导航:首页 > 源码编译 > knn算法python

knn算法python

发布时间:2023-03-04 01:55:36

python基础都有哪些内容呢

阶段一:Python开发基础
Python全栈开发与人工智能之Python开发基础知识学习内容包括:Python基础语法、数据类型、字符编码、文件操作、函数、装饰器、迭代器、内置方法、常用模块等。
阶段二:Python高级编程和数据库开发
Python全栈开发与人工智能之Python高级编程和数据库开发知识学习内容包括:面向对象开发、Socket网络编程、线程、进程、队列、IO多路模型、Mysql数据库开发等。
阶段三:前端开发
Python全栈开发与人工智能之前端开发知识学习内容包括:Html、CSS、JavaScript开发、Jquery&bootstrap开发、前端框架VUE开发等。
阶段四:WEB框架开发
Python全栈开发与人工智能之WEB框架开发学习内容包括:Django框架基础、Django框架进阶、BBS+Blog实战项目开发、缓存和队列中间件、Flask框架学习、Tornado框架学习、Restful API等。
阶段五:爬虫开发
Python全栈开发与人工智能之爬虫开发学习内容包括:爬虫开发实战。
阶段六:全栈项目实战
Python全栈开发与人工智能之全栈项目实战学习内容包括:企业应用工具学习、CRM客户关系管理系统开发、路飞学城在线教育平台开发等。
阶段七:数据分析
Python全栈开发与人工智能之数据分析学习内容包括:金融量化分析。
阶段八:人工智能
Python全栈开发与人工智能之人工智能学习内容包括:机器学习、图形识别、无人机开发、无人驾驶等。
阶段九:自动化运维&开发
Python全栈开发与人工智能之自动化运维&开发学习内容包括:CMDB资产管理系统开发、IT审计+主机管理系统开发、分布式主机监控系统开发等。
阶段十:高并发语言GO开发
Python全栈开发与人工智能之高并发语言GO开发学习内容包括:GO语言基础、数据类型与文件IO操作、函数和面向对象、并发编程等。
这是我校课程大纲,不妨试试!

② 新手学习PYTHON中KNN算法的手写识别出现问题 求助

参考了其他博主的代码 想试着运行 然后去理解。结果一直报错,希望大神帮帮忙。
import numpy as np
import os
import kNN

def img2vector(filename):
"""函数将以文本格式出现的32*32的0-1图片,转变成一维特征数组,返回一维数组

Keyword argument:
filename -- 文本格式的图片文件
"""

imgvect = np.zeros((1, 1024))
fr = open(filename)
for i in range(32):
linestr = fr.readline()
for j in range(32):
imgvect[0, 32*i + j] = int(linestr[j])
return imgvect

def handwriteClassfiy(testfile, trainfile, k):
"""函数将trainfile中的文本图片转换成样本特征集和样本类型集,用testfile中的测试样本测试,无返回值

Keyword argument:
testfile -- 测试图片目录
trainfile -- 样本图片目录
"""

trainFileList = os.listdir(trainfile)
trainFileSize = len(trainFileList)
labels = []
trainDataSet = np.zeros((trainFileSize, 1024))
for i in range(trainFileSize):
filenameStr = trainFileList[i]
digitnameStr = filenameStr.split('.')[0]
digitLabels = digitnameStr.split('_')[0]
labels.append(digitLabels)
trainDataSet[i, :] = img2vector(trainfile + '/' + filenameStr)
testFileList = os.listdir(testfile)
testNumber = len(testFileList)
errorcount = 0.0
for testname in testFileList:
testdigit = img2vector(testfile + '/' + testname)
classifyresult = kNN.classfiy(testdigit, trainDataSet, labels, k)
testStr = testname.split('.')[0]
testDigitLabel = testStr.split('_')[0]
if classifyresult != testDigitLabel:
errorcount += 1.0
#print('this test real digit is:%s, and the result is: %s' % (testDigitLabel, classifyresult))
print('k = %d, errorRatio is: %f' % (k, errorcount/float(testNumber)))
return

