1. 源代码究竟是什么
源代码就是人类可以看懂的机器文字,程序员在写完代码以后,会将源代码编译为机器代码,可能是一个可执行程序exe啥的,我们平时用的就是这个可执行程序,要想增加功能,或者改善程序,就需要有源代码了,因为人不可能通过0和1编出高级程序。
举个例子:你用Word写好一个文档,生成一个PDF文件,一般来说PDF是不可修改的,你可以把这个PDF发给别人阅读,但是别人要想修改这个PDF就不好操作。而你有这个PDF的原稿(Word文档)你可以很方便的修改然后再生成PDF文档。这里的Word文档就相当于源代码,PDF文档就相当于软件。
简介
代码,没什么可说的,广义的,只要算是程序语言写的都是,c写出来的是代码,编译后,成汇编语言程序,也可以说是代码;再汇编成,机器语言程序,也可以说是代码;不过,算得上代码的,也算是程序,一般都是广义的说法。
说“源”的问题、你用c写出来的,让我看,那是源代码;你把编译成.exe文件的代码,让我直接运行,那就不是源代码、你做的java游戏,如果你把自己写的java代码给我,那是源代码;把处理过的可执行文件给我,那不是源代码。
2. Android源码解析Window系列第(一)篇---Window的基本认识和Activity的加载流程
您可能听说过View ,ViewManager,Window,PhoneWindow,WindowManager,WindowManagerService,可是你知道这几个类是什么关系,干嘛用的。概括的来说,View是放在Window中的,Window是一个抽象类,它的具体实现是PhoneWindow,PhoneWindow还有个内部类DecorView,WindowManager是一个interface,继承自ViewManager,它是外界访问Window的入口,,提供了add/remove/updata的方法操作View,WindowManager与WindowManagerSerice是个跨进程的过程,WindowManagerService的职责是对系统中的所有窗口进行管理。如果您不太清楚,建议往下看,否则就不要看了。
Android系统的Window有很多种,大体上来说,Framework定义了三种窗口类型;
这就是Framework定义了三种窗口类型,这三种类型定义在WindowManager的内部类LayoutParams中,WindowManager讲这三种类型 进行了细化,把每一种类型都用一个int常量来表示,这些常量代表窗口所在的层,WindowManagerService在进行窗口叠加的时候,会按照常量的大小分配不同的层,常量值越大,代表位置越靠上面, 所以我们可以猜想一下,应用程序Window的层值常量要小于子Window的层值常量,子Window的层值常量要小于系统Window的层值常量。 Window的层级关系如下所示。
上面说了Window分为三种,用Window的type区分,在搞清楚Window的创建之前,我们需要知道怎么去描述一个Window,我们就把Window当做一个实体类,给我的感觉,它必须要下面几个字段。
实际上WindowManager.LayoutParams对Window有很详细的定义。
提取几个重要的参数
Window是一个是一个抽象的概念,千万不要认为我们所看到的就是Window,我们平时所看到的是视图,每一个Window都对应着一个View,View和Window通过ViewRootImpl来建立联系。有了View,Window的存在意义在哪里呢,因为View不能单独存在,它必须依附着Window,所以有视图的地方就有Window,比如Activity,一个Dialog,一个PopWindow,一个菜单,一个Toast等等。
通过上面我们知道视图和Window的关系,那么有一个问题,是先有视图,还是先有Window。这个答案只有在源码中找了。应用程序的入口类是ActivityThread,在ActivityThread中有performLaunchActivity来启动Activity,这个performLaunchActivity方法内部会创建一个Activity。
如果activity不为null,就会调用attach,在attach方法中通过PolicyManager创建了Window对象,并且给Window设置了回调接口。
PolicyManager的实现类是Policy
这样Window就创建出来了, 所以先有Window,后有视图,视图依赖Window存在 ,再说一说视图(Activity)为Window设置的回调接口。
