1. bp神经网络用啥算法
自己找个例子算一下,推导一下,这个回答起来比较复杂
神经网络对模型的表达能力依赖于优化算法,优化是一个不断计算梯度并调整可学习参数的过程,Fluid中的优化算法可参考优化器。
在网络的训练过程中,梯度计算分为两个步骤:前向计算与反向传播。
前向计算会根据您搭建的网络结构,将输入单元的状态传递到输出单元。
反向传播借助链式法则,计算两个或两个以上复合函数的导数,将输出单元的梯度反向传播回输入单元,根据计算出的梯度,调整网络的可学习参数。
BP算法
隐层的引入使网络具有很大的潜力。但正像Minskey和Papert当时所指出的.虽然对所有那些能用简单(无隐层)网结解决的问题有非常简单的学习规则,即简单感知器的收敛程序(主要归功于Widrow和HMf于1960年提出的Delta规刚),
BP算法
但当时并没有找到同样有技的含隐层的同培的学习规则。对此问题的研究有三个基本的结果。一种是使用简单无监督学习规则的竞争学习方法.但它缺乏外部信息.难以确定适台映射的隐层结构。第二条途径是假设一十内部(隐层)的表示方法,这在一些先约条件下是台理的。另一种方法是利用统计手段设计一个学习过程使之能有技地实现适当的内部表示法,Hinton等人(1984年)提出的Bolzmann机是这种方法的典型例子.它要求网络在两个不同的状态下达到平衡,并且只局限于对称网络。Barto和他的同事(1985年)提出了另一条利用统计手段的学习方法。但迄今为止最有教和最实用的方瑶是Rumelhart、Hinton和Williams(1986年)提出的一般Delta法则,即反向传播(BP)算法。Parter(1985年)也独立地得出过相似的算法,他称之为学习逻辑。此外, Lecun(1985年)也研究出大致相似的学习法则。
2. 求人工神经网络的具体算法,数学模型,比如求一个函数最优值之类的,不要各种乱七八糟的介绍,谢谢
神经网络就像多项式或者线性模型一样,是个看不见表达式的模型,它的表达式就是网络,它比一般模型具有更高的自由度和弹性;同时它是一个典型的黑箱模型方法;比多项式等模型还黑。优化算法,就是寻优的算法,所谓寻优过程,就是寻找使目标函数最小时(都是统一表示成寻找使函数具有最小值)的自变量的值。回归或者拟合一个模型,例如用一个多项式模型去拟合一组数据,其本质就是寻找使残差平方和最小的参数值,这就是一个寻优的过程,其实就是寻找使函数F(x)值最小时的x的值;对于这个具体的寻找过程就涉及到算法问题,就是如何计算。所谓算法,是数值分析的一个范畴,就是解这问题的方法;例如一个一元二次方程 x^2-3x+1=0的解法,因为简单可以直接求解,也可以用牛顿逐个靠近的方法求解,也即是迭代,慢慢接近真实解,如此下去不断接近真值,要注意迭代算法是涉及算法精度的,这些迭代算法是基于计算机的,算法的初衷也是用近似的算法用一定的精度来接近真实值。 比如上面的方程也可以用遗传算法来解,可以从一些初始值最终迭代到最佳解。神经网络在寻找网络的参数即权值的时候,也有寻找使训练效果最好的过程,这也是寻优的过程,这里涉及到了算法就是所谓的神经网络算法,这和最小二乘算法是一样的道理;例如做响应面的时候,其实就是二次回归,用最小二乘得到二次模型的参数,得到一个函数,求最大产物量就是求函数模型的最大值,怎么算呢?顶点处如果导数为0,这个地方对应的x值就是最优的,二次模型简单可以用偏导数=0来直接解决,这过程也可以遗传算法等来解决。说到底所谓寻优的本质就是,寻找函数极值处对应的自变量的值。
3. 深入浅出BP神经网络算法的原理
深入浅出BP神经网络算法的原理
相信每位刚接触神经网络的时候都会先碰到BP算法的问题,如何形象快速地理解BP神经网络就是我们学习的高级乐趣了(画外音:乐趣?你在跟我谈乐趣?)
本篇博文就是要简单粗暴地帮助各位童鞋快速入门采取BP算法的神经网络。
BP神经网络是怎样的一种定义?看这句话:一种按“误差逆传播算法训练”的多层前馈网络。
BP的思想就是:利用输出后的误差来估计输出层前一层的误差,再用这层误差来估计更前一层误差,如此获取所有各层误差估计。这里的误差估计可以理解为某种偏导数,我们就是根据这种偏导数来调整各层的连接权值,再用调整后的连接权值重新计算输出误差。直到输出的误差达到符合的要求或者迭代次数溢出设定值。
说来说去,“误差”这个词说的很多嘛,说明这个算法是不是跟误差有很大的关系?
