导航:首页 > 源码编译 > 分布式缓存lru算法

分布式缓存lru算法

发布时间:2023-03-02 11:02:50

linux 怎么启动memcache

MemCache是高性能分布式内存对象缓存系统(将数据调用到内存中,然后在内存中读取,从而大大提高读取速度)
Memcached安装与启动:
安装memcached需要先安装libevent
Shell>tar zxvf libevent-1.4.14b-stable.tar.gz
Shell>cd libevent-1.4.14b-stable
Shell>./configure
Shell>make && make install

安装memcached
Shell>tar zxvf memcached-1.2.5.tar.tar
Shell>cd memcached-1.2.5
Shell>./configure –prefix=/usr/local/memcached
Shell>make && make install
启动memcached
Shell>/usr/local/memcached/bin/memcached –p 11211 –d –u root –P /tmp/memcached.pid
-P是表示使用TCP,默认端口为11211
-d表示后台启动一个守护进程(daemon)
-u表示指定root用户启动,默认不能用root用户启动
-P表示进程的pid存放地点,此处“p”为大写“P”
-l,后面跟IP地址,手工指定监听IP地址,默认所有IP都在监听
-m后面跟分配内存大小,以MB为单位,默认为64M
-c最大运行并发连接数,默认为1024
-f 块大小增长因子,默认是1.25
-M 内存耗尽时返回错误,而不是删除项,即不用LRU算法

❷ 缓存系统中的主要使用的数据结构是什么

缓存系统中的主要使用的数据结构是memcached。

memcached是一套分布式的高速缓存系统,由LiveJournal的Brad Fitzpatrick开发,但被许多网站使用。这是一套开放源代码软件,以BSD license授权发布。

memcached的API使用三十二比特的循环冗余校验(CRC-32)计算键值后,将数据分散在不同的机器上。当表格满了以后,接下来新增的数据会以LRU机制替换掉。

由于memcached通常只是当作缓存系统使用,所以使用memcached的应用程序在写回较慢的系统时(像是后端的数据库)需要额外的代码更新memcached内的数据。

(2)分布式缓存lru算法扩展阅读:

一、存储方式

为了提高性能,memcached中保存的数据都存储在memcached内置的内存存储空间中。由于数据仅存在于内存中,因此重启memcached、重启操作系统会导致全部数据消失。

另外,内容容量达到指定值之后,就基于LRU(Least Recently Used)算法自动删除不使用的缓存。memcached本身是为缓存而设计的服务器,因此并没有过多考虑数据的永久性问题。

二、通信分布式

memcached尽管是“分布式”缓存服务器,但服务器端并没有分布式功能。各个memcached不会互相通信以共享信息。那么,怎样进行分布式呢?这完全取决于客户端的实现。本文也将介绍memcached的分布式。

php面试题 memcache和redis的区别

Redis与Memcached的区别

传统MySQL+ Memcached架构遇到的问题

实际MySQL是适合进行海量数据存储的,通过Memcached将热点数据加载到cache,加速访问,很多公司都曾经使用过这样的架构,但随着业务数据量的不断增加,和访问量的持续增长,我们遇到了很多问题:

1.MySQL需要不断进行拆库拆表,Memcached也需不断跟着扩容,扩容和维护工作占据大量开发时间。

2.Memcached与MySQL数据库数据一致性问题。

3.Memcached数据命中率低或down机,大量访问直接穿透到DB,MySQL无法支撑。

4.跨机房cache同步问题。

众多NoSQL百花齐放,如何选择

最近几年,业界不断涌现出很多各种各样的NoSQL产品,那么如何才能正确地使用好这些产品,最大化地发挥其长处,是我们需要深入研究和思考的
问题,实际归根结底最重要的是了解这些产品的定位,并且了解到每款产品的tradeoffs,在实际应用中做到扬长避短,总体上这些NoSQL主要用于解
决以下几种问题

1.少量数据存储,高速读写访问。此类产品通过数据全部in-momery 的方式来保证高速访问,同时提供数据落地的功能,实际这正是Redis最主要的适用场景。

2.海量数据存储,分布式系统支持,数据一致性保证,方便的集群节点添加/删除。

3.这方面最具代表性的是dynamo和bigtable 2篇论文所阐述的思路。前者是一个完全无中心的设计,节点之间通过gossip方式传递集群信息,数据保证最终一致性,后者是一个中心化的方案设计,通过类似一个分布式锁服务来保证强一致性,数据写入先写内存和redo log,然后定期compat归并到磁盘上,将随机写优化为顺序写,提高写入性能。

4.Schema free,auto-sharding等。比如目前常见的一些文档数据库都是支持schema-free的,直接存储json格式数据,并且支持auto-sharding等功能,比如mongodb。

面对这些不同类型的NoSQL产品,我们需要根据我们的业务场景选择最合适的产品。

Redis适用场景,如何正确的使用

前面已经分析过,Redis最适合所有数据in-momory的场景,虽然Redis也提供持久化功能,但实际更多的是一个disk-
backed的功能,跟传统意义上的持久化有比较大的差别,那么可能大家就会有疑问,似乎Redis更像一个加强版的Memcached,那么何时使用
Memcached,何时使用Redis呢?

