导航:首页 > 源码编译 > tcp快速恢复算法

tcp快速恢复算法

发布时间:2023-03-08 07:19:47

⑴ 在TCP的拥塞控制中,什么是慢开始、拥塞避免、快重传和快恢复算法

慢开始:在主机刚刚开始发送报文段时可先将拥塞窗口cwnd设置为一个最大报文段MSS的数值。在每收到一个对新的报文段的确认后,将拥塞窗口增加至多一个MSS的数值。

拥塞避免:当拥塞窗口值大于慢开始门限时,停止使用慢开始算法而改用拥塞避免算法。

快重传算法:发送端只要一连收到三个重复的ACK即可断定有分组丢失了,就应该立即重传丢手的报文段而不必继续等待为该报文段设置的重传计时器的超时。

接下来执行的不是慢启动算法而是拥塞避免算法。这就是快速恢复算法。.



防止拥塞的方法

(1)在传输层可采用:重传策略、乱序缓存策略、确认策略、流控制策略和确定超时策略。

(2)在网络层可采用:子网内部的虚电路与数据报策略、分组排队和服务策略、分组丢弃策略、路由算法和分组生存管理。

(3)在数据链路层可采用:重传策略、乱序缓存策略、确认策略和流控制策略。

⑵ tcp如何实现拥塞控制

TCP拥塞控制是传输控制协议(英语:Transmission Control Protocol,缩写TCP)避免网络拥塞的算法,是互联网上主要的一个拥塞控制措施。它使用一套基于线增积减模式的多样化网络拥塞控制方法(包括慢启动和拥塞窗口等模式)来控制拥塞。在互联网上应用中有相当多的具体实现算法。

在TCP中,拥塞窗口(congestion window)是任何时刻内确定能被发送出去的字节数的控制因素之一,是阻止发送方至接收方之间的链路变得拥塞的手段。他是由发送方维护,通过估计链路的拥塞程度计算出来的,与由接收方维护的接收窗口大小并不冲突。

1、慢开始算法:

简单的说,开始传输时,传输的数据由小到大递增到一个值(即发送窗口由小到大(指数增长)逐渐增大到拥塞窗口的数值)。

2、拥塞避免算法:

数据发送出去,并发到接收方发回来的确认收到,拥塞窗口每次值加1地线性增大。

3、快重传算法:

数据传输时(数据被分成报文,每个报文都有个序号),中间的一部分丢失接收方没收到,接收方连续接到后面的数据,则发回对丢失前的数据的重复确认,这样发送方就知道有部分数据丢失了,于是从丢失出重传数据。

4、快恢复算法:

快恢复是与快重传配合的算法,在发生数据丢失时,发送方收到接收方发回的三个重复确认信息时,就把每次传输的数据量减为原来的一半,拥塞窗口也修改为这个值,然后又开始拥塞避免的算法。