没错,BP的传播对象就是“误差”,传播目的就是得到所有层的估计误差。
它的学习规则是:使用最速下降法,通过反向传播(就是一层一层往前传)不断调整网络的权值和阈值,最后使全局误差系数最小。
它的学习本质就是:对各连接权值的动态调整。
拓扑结构如上图:输入层(input),隐藏层(hide layer),输出层(output)
BP网络的优势就是能学习和储存大量的输入输出的关系,而不用事先指出这种数学关系。那么它是如何学习的?
BP利用处处可导的激活函数来描述该层输入与该层输出的关系,常用S型函数δ来当作激活函数。
我们现在开始有监督的BP神经网络学习算法:
1、正向传播得到输出层误差e
=>输入层输入样本=>各隐藏层=>输出层
2、判断是否反向传播
=>若输出层误差与期望不符=>反向传播
3、误差反向传播
=>误差在各层显示=>修正各层单元的权值,直到误差减少到可接受程度。
算法阐述起来比较简单,接下来通过数学公式来认识BP的真实面目。
假设我们的网络结构是一个含有N个神经元的输入层,含有P个神经元的隐层,含有Q个神经元的输出层。
这些变量分别如下:
认识好以上变量后,开始计算:
一、用(-1,1)内的随机数初始化误差函数,并设定精度ε,最多迭代次数M
二、随机选取第k个输入样本及对应的期望输出
重复以下步骤至误差达到要求:
三、计算隐含层各神经元的输入和输出
四、计算误差函数e对输出层各神经元的偏导数,根据输出层期望输出和实际输出以及输出层输入等参数计算。
五、计算误差函数对隐藏层各神经元的偏导数,根据后一层(这里即输出层)的灵敏度(稍后介绍灵敏度)δo(k),后一层连接权值w,以及该层的输入值等参数计算
六、利用第四步中的偏导数来修正输出层连接权值
七、利用第五步中的偏导数来修正隐藏层连接权值
八、计算全局误差(m个样本,q个类别)
比较具体的计算方法介绍好了,接下来用比较简洁的数学公式来大致地概括这个过程,相信看完上述的详细步骤都会有些了解和领悟。
假设我们的神经网络是这样的,此时有两个隐藏层。
我们先来理解灵敏度是什么?
看下面一个公式:
这个公式是误差对b的一个偏导数,这个b是怎么?它是一个基,灵敏度δ就是误差对基的变化率,也就是导数。
因为?u/?b=1,所以?E/?b=?E/?u=δ,也就是说bias基的灵敏度?E/?b=δ等于误差E对一个节点全部输入u的导数?E/?u。
也可以认为这里的灵敏度等于误差E对该层输入的导数,注意了,这里的输入是上图U级别的输入,即已经完成层与层权值计算后的输入。
每一个隐藏层第l层的灵敏度为:
这里的“?”表示每个元素相乘,不懂的可与上面详细公式对比理解
而输出层的灵敏度计算方法不同,为:
而最后的修正权值为灵敏度乘以该层的输入值,注意了,这里的输入可是未曾乘以权值的输入,即上图的Xi级别。
对于每一个权值(W)ij都有一个特定的学习率ηIj,由算法学习完成。
4. 如何用python和scikit learn实现神经网络
1:神经网络算法简介
2:Backpropagation算法详细介绍
3:非线性转化方程举例
4:自己实现神经网络算法NeuralNetwork
5:基于NeuralNetwork的XOR实例
6:基于NeuralNetwork的手写数字识别实例
7:scikit-learn中BernoulliRBM使用实例
8:scikit-learn中的手写数字识别实例
一:神经网络算法简介
1:背景
以人脑神经网络为启发,历史上出现过很多版本,但最着名的是backpropagation
2:多层向前神经网络(Multilayer Feed-Forward Neural Network)
5. 目前最流行的机器学习算法是什么
毫无疑问,机器学习在过去几年越来越受欢迎。由于大数据是目前技术行业最热门的趋势,机器学习是非常强大的,可以根据大量数据进行预测或计算推理。
如果你想学习机器算法,要从何下手呢?