如果简单地比较Redis与Memcached的区别,大多数都会得到以下观点:

1 Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,zset,hash等数据结构的存储。

2 Redis支持数据的备份,即master-slave模式的数据备份。

3 Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。

抛开这些,可以深入到Redis内部构造去观察更加本质的区别,理解Redis的设计。


Redis中,并不是所有的数据都一直存储在内存中的。这是和Memcached相比一个最大的区别。Redis只会缓存所有的
key的信息,如果Redis发现内存的使用量超过了某一个阀值,将触发swap的操作,Redis根据“swappability =
age*log(size_in_memory)”计
算出哪些key对应的value需要swap到磁盘。然后再将这些key对应的value持久化到磁盘中,同时在内存中清除。这种特性使得Redis可以

保持超过其机器本身内存大小的数据。当然,机器本身的内存必须要能够保持所有的key,毕竟这些数据是不会进行swap操作的。同时由于Redis将内存

中的数据swap到磁盘中的时候,提供服务的主线程和进行swap操作的子线程会共享这部分内存,所以如果更新需要swap的数据,Redis将阻塞这个
操作,直到子线程完成swap操作后才可以进行修改。

使用Redis特有内存模型前后的情况对比:
VM off: 300k keys, 4096 bytes values: 1.3G used
VM on: 300k keys, 4096 bytes values: 73M used
VM off: 1 million keys, 256 bytes values: 430.12M used
VM on: 1 million keys, 256 bytes values: 160.09M used
VM on: 1 million keys, values as large as you want, still: 160.09M used



从Redis中读取数据的时候,如果读取的key对应的value不在内存中,那么Redis就需要从swap文件中加载相应数据,然后再返回给请求方。

这里就存在一个I/O线程池的问题。在默认的情况下,Redis会出现阻塞,即完成所有的swap文件加载后才会相应。这种策略在客户端的数量较小,进行

批量操作的时候比较合适。但是如果将Redis应用在一个大型的网站应用程序中,这显然是无法满足大并发的情况的。所以Redis运行我们设置I/O线程
池的大小,对需要从swap文件中加载相应数据的读取请求进行并发操作,减少阻塞的时间。

如果希望在海量数据的环境中使用好Redis,我相信理解Redis的内存设计和阻塞的情况是不可缺少的。

补充的知识点:

memcached和redis的比较

1 网络IO模型

Memcached是多线程,非阻塞IO复用的网络模型,分为监听主线程和worker子线程,监听线程监听网络连接,接受请求后,将连接描述
字pipe 传递给worker线程,进行读写IO, 网络层使用libevent封装的事件库,多线程模型可以发挥多核作用,但是引入了cache
coherency和锁的问题,比如,Memcached最常用的stats
命令,实际Memcached所有操作都要对这个全局变量加锁,进行计数等工作,带来了性能损耗。

(Memcached网络IO模型)

Redis使用单线程的IO复用模型,自己封装了一个简单的AeEvent事件处理框架,主要实现了epoll、kqueue和select,
对于单纯只有IO操作来说,单线程可以将速度优势发挥到最大,但是Redis也提供了一些简单的计算功能,比如排序、聚合等,对于这些操作,单线程模型实
际会严重影响整体吞吐量,CPU计算过程中,整个IO调度都是被阻塞住的。

2.内存管理方面

Memcached使用预分配的内存池的方式,使用slab和大小不同的chunk来管理内存,Item根据大小选择合适的chunk存储,内
存池的方式可以省去申请/释放内存的开销,并且能减小内存碎片产生,但这种方式也会带来一定程度上的空间浪费,并且在内存仍然有很大空间时,新的数据也可
能会被剔除,原因可以参考Timyang的文章:http://timyang.net/data/Memcached-lru-evictions/

Redis使用现场申请内存的方式来存储数据,并且很少使用free-list等方式来优化内存分配,会在一定程度上存在内存碎片,Redis
跟据存储命令参数,会把带过期时间的数据单独存放在一起,并把它们称为临时数据,非临时数据是永远不会被剔除的,即便物理内存不够,导致swap也不会剔
除任何非临时数据(但会尝试剔除部分临时数据),这点上Redis更适合作为存储而不是cache。

3.数据一致性问题

Memcached提供了cas命令,可以保证多个并发访问操作同一份数据的一致性问题。 Redis没有提供cas 命令,并不能保证这点,不过Redis提供了事务的功能,可以保证一串 命令的原子性,中间不会被任何操作打断。