⑶ 快重传和快恢复的具体算法

(1) 当发送端收到连续三个重复的 ACK 时,就重新设置慢开始门限 ssthresh。
(2) 与慢开始不同之处是拥塞窗口 cwnd 不是设置为 1,而是设置为 ssthresh + 3 ´ MSS。
(3) 若收到的重复的 ACK 为 n 个(n> 3),则将 cwnd 设置为 ssthresh + n´ MSS。
(4) 若发送窗口值还容许发送报文段,就按拥塞避免算法继续发送报文段。
(5) 若收到了确认新的报文段的 ACK,就将 cwnd 缩小到 ssthresh。 其中:拥塞窗口 cwnd
如果收到3个相同的ACK。TCP在收到乱序到达包时就会立即发送ACK,TCP利用3个相同的ACK来判定数据包的丢失,此时进行快速重传,快速重传做的事情有:
1.把ssthresh设置为cwnd的一半
2.把cwnd再设置为ssthresh的值(具体实现有些为ssthresh+3)
3.重新进入拥塞避免阶段。
后来的“快速恢复”算法是在上述的“快速重传”算法后添加的,当收到3个重复ACK时,TCP最后进入的不是拥塞避免阶段,而是快速恢复阶段。快速重传和快速恢复算法一般同时使用。快速恢复的思想是“数据包守恒”原则,即同一个时刻在网络中的数据包数量是恒定的,只有当“老”数据包离开了网络后,才能向网络中发送一个“新”的数据包,如果发送方收到一个重复的ACK,那么根据TCP的ACK机制就表明有一个数据包离开了网络,于是cwnd加1。如果能够严格按照该原则那么网络中很少会发生拥塞,事实上拥塞控制的目的也就在修正违反该原则的地方。
具体来说快速恢复的主要步骤是:
1.当收到3个重复ACK时,把ssthresh设置为cwnd的一半,把cwnd设置为ssthresh的值加3,然后重传丢失的报文段,加3的原因是因为收到3个重复的ACK,表明有3个“老”的数据包离开了网络。
2.再收到重复的ACK时,拥塞窗口增加1。
3.当收到新的数据包的ACK时,把cwnd设置为第一步中的ssthresh的值。原因是因为该ACK确认了新的数据,说明从重复ACK时的数据都已收到,该恢复过程已经结束,可以回到恢复之前的状态了,也即再次进入拥塞避免状态。
快速重传算法首次出现在4.3BSD的Tahoe版本,快速恢复首次出现在4.3BSD的Reno版本,也称之为Reno版的TCP拥塞控制算法。
可以看出Reno的快速重传算法是针对一个包的重传情况的,然而在实际中,一个重传超时可能导致许多的数据包的重传,因此当多个数据包从一个数据窗口中丢失时并且触发快速重传和快速恢复算法时,问题就产生了。因此NewReno出现了,它在Reno快速恢复的基础上稍加了修改,可以恢复一个窗口内多个包丢失的情况。具体来讲就是:Reno在收到一个新的数据的ACK时就退出了快速恢复状态了,而NewReno需要收到该窗口内所有数据包的确认后才会退出快速恢复状态,从而更一步提高吞吐量。

⑷ TCP/IP的快恢复算法怎么理解

struct tcp_sock {
...
/* Congestion window at start of Recovery. 进入Recovery前的拥塞窗口*/
u32 prior_cwnd;

/* Number of newly delivered packets to receiver in Recovery.
* 实际上用于统计data_rate_at_the_receiver,数据离开网络的速度。
*/
u32 prr_delivered;

/* Total number of pkts sent ring Recovery.
* 实际上用于统计sending_rate,数据进入网络的速度。
*/
u32 prr_out;
...
}
@net/ipv4/tcp_input.c
[java] view plain
static inline void tcp_complete_cwr (struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
/* Do not moderate cwnd if it's already undone in cwr or recovery. */
if (tp->undo_marker) {
if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);

else /* PRR */
tp->snd_cwnd = tp->snd_ssthresh; /* 防止不必要的进入慢启动*/

tp->snd_cwnd_stamp = tcp_time_stamp;
}
tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
}
[java] view plain
/* This function implements the PRR algorithm, specifically the PRR-SSRB
* (proportional rate rection with slow start rection bound) as described in
* http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-rection-01.txt.
* It computes the number of packets to send (sndcnt) based on packets newly
* delivered:
* 1) If the packets in flight is larger than ssthresh, PRR spreads the cwnd
* rections across a full RTT.
* 2) If packets in flight is lower than ssthresh (such as e to excess losses
* and/or application stalls), do not perform any further cwnd rections, but
* instead slow start up to ssthresh.
*/

static void tcp_update_cwnd_in_recovery (struct sock *sk, int newly_acked_sacked,
int fast_rexmits, int flag)
{
struct tcp_sock *tp = tcp_sk(sk);
int sndcnt = 0; /* 对于每个ACK,可以发送的数据量*/
int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);

if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {

/* Main idea : sending_rate = CC_rection_factor * data_rate_at_the_receiver,
* 按照拥塞算法得到的减小因子,按比例的减小pipe,最终使pipe收敛于snd_ssthresh。
*/
u64 dividend = (u64) tp->snd_ssthresh * tp->prr_delivered + tp->prior_cwnd - 1;
sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;