if __name__ == '__main__':
filename = 'C:/Users/lx/Desktop/MachineLearning-master/kNN/use Python and NumPy/testDigits/0_1.txt'
traindir= 'C:/Users/lx/Desktop/MachineLearning-master/kNN/use Python and NumPy/trainingDigits'
testdir = 'C:/Users/lx/Desktop/MachineLearning-master/kNN/use Python and NumPy/testDigits'
handwriteClassfiy(testdir, traindir, 3)
错误提示Traceback (most recent call last):
File "kNN.py", line 56, in <mole>
handwriteClassfiy(testdir, traindir, 3)
File "kNN.py", line 43, in handwriteClassfiy
classifyresult = kNN.classfiy(testdigit, trainDataSet, labels, k)
AttributeError: mole 'kNN' has no attribute 'classfiy'
你这个文件是不是就叫 kNN.py ?如果是的话那你这个里面根本就没有 classfiy 这个属性,当然会报错。

另外,import kNN 是 import 自己?

③ python写算法不好

基于以下三个原因,我们选择Python作为实现机器学习算法的编程语言:(1) python的语法清晰;(2) 易于操作纯文本文件;(3) 使用广泛,存在大量的开发文档。

可执行伪代码

Python具有清晰的语法结构,大家也把它称作可执行伪代码(executable pseudo-code)。默认安装的Python开发环境已经附带了很多高级数据类型,如列表、元组、字典、集合、队列等,无需进一步编程就可以使用这些数据类型的操作。使用这些数据类型使得实现抽象的数学概念非常简单。此外,读者还可以使用自己熟悉的编程风格,如面向对象编程、面向过程编程、或者函数式编程。

Python语言处理和操作文本文件非常简单,非常易于处理非数值型数据。Python语言提供了丰富的正则表达式函数以及很多访问Web页面的函数库,使得从HTML中提取数据变得非常简单直观。

Python比较流行

Python语言使用广泛,代码范例也很多,便于读者快速学习和掌握。此外,在开发实际应用程序时,也可以利用丰富的模块库缩短开发周期。

在科学和金融领域,Python语言得到了广泛应用。SciPy和NumPy等许多科学函数库都实现了向量和矩阵操作,这些函数库增加了代码的可读性,学过线性代数的人都可以看懂代码的实际功能。另外,科学函数库SciPy和NumPy使用底层语言(C和Fortran)编写,提高了相关应用程序的计算性能。本书将大量使用Python的NumPy。

Python的科学工具可以与绘图工具Matplotlib协同工作。Matplotlib可以绘制2D、3D图形,也可以处理科学研究中经常使用到的图形,所以本书也将大量使用Matplotlib。

Python开发环境还提供了交互式shell环境,允许用户开发程序时查看和检测程序内容。

Python开发环境将来还会集成Pylab模块,它将NumPy、SciPy和Matplotlib合并为一个开发环境。在本书写作时,Pylab还没有并入Python环境,但是不远的将来我们肯定可以在Python开发环境找到它。

Python语言的特色

诸如MATLAB和Mathematica等高级程序语言也允许用户执行矩阵操作,MATLAB甚至还有许多内嵌的特征可以轻松地构造机器学习应用,而且MATLAB的运算速度也很快。然而MATLAB的不足之处是软件费用太高,单个软件授权就要花费数千美元。虽然也有适合MATLAB的第三方插件,但是没有一个有影响力的大型开源项目。

Java和C等强类型程序设计语言也有矩阵数学库,然而对于这些程序设计语言来说,最大的问题是即使完成简单的操作也要编写大量的代码。程序员首先需要定义变量的类型,对于Java来说,每次封装属性时还需要实现getter和setter方法。另外还要记着实现子类,即使并不想使用子类,也必须实现子类方法。为了完成一个简单的工作,我们必须花费大量时间编写了很多无用冗长的代码。Python语言则与Java和C完全不同,它清晰简练,而且易于理解,即使不是编程人员也能够理解程序的含义,而Java和C对于非编程人员则像天书一样难于理解。