4.存储方式及其它方面

Memcached基本只支持简单的key-value存储,不支持枚举,不支持持久化和复制等功能

Redis除key/value之外,还支持list,set,sorted set,hash等众多数据结构,提供了KEYS

进行枚举操作,但不能在线上使用,如果需要枚举线上数据,Redis提供了工具可以直接扫描其mp文件,枚举出所有数据,Redis还同时提供了持久化和复制等功能。

5.关于不同语言的客户端支持

在不同语言的客户端方面,Memcached和Redis都有丰富的第三方客户端可供选择,不过因为Memcached发展的时间更久一些,目
前看在客户端支持方面,Memcached的很多客户端更加成熟稳定,而Redis由于其协议本身就比Memcached复杂,加上作者不断增加新的功能
等,对应第三方客户端跟进速度可能会赶不上,有时可能需要自己在第三方客户端基础上做些修改才能更好的使用。

根据以上比较不难看出,当我们不希望数据被踢出,或者需要除key/value之外的更多数据类型时,或者需要落地功能时,使用Redis比使用Memcached更合适。

关于Redis的一些周边功能

Redis除了作为存储之外还提供了一些其它方面的功能,比如聚合计算、pubsub、scripting等,对于此类功能需要了解其实现原
理,清楚地了解到它的局限性后,才能正确的使用,比如pubsub功能,这个实际是没有任何持久化支持的,消费方连接闪断或重连之间过来的消息是会全部丢
失的,又比如聚合计算和scripting等功能受Redis单线程模型所限,是不可能达到很高的吞吐量的,需要谨慎使用。

总的来说Redis作者是一位非常勤奋的开发者,可以经常看到作者在尝试着各种不同的新鲜想法和思路,针对这些方面的功能就要求我们需要深入了解后再使用。

总结:

1.Redis使用最佳方式是全部数据in-memory。

2.Redis更多场景是作为Memcached的替代者来使用。

3.当需要除key/value之外的更多数据类型支持时,使用Redis更合适。

4.当存储的数据不能被剔除时,使用Redis更合适。

谈谈Memcached与Redis(一)

1. Memcached简介

Memcached是以LiveJurnal旗下Danga Interactive公司的Bard
Fitzpatric为首开发的高性能分布式内存缓存服务器。其本质上就是一个内存key-value数据库,但是不支持数据的持久化,服务器关闭之后数
据全部丢失。Memcached使用C语言开发,在大多数像Linux、BSD和Solaris等POSIX系统上,只要安装了libevent即可使
用。在Windows下,它也有一个可用的非官方版本(http://code.jellycan.com/memcached/)。Memcached
的客户端软件实现非常多,包括C/C++, PHP, Java, Python, Ruby, Perl, Erlang,
Lua等。当前Memcached使用广泛,除了LiveJournal以外还有Wikipedia、Flickr、Twitter、Youtube和
WordPress等。

在Window系统下,Memcached的安装非常方便,只需从以上给出的地址下载可执行软件然后运行memcached.exe –d
install即可完成安装。在Linux等系统下,我们首先需要安装libevent,然后从获取源码,make && make
install即可。默认情况下,Memcached的服务器启动程序会安装到/usr/local/bin目录下。在启动Memcached时,我们可
以为其配置不同的启动参数。

1.1 Memcache配置

Memcached服务器在启动时需要对关键的参数进行配置,下面我们就看一看Memcached在启动时需要设定哪些关键参数以及这些参数的作用。

1)-p <num> Memcached的TCP监听端口,缺省配置为11211;

2)-U <num> Memcached的UDP监听端口,缺省配置为11211,为0时表示关闭UDP监听;

3)-s <file> Memcached监听的UNIX套接字路径;

4)-a <mask> 访问UNIX套接字的八进制掩码,缺省配置为0700;

5)-l <addr> 监听的服务器IP地址,默认为所有网卡;

6)-d 为Memcached服务器启动守护进程;

7)-r 最大core文件大小;

8)-u <username> 运行Memcached的用户,如果当前为root的话需要使用此参数指定用户;

9)-m <num> 分配给Memcached使用的内存数量,单位是MB;

10)-M 指示Memcached在内存用光的时候返回错误而不是使用LRU算法移除数据记录;

11)-c <num> 最大并发连数,缺省配置为1024;

12)-v –vv –vvv 设定服务器端打印的消息的详细程度,其中-v仅打印错误和警告信息,-vv在-v的基础上还会打印客户端的命令和相应,-vvv在-vv的基础上还会打印内存状态转换信息;

13)-f <factor> 用于设置chunk大小的递增因子;

14)-n <bytes> 最小的chunk大小,缺省配置为48个字节;

15)-t <num> Memcached服务器使用的线程数,缺省配置为4个;

16)-L 尝试使用大内存页;

17)-R 每个事件的最大请求数,缺省配置为20个;

18)-C 禁用CAS,CAS模式会带来8个字节的冗余;