Activity实现了这个回调接口,当Window的状态发生变化的时候,就会回调Activity中实现的这些接口,有些回调接口我们还是熟悉的,dispatchTouchEvent,onAttachedToWindow,onDetachedFromWindow等。
下面分析view是如何附属到window上的,通过上面可以看到,在attach之后就要执行callActivityOnCreate,在onCreate中我们会调用setContentView方法。
getWindow获取了Window对象,Window的具体实现类是PhoneWindow,所以要看PhoneWindow的setContentView方法。
这里涉及到一个mContentParent变量,他是一个DecorView的一部分,DecorView是PhoneWindow的一个内部类,我先介绍一下关于DecorView的知识。
DecorView是Activity的顶级VIew,DecorView继承自FrameLayout,在DecorView中有上下两个部分,上面是标题栏,下面是内容栏,我们通过PhoneWindow的setContentView所设置的布局文件是加到内容栏(mContentParent)里面的,View层的事件都是先经过DecorView在传递给我们的View的。
OK在回到setContentView的源码分析,我们可以得到Activity的Window创建需要三步。
- 1、 如果没有DecorView,在installDecor中创建DecorView。
- 2、将View添加到decorview中的mContentParent中。
- 3、回调Activity的onContentChanged接口。
先看看第一步,installDecor的源码
installDecor中调用了generateDecor,继续看
直接给new一个DecorView,有了DecorView之后,就可以加载具体的布局文件到DecorView中了,具体的布局文件和系统和主题有关系。
在看第二步,将View添加到decorview中的mContentParent中。
直接将Activity视图加到DecorView的mContentParent中,最后一步,回调Activity的onContentChanged接口。在Activity中寻找onContentChanged方法,它是个空实现,我们可以在子Activity中处理。
到此DecorView被创建完毕,我们一开始从Thread中的handleLaunchActivity方法开始分析,首先加载Activity的字节码文件,利用反射的方式创建一个Activity对象,调用Activity对象的attach方法,在attach方法中,创建系统需要的Window并为设置回调,这个回调定义在Window之中,由Activity实现,当Window的状态发生变化的时候,就会回调Activity实现的这些回调方法。调用attach方法之后,Window被创建完成,这时候需要关联我们的视图,在handleLaunchActivity中的attach执行之后就要执行handleLaunchActivity中的callActivityOnCreate,在onCreate中我们会调用setContentView方法。通过setContentView,创建了Activity的顶级View---DecorView,DecorView的内容栏(mContentParent)用来显示我们的布局。 这个是我们上面分析得到了一个大致流程,走到这里,这只是添加的过程,还要有一个显示的过程,显示的过程就要调用handleLaunchActivity中的handleResumeActivity方法了。最后会调用makeVisible方法。
这里面首先拿到WindowManager对象,用tWindowManager 的父接口ViewManager接收,ViewManager可以
最后调用 mDecor.setVisibility(View.VISIBLE)设置mDecor可见。到此,我们终于明白一个Activity是怎么显示在我们的面前了。
参考链接:
http://blog.csdn.net/feiclear_up/article/details/49201357
3. 源码的作用及介绍有哪些
源码是指编写的最原始程序的代码。运行的软件是要经过编写的,程序员编写程序的过程中需要他们的语言。以下是由我整理关于什么是源码的内容,希望大家喜欢!