所有人在小学二年级已经学会了写作,然而大多数人必须从事其他更重要的工作。

——鲍比·奈特

也许某一天,我们可以在这句话中将“写作”替代为“编写代码”,虽然有些人对于编写代码很感兴趣,但是对于大多数人来说,编程仅是完成其他任务的工具而已。Python语言是高级编程语言,我们可以花费更多的时间处理数据的内在含义,而无须花费太多精力解决计算机如何得到数据结果。Python语言使得我们很容易表达自己的目的。

Python语言的缺点

Python语言唯一的不足是性能问题。Python程序运行的效率不如Java或者C代码高,但是我们可以使用Python调用C编译的代码。这样,我们就可以同时利用C和Python的优点,逐步地开发机器学习应用程序。我们可以首先使用Python编写实验程序,如果进一步想要在产品中实现机器学习,转换成C代码也不困难。如果程序是按照模块化原则组织的,我们可以先构造可运行的Python程序,然后再逐步使用C代码替换核心代码以改进程序的性能。C++ Boost库就适合完成这个任务,其他类似于Cython和PyPy的工具也可以编写强类型的Python代码,改进一般Python程序的性能。

如果程序的算法或者思想有缺陷,则无论程序的性能如何,都无法得到正确的结果。如果解决问题的思想存在问题,那么单纯通过提高程序的运行效率,扩展用户规模都无法解决这个核心问题。从这个角度来看,Python快速实现系统的优势就更加明显了,我们可以快速地检验算法或者思想是否正确,如果需要,再进一步优化代码。

④ Python需要学习什么内容,好学吗

Python相对来说挺好入门的,不过也不要掉以轻心,学习的时候还是应该认真努力,学习内容整理如下:
Python语言基础:主要学习Python基础知识,如Python3、数据类型、字符串、函数、类、文件操作等。
Python语言高级:主要学习Python库、正则表达式、进程线程、爬虫、遍历以及MySQL数据库。
Pythonweb开发:主要学习HTML、CSS、JavaScript、jQuery等前端知识,掌握python三大后端框架(Django、 Flask以及Tornado)。
Linux基础:主要学习Linux相关的各种命令,如文件处理命令、压缩解压命令、权限管理以及Linux Shell开发等。
Linux运维自动化开发:主要学习Python开发Linux运维、Linux运维报警工具开发、Linux运维报警安全审计开发、Linux业务质量报表工具开发、Kali安全检测工具检测以及Kali 密码破解实战。
Python爬虫:主要学习python爬虫技术,掌握多线程爬虫技术,分布式爬虫技术。
Python数据分析和大数据:主要学习numpy数据处理、pandas数据分析、matplotlib数据可视化、scipy数据统计分析以及python 金融数据分析;Hadoop HDFS、python Hadoop MapRece、python Spark core、python Spark SQL以及python Spark MLlib。
Python机器学习:主要学习KNN算法、线性回归、逻辑斯蒂回归算法、决策树算法、朴素贝叶斯算法、支持向量机以及聚类k-means算法。

⑤ python后端开发需要学哪些内容

Python的学习内容还是比较多的,我们将学习的过程划分为4个阶段,每个阶段学习对应的内容,具体的学习顺序如下:

Python学习顺序:

①Python软件开发基础

②Python软件开发进阶

③Python全栈式WEB工程师

④Python多领域开发

如果打算线下学,建议考察对比一下中博软件学院、南京课工场、南京北大青鸟等开设python专业的学校,记得找我要全套python视频课,祝你学有所成!望采纳!

北大青鸟中博软件学院python课堂实拍

⑥ 简单数字识别(knn算法)

knn算法,即k-NearestNeighbor,后面的nn意思是最近邻的意思,前面的k是前k个的意思,就是找到前k个离得最近的元素

离得最近这个词具体实现有很多种,我使用的是欧式几何中的距离公式

二维中两点x(x1,y1),y(x2,y2)间距离公式为sqrt( (x1-x2)^2+(y1-y2)^2 )