2. Redis简介

Redis是一个开源的key-value存储系统。与Memcached类似,Redis将大部分数据存储在内存中,支持的数据类型包括:字
符串、哈希表、链表、集合、有序集合以及基于这些数据类型的相关操作。Redis使用C语言开发,在大多数像Linux、BSD和Solaris等
POSIX系统上无需任何外部依赖就可以使用。Redis支持的客户端语言也非常丰富,常用的计算机语言如C、C#、C++、Object-C、PHP、
Python、Java、Perl、Lua、Erlang等均有可用的客户端来访问Redis服务器。当前Redis的应用已经非常广泛,国内像新浪、淘
宝,国外像Flickr、Github等均在使用Redis的缓存服务。

Redis的安装非常方便,只需从http://redis.io/download获取源码,然后make && make

install即可。默认情况下,Redis的服务器启动程序和客户端程序会安装到/usr/local/bin目录下。在启动Redis服务器时,我们
需要为其指定一个配置文件,缺省情况下配置文件在Redis的源码目录下,文件名为redis.conf。

❹ 京东面试官:Redis 这些我必问

缓存好处:高性能 + 高并发


数据库查询耗费了800ms,其他用户对同一个数据再次查询 ,假设该数据在10分钟以内没有变化过,并且 10 分钟之内有 1000 个用户 都查询了同一数据,10 分钟之内,那 1000 每个用户,每个人查询这个数据都感觉很慢 800ms
比如 :某个商品信息,在 一天之内都不会改变,但是这个商品每次查询一次都要耗费2s,一天之内被浏览 100W次
mysql 单机也就 2000qps,缓存单机轻松几万几十万qps,单机 承载并发量是 mysql 单机的几十倍。


在中午高峰期,有 100W 个用户访问系统 A,每秒有 4000 个请求去查询数据库,数据库承载每秒 4000 个请求会宕机,加上缓存后,可以 3000 个请求走缓存 ,1000 个请求走数据库。
缓存是走内存的,内存天然可以支撑4w/s的请求,数据库(基于磁盘)一般建议并发请求不要超过 2000/s

redis 单线程 ,memcached 多线程
redis 是单线程 nio 异步线程模型

一个线程+一个队列

redis 基于 reactor 模式开发了网络事件处理器,这个处理器叫做文件事件处理器,file event handler,这个文件事件处理器是单线程的,所以redis 是单线程的模型,采用 io多路复用机制同时监听多个 socket,根据socket上的事件来选择对应的事件处理器来处理这个事件。
文件事件处理器包含:多个 socket,io多路复用程序,文件事件分派器,事件处理器(命令请求处理器、命令恢复处理器、连接应答处理器)
文件事件处理器是单线程的,通过 io 多路复用机制监听多个 socket,实现高性能和线程模型简单性
被监听的 socket 准备好执行 accept,read,write,close等操作的时候,会产生对应的文件事件,调用之前关联好的时间处理器处理
多个 socket并发操作,产生不同的文件事件,i/o多路复用会监听多个socket,将这些 socket放入一个队列中排队。事件分派器从队列中取出socket给对应事件处理器。
一个socket时间处理完后,事件分派器才能从队列中拿到下一个socket,给对应事件处理器来处理。

文件事件:
AE_READABLE 对应 socket变得可读(客户端对redis执行 write操作)
AE_WRITABLE 对应 socket 变得可写(客户端对 redis执行 read操作)
I/O 多路复用可以同时监听AE_REABLE和 AE_WRITABLE ,如果同时达到则优先处理 AE_REABLE 时间
文件事件处理器:
连接应答处理器 对应 客户端要连接 redis
命令请求处理器 对应 客户端写数据到 redis
命令回复处理器 对应 客户端从 redis 读数据

流程:

一秒钟可以处理几万个请求

普通的 set,get kv缓存

类型 map结构,比如一个对象(没有嵌套对象)缓存到 redis里面,然后读写缓存的时候,可以直接操作hash的字段(比如把 age 改成 21,其他的不变)
key=150
value = {

}

有序列表 ,元素可以重复
可以通过 list 存储一些列表型数据结构,类似粉丝列表,文章评论列表。
例如:微信大 V的粉丝,可以以 list 的格式放在 redis 里去缓存
key=某大 V value=[zhangsan,lisi,wangwu]
比如 lrange 可以从某个元素开始读取多少个元素,可以基于 list 实现分页查询功能,基于 redis实现高性能分页,类似微博下来不断分页东西。
可以搞个简单的消息队列,从 list头怼进去(lpush),list尾巴出来 (brpop)

无序集合,自动去重
需要对一些数据快速全局去重,(当然也可以基于 HashSet,但是单机)
基于 set 玩差集、并集、交集的操作。比如:2 个人的粉丝列表整一个交集,看看 2 个人的共同好友是谁?
把 2 个大 V 的粉丝都放在 2 个 set中,对 2 个 set做交集(sinter)