监督学习
1. 决策树:决策树是一种决策支持工具,使用的决策及其可能产生的后果,包括随机事件的结果,资源消耗和效用的树状图或模型。
从业务决策的角度来看,决策树是人们必须要选择是/否的问题,以评估大多数时候作出正确决策的概率。它允许您以结构化和系统的方式来解决问题,以得出逻辑结论。
2.朴素贝叶斯分类:朴素贝叶斯分类器是一种简单的概率分类器,基于贝叶斯定理,其特征之间具有强大(朴素)的独立性假设。
特征图像是方程 - P(A | B)是后验概率,P(B | A)是似然度,P(A)是类先验概率,P(B)是预测先验概率。
一些现实世界的例子是:
判断邮件是否为垃圾邮件
分类技术,将新闻文章氛围政治或体育类
检查一段表达积极情绪或消极情绪的文字
用于面部识别软件
3.普通最小二乘回归:如果你了解统计学,你可能已经听说过线性回归。最小二乘法是一种执行线性回归的方法。
您可以将线性回归视为拟合直线穿过点状分布的任务。有多种可能的策略可以做到这一点,“普通最小二乘法”策略就像这样 -你可以画一条线,然后把每个数据点,测量点和线之间的垂直距离,添加上去;拟合线将是距离总和的尽可能小的线。
线性是指您正在使用的模型来迎合数据,而最小二乘可以最小化线性模型误差。
4.逻辑回归: Logistic回归是一个强大的统计学方法,用一个或多个解释变量建模二项式结果。它通过使用逻辑函数估计概率,来衡量分类因变量与一个或多个独立变量之间的关系,后者是累积逻辑分布。
逻辑回归用于生活中:
信用评级
衡量营销活动的成功率
预测某一产品的收入
某一天会有地震吗
5.支持向量机: SVM是二元分类算法。给定N维空间中两种种类型的点,SVM生成(N-1)维的超平面将这些点分成2组。
假设你有一些可以线性分离的纸张中的两种类型的点。SVM将找到一条直线,将这些点分成两种类型,并尽可能远离所有这些点。
在规模上,使用SVM解决的一些特大的问题(包括适当修改的实现)是:广告、人类基因剪接位点识别、基于图像的性别检测,大规模图像分类...
6.集成方法:集成方法是构建一组分类器的学习算法,然后通过对其预测进行加权投票来对新的数据点进行分类。原始的集成方法是贝叶斯平均法,但更新的算法包括纠错输出编码、bagging和boosting。
那么集成方法如何工作,为什么它们优于单个模型?
均衡偏差:如果你均衡了大量的倾向民主党的投票和大量倾向共和党的投票,你总会得到一个不那么偏颇的结果。
降低方差:集合大量模型的参考结果,噪音会小于单个模型的单个结果。在金融领域,这被称为投资分散原则(diversification)——一个混搭很多种股票的投资组合,比单独的股票更少变故。
不太可能过度拟合:如果您有单个模型不完全拟合,您以简单的方式(平均,加权平均,逻辑回归)结合每个模型建模,那么一般不会发生过拟合。
无监督学习
7. 聚类算法:聚类是对一组对象进行分组的任务,使得同一组(集群)中的对象彼此之间比其他组中的对象更相似。
每个聚类算法是不同的,比如:
基于Centroid的算法
基于连接的算法
基于密度的算法
概率
降维
神经网络/深度学习
8. 主成分分析: PCA是使用正交变换将可能相关变量的观察值转换为主成分的线性不相关变量值的一组统计过程。
PCA的一些应用包括压缩、简化数据、便于学习、可视化。请注意,领域知识在选择是否继续使用PCA时非常重要。数据嘈杂的情况(PCA的所有组件都有很大差异)的情况不适用。
9.奇异值分解:在线性代数中,SVD是真正复杂矩阵的因式分解。对于给定的m * n矩阵M,存在分解,使得M =UΣV,其中U和V是酉矩阵,Σ是对角矩阵。
PCA实际上是SVD的简单应用。在计算机视觉技术中,第一个人脸识别算法使用PCA和SVD,以将面部表示为“特征脸”的线性组合,进行降维,然后通过简单的方法将面部匹配到身份;虽然这种方法更复杂,但仍然依赖于类似的技术。
10.独立成分分析: ICA是一种统计技术,用于揭示随机变量、测量或信号集合的隐藏因素。ICA定义了观察到的多变量数据的生成模型,通常将其作为大型样本数据库。
在模型中,假设数据变量是一些未知潜在变量的线性混合,混合系统也是未知的。潜变量被假定为非高斯和相互独立的,它们被称为观测数据的独立成分。
ICA与PCA相关,但它是一种更强大的技术,能够在这些经典方法完全失败时找到潜在的源因素。其应用包括数字图像、文档数据库、经济指标和心理测量。