推广到n维就是

x(x1,x2, … ,xn),y(y1,y2, … ,yn)

sqrt [ ∑( x[i] - y[i] )^2 ] (i=1,2, … ,n)

knn算法是要计算距离的,也就是数字之间的运算,而图像是png,jpg这种格式,并不是数字也不能直接参与运算,所以我们需要进行一下转换

如图所示一个数字8,首先要确定的是这一步我做的是一个最简单的转换,因为我假定背景和图之间是没有杂物的,而且整个图只有一个数字(0-9)如果遇到其他情况,比如背景色不纯或者有其他干扰图像需要重新设计转换函数

接下来就是最简单的转换,将图片白色部分(背景)变0,有图像的部分变1。转换后的大小要合适,太小会影响识别准确度,太大会增加计算量。所以我用的是书上的32*32,转换后结果如图所示

这样一来,图片就变成了能进行计算的数字了。

接下来我们需要创建一个库,这个库里面存着0-9这些数字的各种类似上图的实例。因为我们待识别的图像要进行对比,选出前k个最近的,比较的对象就是我们的库。假定库中有0-9十个数字,每个数字各有100个这种由0和1表示的实例,那么我们就有了一共1000个实例。

最后一步就是进行对比,利用开头说的欧式几何距离计算公式,首先这个32*32的方阵要转换成一个1*1024的1024维坐标表示,然后拿这个待识别的图像和库中的1000个实例进行距离计算,选出前k个距离最近的。比如50个,这50个里面出现次数最多的数字除以50就是结果数字的概率。比如50个里面数字8出现40次,那么待识别数字是8的可能性就是40/50 = 80%

个人理解:

只能识别单个数字,背景不能有干扰。如果想多数字识别或者背景有干扰需要针对具体情况考虑具体的图像转01的方法。

数字识别非常依赖库中的图像,库中的图像的样子严重影响图像的识别(因为我们是和库中的一一对比找出距离最近的前k个),所以数字的粗细,高低,胖瘦等待都是决定性因素,建库时一定全面考虑数字的可能样子

计算量比较大,待识别图像要和库中所有实例一一计算,如果使用32*32,就已经是1024维了。如果库中有1000个,那就是1024维向量之间的1000次计算,图像更清晰,库更丰富只会使计算量更大

对于其他可以直接计算距离的数值型问题,可以用欧式距离,也可以用其他能代表距离的计算公式,对于非数值型的问题需要进行合适的转换,转换方式很重要,我觉得首先信息不能丢失,其次要精确不能模糊,要实现图片转换前后是一对一的关系

参考资料:机器学习实战 [美] Peter Harrington 人民邮电出版社

python源码

import numpy

import os

from PIL import Image

import heapq

from collections import Counter

def pictureconvert(filename1,filename2,size=(32,32)):

    #filename1待识别图像,filename2 待识别图像转换为01txt文件输出,size图像大小,默认32*32

    image_file = Image.open(filename1)

    image_file = image_file.resize(size)

    width,height = image_file.size

    f1 = open(filename1,'r')

    f2 = open(filename2,'w')

    for i in range(height):

        for j in range(width):

            pixel = image_file.getpixel((j,i))

            pixel = pixel[0] + pixel[1] + pixel[2]

            if(pixel == 0):

                pixel = 0

            elif(pixel != 765 and pixel != 0):

                pixel = 1

            # 0代表黑色(无图像),255代表白色(有图像)

            # 0/255 = 0,255/255 = 1

            f2.write(str(pixel))

            if(j == width-1):

                f2.write('\n')

    f1.close()

    f2.close()

def imgvector(filename):

    #filename将待识别图像的01txt文件转换为向量

    vector = numpy.zeros((1,1024),numpy.int)

    with open(filename) as f:

        for i in range(0,32):

            linestr = f.readline()

            for j in range(0,32):

                vector[0,32*i+j] = int(linestr[j])

    return  vector

def compare(filename1,filename2):