排序的 set,去重但是可以排序,写进去的时候给一个分数,自动根据分数排序

排行榜:

zadd board score username

例如:
zadd board 85 zhangsan
zadd board 72 wangwu
zadd board 96 lis
zadd board 62 zhaoliu

自动排序为:
96 lisi
85 zhangsan
72 wangwu
62 zhaoliu

获取排名前 3 的用户 : zrevrange board 0 3
96 lisi
85 zhangsan
72 wangwu

查看zhaoliu的排行 :zrank board zhaoliu 返回 4

内存是宝贵的,磁盘是廉价的
给key设置过期时间后,redis对这批key是定期删除+惰性删除
定期删除:
redis 默认每隔 100ms随机抽取一些设置了过期时间的 key,检查其是否过期了,如果过期就删除。
注意:redis是每隔100ms随机抽取一些 key来检查和删除,而不是遍历所有的设置过期时间的key(否则CPU 负载会很高,消耗在检查过期 key 上)
惰性删除:
获取某个key的时候, redis 会检查一下,这个key如果设置了过期时间那么是否过期,如果过期了则删除。
如果定期删除漏掉了许多过期key,然后你也没及时去查,也没走惰性删除,如果大量过期的key堆积在内存里,导致 redis 内存块耗尽,则走内存淘汰机制。

内存淘汰策略:

LRU 算法:

缓存架构(多级缓存架构、热点缓存)
redis 高并发瓶颈在单机,读写分离,一般是支撑读高并发,写请求少,也就 一秒一两千,大量请求读,一秒钟二十万次。


一主多从,主负责写,将数据同步复制到其他 slave节点,从节点负责读,所有读的请求全部走从节点。主要是解决读高并发。、
主从架构->读写分离->支撑10W+读QPS架构


master->slave 复制,是异步的
核心机制:

master持久化对主从架构的意义:
如果开启了主从架构,一定要开启 master node的持久化,不然 master宕机重启数据是空的,一经复制,slave的数据也丢了

主从复制原理:


第一次启动或者断开重连情况:

正常情况下:
master 来一条数据,就异步给 slave

全年 99.99%的时间,都是出于可用的状态,那么就可以称为高可用性
redis 高可用架构叫故障转移,failover,也可以叫做主备切换,切换的时间不可用,但是整体高可用。
sentinal node(哨兵)

作用:


quorum = 1 (代表哨兵最低个数可以尝试故障转移,选举执行的哨兵)
master 宕机,只有 S2 存活,因为 quorum =1 可以尝试故障转移,但是没达到 majority =2 (最低允许执行故障转移的哨兵存活数)的标准,无法执行故障转移


如果 M1 宕机了,S2,S3 认为 master宕机,选举一个执行故障转移,因为 3 个哨兵的 majority = 2,所以可以执行故障转移

丢数据:

解决方案:

sdown 主观宕机,哨兵觉得一个 master 宕机(ping 超过了 is-master-down-after-milliseconds毫秒数)
odown 客观宕机,quorum数量的哨兵都觉得 master宕机
哨兵互相感知通过 redis的 pub/sub系统,每隔 2 秒往同一个 channel里发消息(自己的 host,ip,runid),其他哨兵可以消费这个消息
以及同步交换master的监控信息。
哨兵确保其他slave修改master信息为新选举的master
当一个 master被认为 odown && marjority哨兵都同意,那么某个哨兵会执行主备切换,选举一个slave成为master(考虑 1. 跟master断开连接的时长 2. slave 优先级 3.复制 offset 4. runid)
选举算法:

quorum 数量哨兵认为odown->选举一个哨兵切换->获得 majority哨兵的授权(quorum majority 需要 majority个哨兵授权,quorum >= majority 需要 quorum 哨兵授权)
第一个选举出来的哨兵切换失败了,其他哨兵等待 failover-time之后,重新拿confiuration epoch做为新的version 切换,保证拿到最新配置,用于 configuration传播(通过 pu/sub消息机制,其他哨兵对比 version 新旧更新 master配置)

高并发:主从架构
高容量:Redis集群,支持每秒几十万的读写并发
高可用:主从+哨兵

持久化的意义在于故障恢复数据备份(到其他服务器)+故障恢复(遇到灾难,机房断电,电缆被切)

AOF 只有一个,Redis 中的数据是有一定限量的,内存大小是一定的,AOF 是存放写命令的,当大到一定的时候,AOF 做 rewrite 操作,就会基于当时 redis 内存中的数据,来重新构造一个更小的 AOF 文件,然后将旧的膨胀很大的文件给删掉,AOF 文件一直会被限制在和Redis内存中一样的数据。AOF同步间隔比 RDB 小,数据更完整

优点:

缺点:

AOF 存放的指令日志,数据恢复的时候,需要回放执行所有指令日志,RDB 就是一份数据文件,直接加载到内存中。

优点:

