㈠ 无监督和有监督算法的区别
1、有监督学习 :通过已有的训练样本去训练得到一个最优模型,再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现预测和分类的目的,也就具有了对未知数据进行预测和分类的能力。就如有标准答案的练习题,然后再去考试,相比没有答案的练习题然后去考试准确率更高。又如我们小的时候不知道牛和鸟是否属于一类,但当我们随着长大各种知识不断输入,我们脑中的模型越来越准确,判断动物也越来越准确。
有监督学习可分为 回归和分类 。
回归: 即给出一堆自变量X和因变量Y,拟合出一个函数,这些自变量X就是特征向量,因变量Y就是标签。 而且标签的值 连续 的,例LR。
分类 :其数据集,由特征向量X和它们的标签Y组成,当你利用数据训练出模型后,给你一个只知道特征向量不知道标签的数据,让你求它的标签是哪一个?其输出结果是 离散 的。例如logistics、SVM、KNN等。
2、无监督学习: 我们事先没有任何训练样本,而需要直接对数据进行建模。比如我们去参观一个画展,我们完全对艺术一无所知,但是欣赏完多幅作品之后,我们也能把它们分成不同的派别。无监督学习主要算法是聚类,聚类目的在于把相似的东西聚在一起,主要通过计算样本间和群体间距离得到,主要算法包括Kmeans、层次聚类、EM算法。
㈡ 有监督和无监督
1).监督式算法:
具有一个标准的本体,算法通过学习对数据进行预测,从而与本体进行比较。(我知道我想要得到什么)对数据,一部分数据用于训练模型,另一部分用于比较模型的正确率,有多少的匹配度就是多少的正确率。
2).无监督式算法:
不具有标准的本体,对于数据量庞大的数据集,我们想要找到其中隐藏的一些关系,则采用无监督式算法。需要将数据转化为一种有意义可比较的格式,最终得到的会是具有一定关系的集合。但是是否是我们想要的集合取决于我们自己。可以进行强制的删减某些数据以达到我们预期的特定分割。
3).强化式算法:
研究试图对强化学习模型进行逆向反馈以改进问题和技术的一种算法。是一种延时的机制。是一个连续做决策的过程,在一个过程中输入的数据的返回值会影响到下一个输入数据的返回值。算法定义了reward,由于自己能够察觉到signal并进行自己定义的action,算法需要将结果与reward进行比较,最终反馈以改进模型。RL没有被严格地监督,因为它不严格地依赖于受监督(或标记)数据集(训练集)。它实际上依赖于能够监控所采取行动的反应,并根据对奖励的定义来衡量。但这也不是没有监督的学习,因为我们知道,当我们对学习者进行建模时,这就是预期的回报。
㈢ 有监督和无监督学习都各有哪些有名的算法和深度学习
深度学习
编辑
深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。[1]
深度学习的概念由Hinton等人于2006年提出。基于深度置信网络(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。[1]
深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。[2]
㈣ 常见的监督学习算法
K-近邻算法,决策树,朴素贝叶斯,逻辑回归这些都是比较常见的。所有的回归算法和分类算法都属于监督学习。
在机器学习中,无监督学习就是聚类,事先不知道样本的类别,通过某种办法,把相似的样本放在一起归位一类;而监督型学习就是有训练样本,带有属性标签,也可以理解成样本有输入有输出。
回归和分类的算法区别在于输出变量的类型,定量输出称为回归,或者说是连续变量预测;定性输出称为分类,或者说是离散变量预测。
㈤ 有监督学习和无监督学习算法怎么理解
在判断是有监督学习还是在无监督学习上,我们可以具体是否有监督(supervised),就看输入数据是否有标签(label)。输入数据有标签,则为有监督学习,没标签则为无监督学习。
什么是学习(learning)?
一个成语就可概括:举一反三。机器学习的思路有点类似高考一套套做模拟试题,从而熟悉各种题型,能够面对陌生的问题时算出答案。
简而言之,机器学习就是看能不能利用一些训练数据(已经做过的题),使机器能够利用它们(解题方法)分析未知数据(高考题目),而这种根据类别未知(没有被标记)的训练样本解决模式识别中的各种问题,称之为无监督学习。
常用的无监督学习算法主要有三种:聚类、离散点检测和降维,包括主成分分析方法PCA等,等距映射方法、局部线性嵌入方法、拉普拉斯特征映射方法、黑塞局部线性嵌入方法和局部切空间排列方法等。
从原理上来说,PCA等数据降维算法同样适用于深度学习,但是这些数据降维方法复杂度较高,所以现在深度学习中采用的无监督学习方法通常采用较为简单的算法和直观的评价标准。比如无监督学习中最常用且典型方法聚类。
在无监督学习中,我们需要将一系列无标签的训练数据,输入到一个算法中,然后我们告诉这个算法,快去为我们找找这个数据的内在结构给定数据。这时就需要某种算法帮助我们寻找一种结构。
监督学习(supervised learning),是从给定的有标注的训练数据集中学习出一个函数(模型参数),当新的数据到来时可以根据这个函数预测结果。 常见任务包括分类与回归。
无监督学习方法在寻找数据集中的规律性,这种规律性并不一定要达到划分数据集的目的,也就是说不一定要“分类”。比如,一组颜色各异的积木,它可以按形状为维度来分类,也可以按颜色为维度来分类。(这一点比监督学习方法的用途要广。如分析一堆数据的主分量,或分析数据集有什么特点都可以归于无监督学习方法的范畴) ,而有监督学习则是通过已经有的有标签的数据集去训练得到一个最优模型。