} else {
/* tp->prr_delivered - tp->prr_out首先用于撤销之前对pipe的减小,即首先让网络中的数据包恢复守恒。
* 然后,tp->prr_delivered < tp->prr_out,因为目前是慢启动,网络中数据包开始增加:
* 对于每个ACK,sndcnt = newly_acked_sacked + 1,使pipe加1,即慢启动。
* delta使pipe最终收敛于snd_ssthresh。
*/
sndcnt = min_t(int, delta, max_t(int, tp->prr_delivered - tp->prr_out, newly_acked_sacked) + 1);
}

sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
}
@tcp_ack()
[java] view plain
/* count the number of new bytes that the current acknowledgement indicates have
* been delivered to the receiver.
* newly_acked_sacked = delta(snd.una) + delat(SACKed)
*/
newly_acked_sacked = (prior_packets - tp->packets_out) + (tp->sacked_out - prior_sacked);

...

tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, newly_acked_sacked, flag);

⑸ TCP拥塞控制

  在计算机网络中的链路容量(即带宽)、交换节点(如路由器)中的缓存和处理机等,都是网络的资源。在某段时间内,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就要变坏,从而导致吞吐量将随着输入负荷增大而降低。这种情况就叫做 拥塞 。通俗来说,就跟交通拥堵性质一样。

  网络拥塞的原因有很多,如交换节点的 缓存容量太小、输出链路的容量和处理机的速度

   拥塞控制就是防止过多的数据注入网络中,这样可以使网络中的路由器或链路不致于过载 。拥塞控制是一个 全局性的过程 。涉及网络中所有的主机、所有的路由器,以及与降低网络传输性能有关的所有因素。

  拥塞控制和流量控制的关系密切,但是 流量控制往往是指点对点的通信量控制 ,是个 端对端 的问题。流量控制所要做的就是抑制发送方发送数据的速率,以便使接收端来得及接收。

  TCP进行拥塞控制的算法有四种,即 慢开始(slow-start)、拥塞避免(congestion-avoidance)、快重传(fast retransmit)、快恢复(fast recovery)

  为了讨论问题方便,提出以下假定:

  拥塞控制也叫做 基于窗口 的拥塞控制。为此,发送方维持一个叫作 拥塞窗口cwnd (congestion window)的状态变量。 拥塞窗口的大小取决于网络的用谁程度,并且动态的变化。发送方让自己的发送窗口等于拥塞窗口

  接收方窗口值rwnd和拥塞窗口值cwnd的区别:

  发送方控制拥塞窗口的原则是:只要网络没有出现拥塞,拥塞窗口就可以再扩大一些,以便让更多的分组发送出去,如果网络出现了拥塞,就必须将拥塞窗口减小一些,以减少分组的发送。 判断网络拥塞的依据就是出现了超时

  慢开始算法的思路:刚开始发送数据时,不一下向网络中注入大量数据,而是先探测一下,即 由小到大逐渐增大发送窗口 ,也就是说, 由小到大逐渐增大拥塞窗口数值

  慢开始算法具体规定:刚开始发送数据时,先把拥塞窗口cwnd根据 发送方的最大报文段SMSS (Sender Maximum Segment Size)数值的大小设置为不超过2-4个SMSS的数值。在 每收到一个对新的报文段的确认后,可以把拥塞窗口增加最多一个SMSS的数值 。用这样的方法逐步增大发送方的拥塞窗口rwnd,可以使分组注入到网络中的速率更加合理。

  下面举例说明一下,虽然实际上TCP是用字节数作为窗口大小的单位,但为了方便描述,下面使用报文段的个数来作为窗口的大小的单位,并且假设所有的报文段大小相等。

  所以, 慢开始算法每经过一个传输轮次(transmission round),拥塞窗口cwnd就加倍

  注:在TCP实际运行时,发送方只有收到一个确认就可以将cwnd加1并发送新的分组,并不需要等一个轮次所有的确认都收到后再发送新的分组。

  从上面可以看出,慢开始算法虽然起始的窗口很小,但是每过一个轮次,窗口大小翻倍,呈指数爆炸增长,所以必须要对其进行一个限制,防止其增长过大引起网络拥塞。这个限制就是 慢开始门限ssthresh 状态变量。慢开始门限ssthresh的用法如下:

  拥塞避免算法的思路是让拥塞窗口cwnd缓慢增大,即每经过一个往返时间RTT就把发送方的拥塞窗口cwnd加1,而不是像慢开始阶段那样加倍增长。因此在拥塞避免阶段就有 “加法增大”AI (Additive Increase)的特点。这表明在拥塞避免阶段,拥塞窗口cwnd 按线性规律增长 ,比慢开始算法的拥塞窗口增长速率缓慢得多。

  下面用一个具体的例子来说明拥塞控制的过程,下图假设TCP发送窗口等于拥塞窗口,慢开始初始门限设置为16个报文段,即ssthresh = 16。

  在拥塞避免阶段,拥塞窗口是按照线性规律增大的,这常称为 加法增大AI 。无论在慢开始阶段还是拥塞避免阶段,只要出现一次超时(即出现一次网络拥塞),就把慢开始门限值 ssthresh 设置为当前拥塞窗口的一半,这叫做 乘法减小 MD (Multiplication Decrease)。

  当网络频繁出现拥塞时,ssthresh 值就下降的很快,以大大减少注入网络中的分组数。

   快恢复算法 ,如果发送方连续接收到3个冗余ACK,发送方知道现在只是丢失了个别的报文段,此时调整门限值 ssthresh为当前拥塞窗口的一半,同时设置拥塞窗口 cwnd为新的门限值(发生报文段丢失时拥塞窗口的一半),而不是从1开始。

   TCP对这种丢包事件的行为,相比于超时指示的丢包,不那么剧烈 ,所以对于连续收到3个冗余ACK,拥塞窗口不会从1开始开始。

⑹ TCP 如何保证可靠性

[TOC]

1. TCP可靠性的保证机制总结

2. 网络基础:TCP协议-如何保证传输可靠性

3. TCP协议的流量控制和拥塞控制

4. TCP 的那些事儿(下)

5. TCP拥塞控制:慢开始、拥塞避免、快重传、快恢复

TCP检验和的计算与UDP一样,在计算时要加上12byte的伪首部,检验范围包括TCP首部及数据部分,但是UDP的检验和字段为可选的,而TCP中是必须有的。计算方法为:在发送方将整个报文段分为多个16位的段,然后将所有段进行反码相加,将结果存放在检验和字段中,接收方用相同的方法进行计算,如最终结果为检验字段所有位是全1则正确(UDP中也是全为1则正确),否则存在错误。

TCP将每个数据包都进行了编号,这就是序列号。
序列号的作用:
a、保证可靠性(当接收到的数据总少了某个序号的数据时,能马上知道)
b、保证数据的按序到达
c、提高效率,可实现多次发送,一次确认
d、去除重复数据
数据传输过程中的确认应答处理、重发控制以及重复控制等功能都可以通过序列号来实现

TCP通过确认应答机制实现可靠的数据传输。在TCP的首部中有一个标志位——ACK,此标志位表示确认号是否有效。接收方对于按序到达的数据会进行确认,当标志位ACK=1时确认首部的确认字段有效。进行确认时,确认字段值表示这个值之前的数据都已经按序到达了。而发送方如果收到了已发送的数据的确认报文,则继续传输下一部分数据;而如果等待了一定时间还没有收到确认报文就会启动重传机制。

当报文发出后在一定的时间内未收到接收方的确认,发送方就会进行重传(通常是在发出报文段后设定一个闹钟,到点了还没有收到应答则进行重传)。
一种情况是发送包丢失了,其基本过程如下:

另一种情况是ACK 丢失,过程如下:

当接收方接收到重复的数据时就将其丢掉,重新发送ACK。而要识别出重复的数据,前面提到的序列号就起作用了。

重传时间的确定:
重传时间的确定:报文段发出到收到应答中间有一个报文段的往返时间RTT,显然超时重传时间RTO会略大于这个RTT,TCP会根据网络情况动态的计算RTT,即RTO是不断变化的。在Linux中,超时以500ms为单位进行控制,每次判定超时重发的超时时间都是500ms的整数倍。其规律为:如果重发一次仍得不到应答,就等待2 500ms后再进行重传,如果仍然得不到应答就等待4 500ms后重传,依次类推,以指数形式递增,重传次数累计到一定次数后,TCP认为网络或对端主机出现异常,就会强行关闭连接。

