全部待排序的数据元素排完。 选择排序是不稳定的排序方法。

举例:数组 int[] arr={5,2,8,4,9,1}

第一趟排序 : 原始数据: 5 2 8 4 9 1

最小数据1,把1放在首位,也就是1和5互换位置,

排序结果: 1 2 8 4 9 5

第二趟排序

第1以外的数据 {2 8 4 9 5} 进行比较,2最小,

排序结果: 1 2 8 4 9 5

第三趟排序

除 1、2 以外的数据 {8 4 9 5} 进行比较,4最小,8和4交换

排序结果: 1 2 4 8 9 5

第四趟排序 :

除第 1、2、4 以外的其他数据 {8 9 5} 进行比较,5最小,8和5交换

排序结果: 1 2 4 5 9 8

第五趟排序:

除第 1、2、4、5 以外的其他数据 {9 8} 进行比较,8最小,8和9交换

排序结果: 1 2 4 5 8 9

输出结果:

归并排序(merge sort)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。

比如我们对 [8,4,5,7,1,3,6,2] 这个数组进行归并排序,我们首先利用分治思想的“分”将数组拆分。

输出结果:

阅读全文

与适恰的算法相关的资料

热点内容
服务器如何搭建多个节点 浏览:324
acx算法 浏览:256
幽冥诡匠漫画全集用什么app可以看 浏览:1001
租用服务器为什么越来越慢 浏览:960
算法创新就业方向 浏览:423
算法最优解作者 浏览:867
通达信红绿宝塔线指标源码 浏览:666
app是什么东西合法吗 浏览:231
怎么锁app视频教程 浏览:841
迅捷pdf注册码生成器 浏览:748
androidsdkosx 浏览:302
压缩面膜纸荧光 浏览:841
app怎么分身三个 浏览:744
电影bt下载源码 浏览:421
iwatch屏幕加密芯片 浏览:570
公安主题网站源码 浏览:986
天津市服务器供应商云服务器 浏览:115
数控车床子程序编程 浏览:111
floydwarshall算法 浏览:718
丢失微信app怎么找 浏览:252