缺点:

AOF 来保证数据不丢失,RDB 做不同时间的冷备


支持 N 个 Redis master node,每个 master node挂载多个 slave node
多master + 读写分离 + 高可用

数据量很少,高并发 -> replication + sentinal 集群
海量数据 + 高并发 + 高可用 -> redis cluster

hash算法->一致性 hash 算法-> redis cluster->hash slot算法

redis cluster :自动对数据进行分片,每个 master 上放一部分数据,提供内置的高可用支持,部分master不可用时,还是可以继续工作
cluster bus 通过 16379进行通信,故障检测,配置更新,故障转移授权,另外一种二进制协议,主要用于节点间进行高效数据交换,占用更少的网络带宽和处理时间

key进行hash,然后对节点数量取模,最大问题只有任意一个 master 宕机,大量数据就要根据新的节点数取模,会导致大量缓存失效。


key进行hash,对应圆环上一个点,顺时针寻找距离最近的一个点。保证任何一个 master 宕机,只受 master 宕机那台影响,其他节点不受影响,此时会瞬间去查数据库。
缓存热点问题:
可能集中在某个 hash区间内的值特别多,那么会导致大量的数据都涌入同一个 master 内,造成 master的热点问题,性能出现瓶颈。
解决方法:
给每个 master 都做了均匀分布的虚拟节点,这样每个区间内大量数据都会均匀的分布到不同节点内,而不是顺时针全部涌入到同一个节点中。

redis cluster 有固定 16384 个 hash slot,对每个key计算 CRC16 值,然后对16384取模,可以获取 key对应的 hash slot
redis cluster 中每个 master 都会持有部分 slot ,当一台 master 宕机时候,会最快速度迁移 hash slot到可用的机器上(只会短暂的访问不到)
走同一个 hash slot 通过 hash tag实现


集群元数据:包括 hashslot->node之间的映射表关系,master->slave之间的关系,故障的信息
集群元数据集中式存储(storm),底层基于zookeeper(分布式协调中间件)集群所有元数据的维护。好处:元数据的更新和读取,时效性好,一旦变更,其他节点立刻可以感知。缺点:所有元数据的更新压力全部集中在一个地方,可能会导致元数据的存储有压力。
goosip: 好处:元数据的更新比较分散,有一定的延时,降低了压力。缺点:更新有延时,集群的一些操作会滞后。(reshared操作时configuration error)

自己提供服务的端口号+ 10000 ,每隔一段时间就会往另外几个节点发送ping消息,同时其他几点接收到ping之后返回pong

故障信息,节点的增加和移除, hash slot 信息

meet:某个节点发送 meet给新加入的节点,让新节点加入集群中,然后新节点就会开始于其他节点进行通信
ping:每个节点都会频繁给其他节点发送ping,其中包含自己的状态还有自己维护的集群元数据,互相通过ping交换元数据
ping:返回ping和meet,包含自己的状态和其他信息
fail:某个节点判断另一个节点fail之后,就发送 fail 给其他节点,通知其他节点,指定的节点宕机了

ping 很频繁,且携带元数据,会加重网络负担
每个节点每秒会执行 10 次 ping,每次选择 5 个最久没有通信的其他节点
当如果发现某个节点通信延迟达到了 cluster_node_timeout /2 ,那么立即发送 ping, 避免数据交换延迟过长,落后时间太长(2 个节点之间 10 分钟没有交换数据,整个集群处于严重的元数据不一致的情况)。
每次ping,一个是带上自己的节点信息,还有就是带上1/10其他节点的信息,发送出去,进行数据交换
至少包含 3 个其他节点信息,最多包含总节点-2 个其他节点的信息

客户端发送到任意一个redis实例发送命令,每个redis实例接受到命令后,都会计算key对应的hash slot,如果在本地就本地处理,否则返回moved给客户端,让客户端进行重定向 (redis-cli -c)

通过tag指定key对应的slot,同一个 tag 下的 key,都会在一个 hash slot中,比如 set key1:{100} 和 set key2:{100}

本地维护一份hashslot->node的映射表。
JedisCluster 初始化的时候,随机选择一个 node,初始化 hashslot->node 映射表,同时为每个节点创建一个JedisPool连接池,每次基于JedisCluster执行操作,首先JedisCluster都会在本地计算key的hashslot,然后再本地映射表中找到对应的节点,如果发现对应的节点返回moved,那么利用该节点的元数据,更新 hashslot->node映射表(重试超过 5 次报错)