1、计算机里面运行的所有东西都是用程序编出来的(包括操作系统,如Windows,还有Word等,网络游戏也一样),而编写程序要用到计算机语言,用计算机语言直接编出来的程序就叫源码,比如用
VisualBasic编写的源码文件一般为、bas文件,而用C++编写的一般为、cpp文件,源代码不能直接运行,必须编译后才能运行。源码经过编译处理后就可以直接在操作系统下运行了。
2、很多的站长都喜欢使用建网站的程序源码,因为可以很方便的修改,对于任何一个seo人员来说,都是非常好的一个切入点。
3、从字面意义上来讲,源文件是指一个文件,指源代码的集合、源代码则是一组具有特定意义的可以实现特定功能的字符(程序开发代码)。
4、“源代码”在大多数时候等于“源文件”。
比如在这个网页上右键鼠标,选择查看源文件、出来一个记事本,里面的内容就是此网页的源代码、"这句话就体现了他们的关系,此处的源文件是指网页的源文件,而源代码就是源文件的内容,所以又可以称做网页的源代码、、
源代码是指原始代码,可以是任何语言代码。
汇编码是指源代码编译后的代码,通常为二进制文件,比如共享库、可执行文件、、NET中间代码、JAVA中间代码等。
高级语言通常指C/C++、BASIC、C#、JAVA、PASCAL、易语言等等。汇编语言就是ASM,只有这个,比这个更低级的就是机器语言了。
1、生成目标代码,即计算机可以识别的代码。
2、对软件进行说明,即对软件的编写进行说明。为数不少的初学者,甚至少数有经验的程序员都忽视软件说明的编写,因为这部分虽然不会在生成的程序中直接显示,也不参与编译。但是说明对软件的学习、分享、维护和软件复用都有巨大的好处。因此,书写软件说明在业界被认为是能创造优秀程序的良好习惯,一些公司也硬性规定必须书写。
需要指出的是,源代码的修改不能改变已经生成的目标代码。如果需要目标代码做出相应的修改,必须重新编译。
虽然我们可以通过不同的语言来实现计算机的同一功能,但在执行效率上则存在不同。普遍规律是:越高级的语言,其执行效率越低。这也是为什么汇编语言生成的文件比用BASIC语言生成文件普遍要小的原因。
源代码就是用汇编语言和高级语言写出来的代码。主要对象是面向开发者;
我们平常使用的应用程序都是经过源码编译打包以后发布的,呈现的最后结果是面向使用者,最终客户的。
网站程序一般就是可以用记事本打开的好多行英文的,用编程语言写好的软件
源程序经过编译成目标程序,才能运行。一般目标程序不能再修改了。
我们电脑上安装的软件都是目标程序。源程序不可能直接运行的。
提倡软件开源的人士认为应该提供源程序给用户,让用户自己修改,有利于软件行业的发展。反对的人觉得这样不利于保护版权。
4. 服务器程序源代码分析之二:php-fpm
php作为排名top2 互联网开发工具,非常流行,可以参考:中国最大的25个网站采用技术选型方案
php这个名称实际上有两层含义
直接定义:
php-fpm从php5.3.3开始已经进入到php源代码包,之前是作为patch存在的
很少人会去读php本身源代码,我6年前解决php内存泄露问题的时候做了些研究,最近再查看了一番,发现php的开发者很有诚意,这是一款非常出色的服务器软件,支持如下
在linux服务器上,如果不设置 events.mechanism ,那么默认就是采用epoll,所以
php-fpm的IO模型&并发处理能力和nginx是完全一致
nginx以性能卓越闻名,大部分程序员都认为php效率低下,看了源代码,才知道这是传奇啊
在高性能部署的时候,大家往往会针对性的优化nginx 。我自己之前部署php程序也犯了错误,8G内存的server,php-fpm的max children都会设置128+,现在看来太多了,参考nginx的部署:
php-fpm配置为 3倍 cpu core number就可以了
php-fpm稳定性比nginx稍差 这是因为php-fpm内置了一个php解析器,php-fpm进程就和php程序捆绑了,如果php脚本写得不好,有死循环或者阻塞在某个远端资源上,会拖累加载它的php-fpm进程
而nginx和后端应用服务器之间通过网络连接,可以设置timeout,不容易堵死的
php-fpm的fastcgi是短连接 我原以为是长连接的,看了代码才知道也是短连接,处理一个request就关闭掉
php-fpm接口采用fastcgi 非常遗憾,php-fpm和fastcgi完全绑定了,无法独立使用 。只能部署在支持http-fcgi协议转换程序背后(nginx)。其实可以考虑在php-fpm代码包里面引入http协议支持,这样php-fpm可以独立运行,让nodejs无话可说
php-fpm等同于OpenResty OpenResty是一个国人开发的nginx模块,就是在nginx引入lua解释器. 实际上,它和php-fpm的唯一差别就是一个采用php语法,一个用lua,所以OpenResty要作为nginx增强包使用还可以,要选择它作为一个主要编程工具,没有任何必要
从架构上来说,php-fpm已经做到最好,超过大多数 python部署工具,我再也不黑它了
5. IPFS(四) 源码解读之-p2p
package p2p
import (
"context"
"errors"
"time"
net "gx/ipfs//go-libp2p-net"
manet "gx/ipfs//go-multiaddr-net"
ma "gx/ipfs//go-multiaddr"
pro "gx/ipfs//go-libp2p-protocol"
pstore "gx/ipfs//go-libp2p-peerstore"
p2phost "gx/ipfs//go-libp2p-host"
peer "gx/ipfs//go-libp2p-peer"
)
//P2P结构保存当前正在运行的流/监听器的信息