    #compare直接读取资源库识别

    #filename1资源库目录,filename2 待识别图像01txt文档路径

    trainingfilelist = os.listdir(filename1)

    m = len(trainingfilelist)

    labelvector = []

    trainingmatrix = numpy.zeros((m, 1024), numpy.int8)

    for i in range(0,m):

        filenamestr = trainingfilelist[i]

        filestr = filenamestr.split('.')[0]

        classnumber = int(filestr.split('_')[0])

        labelvector.append(classnumber)

        trainingmatrix[i,:] = imgvector(filename1 + '/' + filenamestr)

    textvector = imgvector(filename2)

    resultdistance = numpy.zeros((1,m))

    result = []

    for i in range(0,m):

        resultdistance[0,i] = numpy.vdot(textvector[0],trainingmatrix[i])

    resultindices = heapq.nlargest(50,range(0,len(resultdistance[0])),resultdistance[0].take)

    for i in resultindices:

        result.append(labelvector[i])

    number = Counter(result).most_common(1)

    print('此数字是',number[0][0],'的可能性是','%.2f%%' % ((number[0][1]/len(result))*100))

def distinguish(filename1,filename2,filename3,size=(32,32)):

    # filename1 png,jpg等格式原始图像路径,filename2 原始图像转换成01txt文件路径,filename3 资源库路径

    pictureconvert(filename1,filename2,size)

    compare(filename3,filename2)

url1 = "/Users/wang/Desktop/number.png"

url2 = "/Users/wang/Desktop/number.txt"

traininglibrary = "/Users/wang/Documents/trainingDigits"

distinguish(url1,url2,traininglibrary)

⑦ 请问python 后端开发一般需要什么技术

第一阶段:Python语言基础


主要学习Python最基础知识,如Python3、数据类型、字符串、函数、类、文件操作等。阶段课程结束后,学员需要完成Pygame实战飞机大战、2048等项目。


第二阶段:Python语言高级


主要学习Python库、正则表达式、进程线程、爬虫、遍历以及MySQL数据库。


第三阶段:Pythonweb开发


主要学习HTML、CSS、JavaScript、jQuery等前端知识,掌握python三大后端框架(Django、 Flask以及Tornado)。需要完成网页界面设计实战;能独立开发网站。


第四阶段:Linux基础


主要学习Linux相关的各种命令,如文件处理命令、压缩解压命令、权限管理以及Linux Shell开发等。


第五阶段:Linux运维自动化开发


主要学习Python开发Linux运维、Linux运维报警工具开发、Linux运维报警安全审计开发、Linux业务质量报表工具开发、Kali安全检测工具检测以及Kali 密码破解实战。


第六阶段:Python爬虫


主要学习python爬虫技术,掌握多线程爬虫技术,分布式爬虫技术。


第七阶段:Python数据分析和大数据


主要学习numpy数据处理、pandas数据分析、matplotlib数据可视化、scipy数据统计分析以及python 金融数据分析;Hadoop HDFS、python Hadoop MapRece、python Spark core、python Spark SQL以及python Spark MLlib。


第八阶段:Python机器学习


主要学习KNN算法、线性回归、逻辑斯蒂回归算法、决策树算法、朴素贝叶斯算法、支持向量机以及聚类k-means算法。


关于python后端开发需要学什么的内容,青藤小编就和您分享到这里了。如果您对python编程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于python编程的技巧及素材等内容,可以点击本站的其他文章进行学习。

阅读全文

与knn算法python相关的资料

热点内容
单片机的中断技术 浏览:614
表格加密才能打开 浏览:39
多态可以提高编译可靠性吗 浏览:599
拼好魔方的app怎么下载 浏览:503
江苏金税盘测试服务器地址是什么 浏览:607
螺杆式压缩冷凝机组 浏览:299
p在单片机里什么意思 浏览:25
linuxwireshark使用教程 浏览:656
手机访问阿里服务器地址 浏览:678
程序员可以干什么 浏览:71
绩效考核权重分配算法 浏览:524
android应用logo 浏览:898
光遇安卓服墓土商店什么时候开 浏览:566
月收益翻倍的源码 浏览:638
asop源码放在哪里 浏览:989
电脑服务器密码怎么找 浏览:575
jdp转换pdf 浏览:750
把pdf导入iphone 浏览:510
米哈游租赁的云服务器是哪个 浏览:524
android直接打电话 浏览:1018