hash slot正在迁移,那么会返回ask 重定向给jedis,jedis 接受到ask重定向之后,,会重定向到目标节点去执行

判断节点宕机:
如果一个节点认为另外一个节点宕机了, 就是pfail,主观宕机
如果多个节点都认为另外一个节点宕机了,那么就是fail,客观宕机(跟哨兵原理一样)
在cluster-node-timeout内,某个节点一直没有返回 pong,那么就被认为是 pfail
如果一个节点认为某个节点pfail了,那么会在gossip消息中,ping给其他节点,如果超过半数的节点认为pfail了,那么就会变成fail。
从节点过滤:
对宕机的 mster node ,从其所有的 slave node中,选择一个切换成 master node
检查每个 slave node与master node断开连接的时间,如果超过了cluster-node-timeout * cluster-slave-validity-factor,那么就没资格切换成 master(和哨兵一致)
从节点选举:
每个从节点,根据自己对 master 复制数据的 offset,设置一个选举时间,offset越大(复制数据越多)的从节点,选举时间越靠前,所有的 master node 开始投票,给要进行选举的 slave进行投票,如果大部分 master node(N/2 +1) 都投票给某个从节点,那么选举通过,从节点执行主备切换,从节点切换成主节点
总结:和哨兵很像,直接集成了 replication 和 sentinal

方案:
事前:保证 redis 集群高可用性 (主从+哨兵或 redis cluster),避免全盘崩溃
事中:本地 ehcache 缓存 + hystrix 限流(保护数据库) & 降级,避免 MySQL被打死
事后: redis持久化,快速恢复缓存数据,继续分流高并发请求

限制组件每秒就 2000 个请求通过限流组件进入数据库,剩余的 3000 个请求走降级,返回一些默认 的值,或者友情提示
好处 :


4000 个请求黑客攻击请求数据库里没有的数据
解决方案:把黑客查数据库中不存在的数据的值,写到缓存中,比如: set -999 UNKNOWN


读的时候,先读缓存,缓存没有,就读数据库,然后取出数据后放入缓存,同时返回响应
更新的时候,删除缓存,更新数据库
为什么不更新缓存:
更新缓存代价太高(更新 20 次,只读 1 次),lazy思想,需要的时候再计算,不需要的时候不计算

方案:先删除缓存,再修改数据库


方案:写,读路由到相同的一个内存队列(唯一标识,hash,取模)里,更新和读操作进行串行化(后台线程异步执行队列串行化操作),(队列里只放一个更新查询操作即可,多余的过滤掉,内存队列里没有该数据更新操作,直接返回 )有该数据更新操作则轮询取缓存值,超时取不到缓存值,直接取一次数据库的旧值


TP 99 意思是99%的请求可以在200ms内返回
注意点:多个商品的更新操作都积压在一个队列里面(太多操作积压只能增加机器),导致读请求发生大量的超时,导致大量的读请求走数据库
一秒 500 写操作,每200ms,100 个写操作,20 个内存队列,每个队列积压 5 个写操作,一般在20ms完成


方案:分布式锁 + 时间戳比较

10台机器,5 主 5 从,每个节点QPS 5W ,一共 25W QPS(Redis cluster 32G + 8 核 ,Redis 进程不超过 10G)总内存 50g,每条数据10kb,10W 条数据1g,200W 条数据 20G,占用总内存不到50%,目前高峰期 3500 QPS

作者: mousycoder

❺ 谈谈redis,memcache,mongodb的区别和具体应用场景

从以下几个维度,对 redis、memcache、mongoDB 做了对比。
1、性能
都比较高,性能对我们来说应该都不是瓶颈。
总体来讲,TPS 方面 redis 和 memcache 差不多,要大于 mongodb。
2、操作的便利性
memcache 数据结构单一。(key-value)
redis 丰富一些,数据操作方面,redis 更好一些,较少的网络 IO 次数,同时还提供 list,set,
hash 等数据结构的存储。
mongodb 支持丰富的数据表达,索引,最类似关系型数据库,支持的查询语言非常丰富。
3、内存空间的大小和数据量的大小
redis 在 2.0 版本后增加了自己的 VM 特性,突破物理内存的限制;可以对 key value 设置过
期时间(类似 memcache)
memcache 可以修改最大可用内存,采用 LRU 算法。Memcached 代理软件 magent,比如建立
10 台 4G 的 Memcache 集群,就相当于有了 40G。 magent -s 10.1.2.1 -s 10.1.2.2:11211 -b
10.1.2.3:14000 mongoDB 适合大数据量的存储,依赖操作系统 VM 做内存管理,吃内存也比较厉害,服务
不要和别的服务在一起。
4、可用性(单点问题)
对于单点问题,
redis,依赖客户端来实现分布式读写;主从复制时,每次从节点重新连接主节点都要依赖整
个快照,无增量复制,因性能和效率问题,
所以单点问题比较复杂;不支持自动 sharding,需要依赖程序设定一致 hash 机制。
一种替代方案是,不用 redis 本身的复制机制,采用自己做主动复制(多份存储),或者改成
增量复制的方式(需要自己实现),一致性问题和性能的权衡
Memcache 本身没有数据冗余机制,也没必要;对于故障预防,采用依赖成熟的 hash 或者环
状的算法,解决单点故障引起的抖动问题。
mongoDB 支持 master-slave,replicaset(内部采用 paxos 选举算法,自动故障恢复),auto sharding 机制,对客户端屏蔽了故障转移和切分机制。
5、可靠性(持久化)
对于数据持久化和数据恢复,
redis 支持(快照、AOF):依赖快照进行持久化,aof 增强了可靠性的同时,对性能有所影