// P2P structure holds information on currently running streams/listeners
type P2P struct {
//监听器
Listeners ListenerRegistry
//数据流
Streams StreamRegistry
//节点ID
identity peer.ID
//节点地址
peerHost p2phost.Host
//一个线程安全的对等节点存储
peerstore pstore.Peerstore
}
//创建一个新的p2p结构
// NewP2P creates new P2P struct
//这个新的p2p结构不包含p2p结构中的监听器和数据流
func NewP2P(identity peer.ID, peerHost p2phost.Host, peerstore pstore.Peerstore) *P2P {
return &P2P{
identity: identity,
peerHost: peerHost,
peerstore: peerstore,
}
}
//新建一个数据流 工具方法 构建一个有节点id,内容和协议的流
func (p2p P2P) newStreamTo(ctx2 context.Context, p peer.ID, protocol string) (net.Stream, error) {
//30s 后会自动timeout
ctx, cancel := context.WithTimeout(ctx2, time.Second 30) //TODO: configurable?
defer cancel()
err := p2p.peerHost.Connect(ctx, pstore.PeerInfo{ID: p})
if err != nil {
return nil, err
}
return p2p.peerHost.NewStream(ctx2, p, pro.ID(protocol))
}
//对话为远程监听器创建新的P2P流
//创建一个新的p2p流实现对对话的监听
// Dial creates new P2P stream to a remote listener
//Multiaddr是一种跨协议、跨平台的表示格式的互联网地址。它强调明确性和自我描述。
//对内接收
func (p2p P2P) Dial(ctx context.Context, addr ma.Multiaddr, peer peer.ID, proto string, bindAddr ma.Multiaddr) ( ListenerInfo, error) {
//获取一些节点信息 network, host, nil
lnet, _, err := manet.DialArgs(bindAddr)
if err != nil {
return nil, err
}
//监听信息
listenerInfo := ListenerInfo{
//节点身份
Identity: p2p.identity,
////应用程序协议标识符。
Protocol: proto,
}
//调用newStreamTo 通过ctx(内容) peer(节点id) proto(协议标识符) 参数获取一个新的数据流
remote, err := p2p.newStreamTo(ctx, peer, proto)
if err != nil {
return nil, err
}
//network协议标识
switch lnet {
//network为"tcp", "tcp4", "tcp6"
case "tcp", "tcp4", "tcp6":
//从监听器获取新的信息 nla.Listener, nil
listener, err := manet.Listen(bindAddr)
if err != nil {
if err2 := remote.Reset(); err2 != nil {
return nil, err2
}
return nil, err
}
//将获取的新信息保存到listenerInfo
listenerInfo.Address = listener.Multiaddr()
listenerInfo.Closer = listener
listenerInfo.Running = true
//开启接受
go p2p.doAccept(&listenerInfo, remote, listener)
default:
return nil, errors.New("unsupported protocol: " + lnet)
}
return &listenerInfo, nil
}
//
func (p2p *P2P) doAccept(listenerInfo *ListenerInfo, remote net.Stream, listener manet.Listener) {
//关闭侦听器并删除流处理程序
defer listener.Close()
//Returns a Multiaddr friendly Conn
//一个有好的 Multiaddr 连接
local, err := listener.Accept()
if err != nil {
return
}
stream := StreamInfo{
//连接协议
Protocol: listenerInfo.Protocol,
//定位节点
LocalPeer: listenerInfo.Identity,
//定位节点地址
LocalAddr: listenerInfo.Address,
//远程节点