连接管理机制即TCP建立连接时的三次握手和断开连接时的四次挥手。

接收端处理数据的速度是有限的,如果发送方发送数据的速度过快,导致接收端的缓冲区满,而发送方继续发送,就会造成丢包,继而引起丢包重传等一系列连锁反应。
因此TCP支持根据接收端的处理能力,来决定发送端的发送速度,这个机制叫做流量控制。
在TCP报文段首部中有一个16位窗口长度,当接收端接收到发送方的数据后,在应答报文ACK中就将自身缓冲区的剩余大小,放入16窗口大小中。这个大小随数据传输情况而变,窗口越大,网络吞吐量越高,而一旦接收方发现自身的缓冲区快满了,就将窗口设置为更小的值通知发送方。如果缓冲区满,就将窗口置为0,发送方收到后就不再发送数据,但是需要定期发送一个窗口探测数据段,使接收端把窗口大小告诉发送端。

注意:窗口大小不受16位窗口大小限制,在TCP首部40字节选项中还包含一个窗口扩大因子M,实际窗口大小是窗口字段的值左移M位。

流量控制解决了两台主机之间因传送速率而可能引起的丢包问题,在一方面保证了TCP数据传送的可靠性。然而如果网络非常拥堵,此时再发送数据就会加重网络负担,那么发送的数据段很可能超过了最大生存时间也没有到达接收方,就会产生丢包问题。
为此TCP引入慢启动机制,先发出少量数据,就像探路一样,先摸清当前的网络拥堵状态后,再决定按照多大的速度传送数据。
此处引入一个拥塞窗口:
发送开始时定义拥塞窗口大小为1;每次收到一个ACK应答,拥塞窗口加1;而在每次发送数据时,发送窗口取拥塞窗口与接送段接收窗口最小者。
慢启动:在启动初期以指数增长方式增长;设置一个慢启动的阈值,当以指数增长达到阈值时就停止指数增长,按照线性增长方式增加;线性增长达到网络拥塞时立即“乘法减小”,拥塞窗口置回1,进行新一轮的“慢启动”,同时新一轮的阈值变为原来的一半。
“慢启动”机制可用图表示:

1)连接建好的开始先初始化cwnd = 1,表明可以传一个MSS大小的数据。

2)每当收到一个ACK,cwnd++; 呈线性上升

3)每当过了一个RTT,cwnd = cwnd*2; 呈指数让升

4)还有一个ssthresh(slow start threshold),是一个上限,当cwnd >= ssthresh时,就会进入“拥塞避免算法”(后面会说这个算法)

1)收到一个ACK时,cwnd = cwnd + 1/cwnd

2)当每过一个RTT时,cwnd = cwnd + 1

这样就可以避免增长过快导致网络拥塞,慢慢的增加调整到网络的最佳值。很明显,是一个线性上升的算法。

当出现ack超时的时候,需要重传数据包。

TCP认为这种情况太糟糕,反应也很强烈。
快速重传在收到3个plicate ACK时就开启重传(三次 ack 就认为丢包的原理见 关于TCP乱序和重传的问题 、 TCP 快速重传为什么是三次冗余 ACK ),而不用等到RTO超时。

TCP Reno的实现是:

快速重传和快速恢复算法一般同时使用。快速恢复算法是认为,你还有3个Duplicated Acks说明网络也不那么糟糕,所以没有必要像RTO超时那么强烈。 注意,正如前面所说,进入Fast Recovery之前,cwnd 和 sshthresh已被更新:

然后,真正的Fast Recovery算法如下:
cwnd = sshthresh + 3 * MSS (3的意思是确认有3个数据包被收到了)
重传Duplicated ACKs指定的数据包
如果再收到 plicated Acks,那么cwnd = cwnd +1
如果收到了新的Ack,那么,cwnd = sshthresh ,然后就进入了拥塞避免的算法了。
如果你仔细思考一下上面的这个算法,你就会知道,上面这个算法也有问题,那就是——它依赖于3个重复的Acks。注意,3个重复的Acks并不代表只丢了一个数据包,很有可能是丢了好多包。但这个算法只会重传一个,而剩下的那些包只能等到RTO超时,于是,进入了恶梦模式——超时一个窗口就减半一下,多个超时会超成TCP的传输速度呈级数下降,而且也不会触发Fast Recovery算法了。