memcache 不支持,通常用在做缓存,提升性能;
MongoDB 从 1.8 版本开始采用 binlog 方式支持持久化的可靠性
6、数据一致性(事务支持)
Memcache 在并发场景下,用 cas 保证一致性redis 事务支持比较弱,只能保证事务中的每个操作连续执行
mongoDB 不支持事务
7、数据分析
mongoDB 内置了数据分析的功能(maprece),其他不支持
8、应用场景
redis:数据量较小的更性能操作和运算上
memcache:用于在动态系统中减少数据库负载,提升性能;做缓存,提高性能(适合读多写
少,对于数据量比较大,可以采用 sharding)
MongoDB:主要解决海量数据的访问效率问题。
表格比较:
memcache redis 类型 内存数据库 内存数据库
数据类型 在定义 value 时就要固定数据类型 不需要
有字符串,链表,集 合和有序集合
虚拟内存 不支持 支持
过期策略 支持 支持
分布式 magent master-slave,一主一从或一主多从
存储数据安全 不支持 使用 save 存储到 mp.rdb 中
灾难恢复 不支持 append only file(aof)用于数据恢复
性能
1、类型——memcache 和 redis 都是将数据存放在内存,所以是内存数据库。当然,memcache 也可用于缓存其他东西,例如图片等等。
2、 数据类型——Memcache 在添加数据时就要指定数据的字节长度,而 redis 不需要。
3、 虚拟内存——当物理内存用完时,可以将一些很久没用到的 value 交换到磁盘。
4、 过期策略——memcache 在 set 时就指定,例如 set key1 0 0 8,即永不过期。Redis 可以通
过例如 expire 设定,例如 expire name 10。
5、 分布式——设定 memcache 集群,利用 magent 做一主多从;redis 可以做一主多从。都可
以一主一从。
6、 存储数据安全——memcache 断电就断了,数据没了;redis 可以定期 save 到磁盘。
7、 灾难恢复——memcache 同上,redis 丢了后可以通过 aof 恢复。
Memecache 端口 11211
yum -y install memcached
yum -y install php-pecl-memcache
/etc/init.d/memcached start memcached -d -p 11211 -u memcached -m 64 -c 1024 -P /var/run/memcached/memcached.pid
-d 启动一个守护进程
-p 端口
-m 分配的内存是 M
-c 最大运行并发数-P memcache 的 pid
//0 压缩(是否 MEMCACHE_COMPRESSED) 30 秒失效时间
//delete 5 是 timeout <?php
$memcache = new Memcache; $memcache -> connect('127.0.0.1', 11211); $memcache -> set('name','yang',0,30);
if(!$memcache->add('name','susan',0, 30)) {
//echo 'susan is exist'; }$memcache -> replace('name', 'lion', 0, 300); echo $memcache -> get('name');
//$memcache -> delete('name', 5);
printf "stats\r\n" | nc 127.0.0.1 11211
telnet localhost 11211 stats quit 退出
Redis 的配置文件 端口 6379
/etc/redis.conf 启动 Redis
redis-server /etc/redis.conf 插入一个值
redis-cli set test "phper.yang" 获取键值
redis-cli get test 关闭 Redis
redis-cli shutdown 关闭所有
redis-cli -p 6379 shutdown <?php
$redis=new
Redis(); $redis->connect('127.0.0.1',6379); $redis->set('test',
'Hello World'); echo $redis->get('test'); Mongodb
apt-get install mongo mongo 可以进入 shell 命令行
pecl install mongo Mongodb 类似 phpmyadmin 操作平台 RockMongo

阅读全文

与分布式缓存lru算法相关的资料

热点内容
记事本dos命令 浏览:272
服务器如何搭建多个节点 浏览:324
acx算法 浏览:256
幽冥诡匠漫画全集用什么app可以看 浏览:1001
租用服务器为什么越来越慢 浏览:960
算法创新就业方向 浏览:423
算法最优解作者 浏览:867
通达信红绿宝塔线指标源码 浏览:667
app是什么东西合法吗 浏览:231
怎么锁app视频教程 浏览:841
迅捷pdf注册码生成器 浏览:748
androidsdkosx 浏览:303
压缩面膜纸荧光 浏览:841
app怎么分身三个 浏览:744
电影bt下载源码 浏览:422
iwatch屏幕加密芯片 浏览:570
公安主题网站源码 浏览:986
天津市服务器供应商云服务器 浏览:115
数控车床子程序编程 浏览:112
floydwarshall算法 浏览:719