RemotePeer: remote.Conn().RemotePeer(),
//远程节点地址
RemoteAddr: remote.Conn().RemoteMultiaddr(),
//定位
Local: local,
//远程
Remote: remote,
//注册码
Registry: &p2p.Streams,
}
//注册连接信息
p2p.Streams.Register(&stream)
//开启节点广播
stream.startStreaming()
}
//侦听器将流处理程序包装到侦听器中
// Listener wraps stream handler into a listener
type Listener interface {
Accept() (net.Stream, error)
Close() error
}
//P2PListener保存关于侦听器的信息
// P2PListener holds information on a listener
type P2PListener struct {
peerHost p2phost.Host
conCh chan net.Stream
proto pro.ID
ctx context.Context
cancel func()
}
//等待侦听器的连接
// Accept waits for a connection from the listener
func (il *P2PListener) Accept() (net.Stream, error) {
select {
case c := <-il.conCh:
return c, nil
case <-il.ctx.Done():
return nil, il.ctx.Err()
}
}
//关闭侦听器并删除流处理程序
// Close closes the listener and removes stream handler
func (il *P2PListener) Close() error {
il.cancel()
il.peerHost.RemoveStreamHandler(il.proto)
return nil
}
// Listen创建新的P2PListener
// Listen creates new P2PListener
func (p2p P2P) registerStreamHandler(ctx2 context.Context, protocol string) ( P2PListener, error) {
ctx, cancel := context.WithCancel(ctx2)
list := &P2PListener{
peerHost: p2p.peerHost,
proto: pro.ID(protocol),
conCh: make(chan net.Stream),
ctx: ctx,
cancel: cancel,
}
p2p.peerHost.SetStreamHandler(list.proto, func(s net.Stream) {
select {
case list.conCh <- s:
case <-ctx.Done():
s.Reset()
}
})
return list, nil
}
// NewListener创建新的p2p侦听器
// NewListener creates new p2p listener
//对外广播
func (p2p P2P) NewListener(ctx context.Context, proto string, addr ma.Multiaddr) ( ListenerInfo, error) {
//调用registerStreamHandler 构造一个新的listener
listener, err := p2p.registerStreamHandler(ctx, proto)
if err != nil {
return nil, err
}
//构造新的listenerInfo
listenerInfo := ListenerInfo{
Identity: p2p.identity,
Protocol: proto,
Address: addr,
Closer: listener,
Running: true,
Registry: &p2p.Listeners,
}
go p2p.acceptStreams(&listenerInfo, listener)
//注册连接信息
p2p.Listeners.Register(&listenerInfo)
return &listenerInfo, nil
}
//接受流
func (p2p *P2P) acceptStreams(listenerInfo *ListenerInfo, listener Listener) {
for listenerInfo.Running {
//一个有好的 远程 连接
remote, err := listener.Accept()
if err != nil {
listener.Close()
break
}
}
//取消注册表中的p2p侦听器
p2p.Listeners.Deregister(listenerInfo.Protocol)
}
// CheckProtoExists检查是否注册了协议处理程序
// mux处理程序
// CheckProtoExists checks whether a protocol handler is registered to
// mux handler
func (p2p *P2P) CheckProtoExists(proto string) bool {
protos := p2p.peerHost.Mux().Protocols()