通常来说,正如我们前面所说的,SACK或D-SACK的方法可以让Fast Recovery或Sender在做决定时更聪明一些,但是并不是所有的TCP的实现都支持SACK(SACK需要两端都支持),所以,需要一个没有SACK的解决方案。而通过SACK进行拥塞控制的算法是FACK(可参见 关于TCP乱序和重传的问题 )

⑺ TCP拥塞控制算法之NewReno和SACK

改进原因分析
TCP Reno 提出的快速恢复算法提高了丢失报文后的吞吐量和顽健性,但是:

仅考虑了每次拥塞发生时只丢失一个报文的情形。
实际网络中,一旦发生拥塞,路由器会丢弃大量的报文,即一次拥塞中丢失多个报文的情形很普遍。

下图是Reno算法中快速恢复状态和拥塞避免状态之间的相互转换:

所以,网络在一次拥塞中丢弃了多个报文,被TCP Reno错误地分析为传输中发生了多次拥塞。过度的窗口减小导致了传输超时的发生。因此为了提高一次拥塞中丢弃多个报文情形下TCP的性能,必须使TCP终端减少盲目削减发送窗口的行为。

New Reno:基于Reno算法的改进
NewReno TCP在Reno TCP的基础上对快速恢复算法进行修改,只有一个数据包丢失的情况下,其机制和Reno是一样的;当同时有多个包丢失时就显示出了它的优势。

Reno快速恢复算法中发送方收到一个新的ACK就退出快速恢复状态,New Reno算法中只有当所有报文都被应答后才退出快速恢复状态。

NewReno TCP添加了恢复应答判断功能,以增强TCP终端通过ACK报文信息分析报文传输状况的能力。
使TCP终端可以把一次拥塞丢失多个报文的情形与多次拥塞的情形区分开来,进而在每一次拥塞发生后拥塞窗口仅减半一次,从而提高了TCP的顽健性和吞吐量。

两个概念:部分应答(PACK)、恢复应答(RACK)

记TCP发送端恢复阶段中接收到的ACK报文(非冗余ACK)为ACKx,记在接收到ACKx时TCP终端已发出的序列号(SN)最大的报文是PKTy,如果ACKx不是PKTy的应答报文,则称报文ACKx为部分应答(Partial ACK,简称PACK);若ACKx恰好是PKTy的应答报文则称报文ACKx为恢复应答(Recovery ACK,简称RACK)。

举例来理解:
如果4、5、6号包丢了,现在只重传4,只收到了4的ACK,后面的5、6没有确认,这就是部分应答Partial ACK。如果收到了6的ACK,则是恢复应答Recovery ACK。

TCP发送端接收到恢复应答表明:经过重传,TCP终端发送的所有报文都已经被接收端正确接收,网络已经从拥塞中恢复。

NewReno发送端在收到第一个Partial ACK时,并不会立即结束Fast-recovery,而会持续地重送Partial ACK之后的数据包,直到将所有遗失的数据包重送后才结束Fast-recovery。收到一个Partial ACK时,重传定时器就复位。这使得NewReno的发送端在网络有大量数据包遗失时不需等待Timeout就能更正此错误,减少大量数据包遗失对传输效果造成的影响。

NewReno大约每一个RTT时间可重传一个丢失的数据包,如果一个发送窗口有M个数据包丢失,TCP NewReno的快速恢复阶段将持续M个RTT。

改进的快速恢复算法具体步骤:

快速恢复是基于数据包守恒的原则,即同一时刻能在网络中传输的数据包是恒定的,只有当旧数据包离开网络后,才能发送新数据包进入网络。一个重复ACK不仅意味着有一个包丢失了,还表示有发送的数据包离开了网络,已经在接收区的缓冲区中,不再占用网络资源,于是将拥塞窗口加一个数据包大小。

