Ⅰ 直角三角形边长计算公式
应用勾股定理:斜边平方=两直角边平方之和
例如,对于任意一直角三角形而言,设两直角边长度分别为a和b,斜边长为c,则根据勾股定理可得到公式:a²+b²=c²
对于题中的直角三角形来说,利用勾股定理可得:斜边=√(2.36²+1.2²)=√7.0096≈2.648
(1)三角形外边算法扩展阅读:
中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,商朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
Ⅱ 三角形的边长计算公式
三角形的边长公式:
1.在任何一个三角形中,任意一边的平方等于另外两边的平方和减去这两边的2倍乘以它们夹角的余弦 几何语言:在△ABC中,a²=b²+c²-2bc×cosA 此定理可以变形为:cosA=(b²+c²-a²)÷2bc
2.已知,角A,B,C,边a,求:b,c
根据公式:
a/sinA = b/sinB = c/sinC
b = a(sinB/sinA)
c = a(sinC/sinA)
a*sinB = b*sinA = hc (c边的高)
周长的公式:
①圆:C=πd=2πr (d为直径,r为半径,π)
②三角形的周长C = a+b+c(abc为三角形的三条边)
③四边形:C=a+b+c+d(abcd为四边形的边长)
④特别的:长方形:C=2(a+b) (a为长,b为宽)
⑤正方形:C=4a(a为正方形的边长)
⑥多边形:C=所有边长之和。
⑦扇形的周长:C = 2R+nπR÷180˚ (n=圆心角角度) = 2R+kR (k=弧度)
Ⅲ 三角形的边长算法
用1)a=2RsinA,b=2RsinB,c=2RsinC
(2)sinA:sinB:sinC=a:b:c
(3)asinB=bsinA,asinC=csinA,bsinC=csinB
(4)sinA=a/2R,sinB=b/2R,sinC=c/2R
面积公式(5)S=1/2bcsinA=1/2acsinB=1/2absinC S=1/2底·h(原始公式)
余弦定理
a2=b2+c2-2bccosA
b2=a2+c2-2accosB
c2=a2+b2-2abcosC
注:勾股定理其实是余弦定理的一种特殊情况。
变形公式
cosC=(a2+b2-c2)/2ab
cosB=(a2+c2-b2)/2ac
cosA=(c2+b2-a2)/2bc