for _, p := range protos {
if p != proto {
continue
}
return true
}
return false
}
6. [Spring boot源码解析] 2 启动流程分析
在了解 Spring Boot 的启动流程的时候,我们先看一下一个Spring Boot 应用是如何启动的,如下是一个简单的 SpringBoot 程序,非常的简洁,他是如何做到的呢,我们接下来就将一步步分解。
我们追踪 SpringApplication.run() 方法,其实最终它主要的逻辑是新建一个 SpringApplication ,然后调用他的 run 方法,如下:
我们先来看一下创建 SpringApplication 的方法:
在将Main class 设置 primarySources 后,调用了 WebApplicationType.deceFromClasspath() 方法,该方法是为了检查当前的应用类型,并设置给 webApplicationType 。 我们进入 deceFromClasspath 方法 :
这里主要是通过类加载器判断是否存在 REACTIVE 相关的类信息,假如有就代表是一个 REACTIVE 的应用,假如不是就检查是否存在 Servelt 和 ,假如都没有,就代表应用为非 WEB 类应用,返回 NONE ,默认返回 SERVLET 类型,我们这期以我们目前最常使用的 SERVLET 类型进行讲解,所以我们在应用中引入了 spring-boot-starter-web 作为依赖:
他会包含 Spring-mvc 的依赖,所以就包含了内嵌 tomcat 中的 Servlet 和 Spring-web 中的 ,因此返回了 SERVLET 类型。
回到刚才创建 SpringApplication 的构建方法中,我们设置完成应用类型后,就寻找所有的 Initializer 实现类,并设置到 SpringApplication 的 Initializers 中,这里先说一下 getSpringFactoriesInstances 方法,我们知道在我们使用 SpringBoot 程序中,会经常在 META-INF/spring.factories 目录下看到一些 EnableAutoConfiguration ,来出发 config 类注入到容器中,我们知道一般一个 config 类要想被 SpringBoot 扫描到需要使用 @CompnentScan 来扫描具体的路径,对于 jar 包来说这无疑是非常不方便的,所以 SpringBoot 提供了另外一种方式来实现,就是使用 spring.factories ,比如下面这个,我们从 Springboot-test 中找到的例子,这里先定义了一个ExampleAutoConfiguration,并加上了 Configuration 注解:
然后在 spring.factories 中定义如下:
那这种方式是怎么实现的你,这就要回到我们刚才的方法 getSpringFactoriesInstances :
我们先来看一下传入参数,这里需要注意的是 args,这个是初始化对应 type 的时候传入的构造参数,我们先看一下 SpringFactoriesLoader#loadFactoryNames 方法:
首先是会先检查缓存,假如缓存中存在就直接返回,假如没有就调用 classLoader#getResources 方法,传入 META-INF/spring.factories ,即获取所有 jar 包下的对应文件,并封装成 UrlResource ,然后使用 PropertiesLoaderUtils 将这些信息读取成一个对一对的 properties,我们观察一下 spring.factories 都是按 properties 格式排版的,假如有多个就用逗号隔开,所以这里还需要将逗号的多个类分隔开来,并加到 result 中,由于 result 是一个 LinkedMultiValueMap 类型,支持多个值插入,最后放回缓存中。最终完成加载 META-INF/spring.factories 中的配置,如下:
我们可以看一下我们找到的 initializer 有多少个:
在获取到所有的 Initializer 后接下来是调用 方法进行初始化。
这里的 names 就是我们上面通过类加载器加载到的类名,到这里会先通过反射生成 class 对象,然后判断该类是否继承与 ApplicationContextInitializer ,最后通过发射的方式获取这个类的构造方法,并调用该构造方法,传入已经定义好的构造参数,对于 ApplicationContextInitializer 是无参的构造方法,然后初始化实例并返回,回到原来的方法,这里会先对所有的 ApplicationContextInitializer 进行排序,调用 #sort(instances) 方法,这里就是根据 @Order 中的顺序进行排序。
接下来是设置 ApplicationListener ,我们跟进去就会发现这里和上面获取 ApplicationContextInitializer 的方法如出一辙,最终会加载到如图的 15 个 listener (这里除了 外,其他都是 SpringBoot 内部的 Listener):
在完成 SpringApplication 对象的初始化后,我们进入了他的 run 方法,这个方法几乎涵盖了 SpringBoot 生命周期的所有内容,主要分为九个步骤,每一个步骤这里都使用注解进行标识:
主要步骤如下:
第一步:获取 SpringApplicationRunListener, 然后调用他的 staring 方法启动监听器。