Reno和NewReno算法仍存在的问题?
虽然NewReno可以解决大量数据包遗失的问题,但是NewReno在每个RTT时间只能一个数据包遗失的错误。为了更有效地处理大量数据包遗失的问题,另一个解决方法就是让传送端知道哪些已经被接收端收到,但用此方法必须同时修改传送端和接收端的传送机制。

缺乏SACK算法时发送端只能选择两种恢复策略:

TCP SACK在TCP Reno基础上增加了:

当一个窗口内有多个数据包丢失时:

减少了时延,提高了网络吞吐量,使更快地从拥塞状态恢复。

SACK中加入了一个SACK选项(TCP option field),允许接收端在返回Duplicate ACK时,将已经收到的数据区段(连续收到的数据范围)返回给发送端,数据区段与数据区段之间的间隔就是接收端没有收到的数据。发送端就知道哪些数据包已经收到,哪些该重传,因此SACK的发送端可以在一个RTT时间内重传多个数据包。

整个TCP选项长度不超过40字节,实际最多不超过4组边界值。

通过一个wireshark示例来说明接收端的SACK行为:

上图中ACK确认序列号为12421,SACK的块左边界值为13801,SACK的块右边界值为15181。明确了这三个参数的数值,我们基本上就可以计算出被丢弃的数据报的序列号和长度了。通过上图所示的带有SACK的数据报文,我们可以知道被丢弃的数据报文的TCP序列号为12422,其数据长度为13801-12421=1380B。

改进的快速恢复算法:

【参考文献】:
吴文红,李向丽.TCP拥塞控制机制定量性能分析.计算机工程与应用.2008,44(18)
孙伟,温涛,冯自勤,郭权.基于TCP NewReno的稳态吞吐量分析模型.计算机研究与发展.2010
陈琳,双雪芹.TCP网络拥塞控制算法比较研究.长江大学学报.2010,3
许豫飞,TCP拥塞控制算法集齐性能评估.北京邮电大学.2005,3
刘拥民,年晓红.对SACK拥塞控制算法的研究.信息技术.2003,9
焦程波,窦睿彧,兰巨龙.无线网络中选择性重传机制性能分析与改进.计算机应用研究.2007.3
James F.Kurose,Keith W.Ross,Computer Networking A Top-Down Approach Sixth Edition.机械工业出版社

原文: https://blog.csdn.net/m0_38068229/article/details/80417503

⑻ tcp拥塞控制常用算法

tcp拥塞控制常用算法方法如下
TCP协议有两个比较重要的控制算法,一个是流量控制,另一个就是阻塞控制。TCP协议通过滑动窗口来进行流量控制,它是控制发送方的发送速度从而使接受者来得及接收并处理。而拥塞控制是作用于网络,它是防止过多的包被发送到网络中,避免出现网络负载过大,网络拥塞的情况。拥塞算法需要掌握其状态机和四种算法。拥塞控制状态机的状态有五种,分别是Open,Disorder,CWR,Recovery和Loss状态。四个算法为慢启动,拥塞避免,拥塞发生时算法和快速恢复。和TCP一样,拥塞控制算法也有其状态机。当发送方收到一个Ack时,LinuxTCP通过状态机(state)来决定其接下来的行为,是应该降低拥塞窗口cwnd大小,或者保持cwnd不变,还是继续增加cwnd。

阅读全文

与tcp快速恢复算法相关的资料

热点内容
android应用logo 浏览:898
光遇安卓服墓土商店什么时候开 浏览:566
月收益翻倍的源码 浏览:636
asop源码放在哪里 浏览:987
电脑服务器密码怎么找 浏览:574
jdp转换pdf 浏览:748
把pdf导入iphone 浏览:508
米哈游租赁的云服务器是哪个 浏览:524
android直接打电话 浏览:1016
ubuntu停止命令 浏览:283
cnc攻丝编程 浏览:869
换个手机号码app怎么注册 浏览:320
怎么下载小猴口算app 浏览:115
轻链app的货怎么样 浏览:625
电脑里的u盘如何加密 浏览:370
我的世界全部版本服务器下载地址 浏览:50
交换原理pdf 浏览:228
菜鸟驿站app怎么邀请新人 浏览:448
电脑里总是有一些1k的文件夹 浏览:45
drm加密绝对安全 浏览:513