1. 算法的要素是什么算法的特征是什么
一、算法的要素包括:
1、数据对象的操作和操作:计算机可以执行的基本操作以指令的形式描述。
2、算法的控制结构:算法的功能结构不仅取决于所选的操作,还取决于操作之间的执行顺序。
二、算法的特征如下:
1、有穷性:算法的有穷性意味着算法在执行有限的步骤之后必须能够终止。
2、确切性:算法的每一步都必须确切定义。
3、输入项:一个算法有0个或多个输入来描述操作对象的初始条件。所谓的零输入是指由算法本身决定的初始条件。
4、输出项:一个算法有一个或多个输出来反映处理输入数据的结果。没有输出的算法毫无意义。
5、可行性:算法中执行的任何计算步骤都可以分解为基本的可执行操作步骤,即每个计算步骤都可以在有限的时间内完成。
算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。
描述算法的方法有多种,常用的有自然语言、结构化流程图、伪代码和PAD图等,其中最普遍的是流程图。
随着计算机的发展,算法在计算机方面已有广泛的发展及应用,如用随机森林算法,来进行头部姿势的估计,用遗传算法来解决弹药装载问题,信息加密算法在网络传输中的应用,并行算法在数据挖掘中的应用等。
2. 算法的三种基本结构是
算法有顺序结构、条件分支结构、循环结构三种基本逻辑结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的。
它是任何一个算法都离不开的一种基本算法结构。顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。
2、条件结构:
条件结构是指在算法中通过对条件的判断,根据条件是否成立而选择不同流向的算法结构。
条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行。一个判断结构可以有多个判断框。
3、循环结构
在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结构又称重复结构,循环结构可细分为两类:
一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。
另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件P是否成立,如果P仍然不成立,则继续执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。
(2)算法的基本要素组成扩展阅读
共同特点
(1)只有一个入口和出口
(2)结构内的每一部分都有机会被执行到,也就是说对每一个框来说都应当有一条从入口到出口的路径通过它,如图中的A,没有一条从入口到出口的路径通过它,就是不符合要求的算法结构。
(3)结构内不存在死循环,即无终止的循环。
3. 算法的基本结构是什么
算法的基本结构是顺序结构、条件分支结构、循环结构,顺序结构,是最简单的算法结构,语句与语句之间是按从上到下的顺序进行的。它是由若干个依次执行的处理步骤组成的,它也是任何一个算法都离不开的一种算法结构。
共同特点:
(1)只有一个入口和出口。
(2)结构内的每一部分都有机会被执行到,也就是说对每一个框来说都应当有一条从入口到出口的路径通过它,如图中的A,没有一条从入口到出口的路径通过它,就是不符合要求的算法结构。
(3)结构内不存在死循环,即无终止的循环。
顺序结构是最简单的算法结构,语句与语句之间是按从上到下的顺序进行的。它是由若干个依次执行的处理步骤组成的,它也是任何一个算法都离不开的一种算法结构。
如下算法是顺序结构的:
S1:m=a。
S2:a=b。
S1:b=m。
4. 计算机算法的三种基本结构
算法有顺序结构、条件分支结构、循环结构三种基本逻辑结构。
1、顺序结构
序贯结构是最简单的算法结构,在语句之间、框之间自上而下进行。它由依次执行的几个处理步骤组成。
它是任何算法都不能缺少的基本算法结构。方框图中的顺序结构是将程序框从上到下与流水线连接,按顺序执行算法步骤。
2、条件分支结构
条件结构是指通过判断算法中的条件,根据条件是否为真来选择不同流向的算法结构。
如果条件P为真,则选择执行框A或框B。无论P条件是否为真,只能执行A盒或B盒中的一个。不可能同时执行盒子A和B,盒子A和B不执行也是不可能的。一个判断结构可以有多个判断框。
3、循环结构
在某些算法中,经常会出现某一处理步骤按照某一条件从某一地点重复执行的情况。这就是循环结构。重复执行的处理步骤是循环体,显然,循环结构必须包含条件结构。循环结构又称重复结构,可分为两类:
一种是当循环结构,功能是P时形成时给定的条件下,执行一个盒子,一个盒子在执行后,确定条件P,如果仍然设置和执行一个盒子,等等来执行一个盒子,直到一个条件P并不不再执行一个盒子,这个时候离开循环结构。
另一种类型是直到型循环结构,作用是先执行,然后判断给定条件P是否为真。如果P仍然不为真,将继续执行盒子A,直到给定条件P为真一段时间。
(4)算法的基本要素组成扩展阅读:
共同特征
1、只有一个入口和出口
2、结构的每个部分都有执行的机会,即对于每个盒子,应该有一个从入口到出口的路径。如图A所示,从入口到出口没有经过它的路径,这是不符合要求的算法结构。
3、结构中不存在死循环,即没有结束循环。
5. C语言里面的算法觉得很难,这样才能学好算法
学好C语言首先要学好他的语法,就比如说英语和语文,你必须要学好他的语法啊,并且要会用他的”单词”,然后就是算法了,这其中要有数学的计算和思想,但是你可以学好的,如果你学好VB那就更好了,因为VB和C语言、很都语法都是共通的.C重要的是思想和算法..