第二步:根据 SpringApplicationRunListeners以及参数来准备环境。
第三步:创建 Spring 容器。
第四步:Spring 容器的前置处理。
第五步:刷新 Spring 容器。
第六步: Spring 容器的后置处理器。
第七步:通知所有 listener 结束启动。
第八步:调用所有 runner 的 run 方法。
第九步:通知所有 listener running 事件。
我们接下来一一讲解这些内容。
我们首先看一下第一步,获取 SpringApplicationRunListener :
这里和上面获取 initializer 和 listener 的方式基本一致,都是通过 getSpringFactoriesInstances , 最终只找到一个类就是: org.springframework.boot.context.event.EventPublishingRunListener ,然后调用其构造方法并传入产生 args , 和 SpringApplication 本身:
我们先看一下构造函数,首先将我们获取到的 ApplicationListener 集合添加到initialMulticaster 中, 最后都是通过操作 来进行广播,我,他继承于 ,我们先看一下他的 addApplicationListener 方法:
我们可以看出,最后是放到了 applicationListenters 这个容器中。他是 defaultRetriever 的成员属性, defaultRetriever 则是 的私有类,我们简单看一下这个类:
我们只需要看一下这里的 getApplicationListeners 方法,它主要是到 beanFactory 中检查是否存在多的 ApplicationListener 和旧的 applicationListeners 组合并返回,接着执行 listener 的 start 方法,最后也是调用了 的 multicastEvent 查找支持对应的 ApplicationEvent 类型的通知的 ApplicationListener 的 onApplicationEvent 方法 ,这里除了会:
筛选的方法如下,都是调用了对应类型的 supportsEventType 方法 :
如图,我们可以看到对 org.springframework.boot.context.event.ApplicationStartingEvent 感兴趣的有5个 Listener
环境准备的具体方法如下:
首先是调用 getOrCreateEnvironment 方法来创建 environment ,我们跟进去可以发现这里是根据我们上面设置的环境的类型来进行选择的,当前环境会创建 StandardServletEnvironment
我们先来看一下 StandardServletEnvironment 的类继承关系图,我们可以看出他是继承了 AbstractEnvironment :
他会调用子类的 customizePropertySources 方法实现,首先是 StandardServletEnvironment 的实现如下,他会添加 servletConfigInitParams , servletContextInitParams , jndiProperties 三种 properties,当前调试环境没有配置 jndi properties,所以这里不会添加。接着调用父类的 customizePropertySources 方法,即调用到了 StandardEnvironment 。
我们看一下 StandardEnvironment#customizePropertySources 方法,与上面的三个 properties 创建不同,这两个是会进行赋值的,包括系统环境变量放入 systemEnvironment 中,jvm 先关参数放到 systemProperties 中:
这里会添加 systemEnvironment 和 systemProperties 这两个 properties,最终拿到的 properties 数量如下 4个:
在创建完成 Environment 后,接下来就到了调用 configureEnvironment 方法:
我们先看一下 configurePropertySources 方法,这里主要分两部分,首先是查询当前是否存在 defaultProperties ,假如不为空就会添加到 environment 的 propertySources 中,接着是处理命令行参数,将命令行参数作为一个 CompositePropertySource 或则 添加到 environment 的 propertySources 里面,
接着调用 ConfigurationPropertySources#attach 方法,他会先去 environment 中查找 configurationProperties , 假如寻找到了,先检查 configurationProperties 和当前 environment 是否匹配,假如不相等,就先去除,最后添加 configurationProperties 并将其 sources 属性设置进去。
回到我们的 prepareEnvironment 逻辑,下一步是通知观察者,发送 事件,调用的是 SpringApplicationRunListeners#environmentPrepared 方法,最终回到了 #multicastEvent 方法,我们通过 debug 找到最后对这个时间感兴趣的 Listener 如下:
其主要逻辑如下:
这个方法最后加载了 PropertySourceLoader , 这里主要是两种,一个是用于 Properties 的,一个是用于 YAML 的如下:
其中 apply 方法主要是加载 defaultProperties ,假如已经存在,就进行替换,而替换的目标 PropertySource 就是 load 这里最后的一个 consumer 函数加载出来的,这里列一下主要做的事情:
1、加载系统中设置的所有的 Profile 。
2、遍历所有的 Profile ,假如是默认的 Profile , 就将这个 Profile 加到 environment 中。
3、调用load 方法,加载配置,我们深入看一下这个方法:
他会先调用 getSearchLocations 方法,加载所有的需要加载的路径,最终有如下路径:
其核心方法是遍历所有的 propertySourceLoader ,也就是上面加载到两种 propertySourceLoader ,最红 loadForFileExtension 方法,加载配置文件,这里就不展开分析了,说一下主要的作用,因为每个 propertySourceLoader 都有自己可以加载的扩展名,默认扩展名有如下四个 properties, xml, yml, yaml,所以最终拿到文件名字,然后通过 - 拼接所有的真实的名字,然后加上路径一起加载。
接下来,我们分析 BackgroundPreinitializer ,这个方法在接收 ApplicationPrepareEnvironment 事件的时候真正调用了这份方法:
1、 ConversionServiceInitializer 主要负责将包括 日期,货币等一些默认的转换器注册到 formatterRegistry 中。
2、 ValidationInitializer 创建 validation 的匹配器。
3、 MessageConverterInitializer 主要是添加了一些 http 的 Message Converter。
4、 JacksonInitializer 主要用于生成 xml 转换器的。
接着回到我们将的主体方法, prepareEnvironment 在调用完成 listeners.environmentPrepared(environment) 方法后,调用 bindToSpringApplication(environment) 方法,将 environment 绑定到 SpirngApplication 中。
接着将 enviroment 转化为 StandardEnvironment 对象。
最后将 configurationProperties 加入到 enviroment 中, configurationProperties 其实是将 environment 中其他的 PropertySource 重新包装了一遍,并放到 environment 中,这里主要的作用是方便 进行解析。
它主要是检查是否存在 spring.beaninfo.ignore 配置,这个配置的主要作用是设置 javaBean 的内省模式,所谓内省就是应用程序在 Runtime 的时候能检查对象类型的能力,通常也可以称作运行时类型检查,区别于反射主要用于修改类属性,内省主要用户获取类属性。那么我们什么时候会使用到内省呢,java主要是通过内省工具 Introspector 来完成内省的工作,内省的结果通过一个 Beaninfo 对象返回,主要包括类的一些相关信息,而在 Spring中,主要是 BeanUtils#Properties 会使用到,Spring 对内省机制还进行了改进,有三种内省模式,如下图中红色框框的内容,默认情况下是使用 USE_ALL_BEANINFO。假如设置为true,就是改成第三中 IGNORE_ALL_BEANINFO
首先是检查 Application的类型,然后获取对应的 ApplicationContext 类,我们这里是获取到了 org.springframework.boot.web.servlet.context. 接着调用 BeanUtils.instantiateClass(contextClass); 方法进行对象的初始化。
最终其实是调用了 的默认构造方法。我们看一下这个方法做了什么事情。这里只是简单的设置了一个 reader 和一个 scanner,作用于 bean 的扫描工作。
我们再来看一下这个类的继承关系
这里获取 ExceptionReporter 的方式主要还是和之前 Listener 的方式一致,通过 getSpringFactoriesInstances 来获取所有的 SpringBootExceptionReporter 。
其主要方法执行如下:
7. 源码是什么意思啊
源码指编写的最原始程序的代码。
用户平时使用软件时就是程序把“源码”翻译成我们可直观的形式表现出来供用户使用的。任何一个网站页面,换成源码就是一堆按一定格式书写的文字和符号。
源码主要功用
1、生成目标代码,即计算机可以识别的代码。
2、对软件进行说明,即对软件的编写进行说明。为数不少的初学者,甚至少数有经验的程序员都忽视软件说明的编写,因为这部分虽然不会在生成的程序中直接显示,也不参与编译。
但是说明对软件的学习、分享、维护和软件复用都有巨大的好处。因此,书写软件说明在业界被认为是能创造优秀程序的良好习惯,一些公司也硬性规定必须书写。
(7)程序源码解析扩展阅读:
计算机里面运行的所有东西都是用程序编出来的,而编写程序要用到计算机语言,用计算机语言直接编出来的程序就叫源码,比如用VisualBasic编写的源码文件一般为.bas文件,而用C++编写的一般为.cpp文件,源代码不能直接运行,必须编译后才能运行。源码经过编译处理后就可以直接在操作系统下运行了。
从字面意义上来讲,源文件是指一个文件,指源代码的集合.源代码则是一组具有特定意义的可以实现特定功能的字符(程序开发代码)。“源代码”在大多数时候等于“源文件”。