如果要成为高手的话,那就必须数学基础扎实,因为要到高级的话会用到很多的函数问题,编程也要逻辑性好,而且C就是一种模式,找到了很容易学的。
说实在的,有些东西当初我拿到书的时候是天天琢磨,月月思考,还真别说,有些当初我以为超级老难的问题就愣是这么给琢磨出来了。不过前提是我的数学和逻辑思维真的不错。
慢慢来啊,呵呵,就像当初我以为我自己也学不会,结果还是让我给征服了。其实入门比较困难一些,这都是过程,保持好的心态,如果真的想学就不要放弃,经过时间的积累我想一切都会晴朗的。
6. 算法的基本要素有哪些
算法通常由两种基本要素组成分别是对数据对象的运算和操作;算法的控制结构,即运算或操作间的顺序。
算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。
7. 算法的三种基本结构是什么
算法有顺序结构、条件分支结构、循环结构三种基本逻辑结构。
三种基本结构的共同点:
(1)只有一个入口和出口。
(2)结构内的每一部分都有机会被执行到,也就是说对每一个框来说都应当有一条从入口到出口的路径通过它。
(3)结构内不存在死循环,即无终止的循环。
数据结构算法具有五个基本特征:输入、输出、有穷性、确定性和可行性。
1、输入:一个算法具有零个或者多个输出,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件,后面一句话翻译过来就是,如果一个算法本身给出了初始条件,那么可以没有输出。
2、输出:算法至少有一个输出。也就是说,算法一定要有输出,输出的形式可以是打印,也可以使返回一个值或者多个值等,也可以是显示某些提示。
3、有穷性:算法的执行步骤是有限的,算法的执行时间也是有限的。
4、确定性:算法的每个步骤都有确定的含义,不会出现二义性。
5、可行性:算法是可用的,也就是能够解决当前问题。
8. 算法的要素有哪些
算法包含的要素:
一、数据对象的运算和操作:计算机可以执行的基本操作是以指令的形式描述的。一个计算机系统能执行的所有指令的集合,成为该计算机系统的指令系统。一个计算机的基本运算和操作有如下四类:
1、算术运算:加减乘除等运算。
2、逻辑运算:或、且、非等运算。
3、关系运算:大于、小于、等于、不等于等运算。
4、数据传输:输入、输出、赋值等运算。
二、算法的控制结构:一个算法的功能结构不仅取决于所选用的操作,而且还与各操作之间的执行顺序有关。
算法的五个特性分别是:
有穷性、确切性、输入项、输出项、可行性。
1、有穷性
算法的有穷性是指算法必须能在执行有限个步骤之后终止。
2、确切性
算法的每一步骤必须有确切的定义。
3、输入项
一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件。
4、输出项
一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的。
5、可行性
算法中执行的任何计算步骤都是可以被分解为基本的可执行的操作步骤,即每个计算步骤都可以在有限时间内完成(也称之为有效性)。
9. 用计算机 算法的组成要素和基本特征有哪些
组成要素:操作,控制结构(顺序结构,条件结构,循环结构)
基本性质
(1)有效性
(2)确定性
(3)有穷性