导航:首页 > 源码编译 > 混合语言编译原理

混合语言编译原理

发布时间:2023-03-09 03:21:00

编译过程分为哪几个阶段各阶段的遵循的原则、识别机构、使用的文法编译原理

编译原理中的遍概念
编译阶段也常常划分为两大步骤,分析步骤和综合步骤 分析步骤和综合步骤 分析步骤是指对源程序的分析 -线性分析(词法分析或扫描) -层次分析(语法分析) -语义分析 综合步骤是指后端的工作,为目标程序的生成而进行的综合

你分析过吗?若按照这种组合方式实现编译程序,可以设想,某一编译程序的前端加上相应不同的后 端则可以为不同的机器构成同一个源语言的编译程序。也可以设想,不同语言编译的前端生成同一种中间 语言,再使用一个共同的后端,则可为同一机器生成几个语言的编译程序。

一个编译过程可由一遍、两遍或多遍完成。所谓"遍",也称作"趟",是对源程序或其等价的中间语言程 序从头到尾扫视并完成规定任务的过程。每一遍扫视可完成上述一个阶段或多个阶段的工作。例如一遍可 以只完成词法分析工作;一遍完成词法分析和语法分析工作;甚至一遍完成整个编译工作。对于多遍的编 译程序,第一遍的输入是用户书写的源程序,最后一遍的输出是目标语言程序,其余是上一遍的输出为下 一遍的输入。

在实际的编译系统的设计中,编译的几个阶段的工作究竟应该怎样组合,即编译程序究竟分成几遍, 参考的因素主要是源语言和机器(目标机)的特征。比如源语言的结构直接影响编译的遍的划分;像 PL/1 或 ALGOL 68 那样的语言,允许名字的说明出现在名字的使用之后,那么在看到名字之前是不便为包含该名 字的表达式生成代码的,这种语言的编译程序至少分成两遍才容易生成代码。另外机器的情况,即编译程 序工作的环境也影响编译程序的遍数的划分。遍数多一点,整个编译程序的逻辑结构可能清晰些,但遍数 多即意味着增加读写中间文件的次数,势必消耗较多时间,一般会比一遍的编译要慢。

② 汇编语言用什么编译器来编写,编译原理这门课程讲的到底是什么

很多的,例如MASM编译器。
编译原理内容包括语言和文法、词法分析、语法分析、语法制导翻译、中间代码生成、存储管理、代码优化和目标代码生成等,这门课大部分人听起来比较困难,介绍编译程序构造的一般原理和基本方法,虽然只有少数人从事编译方面的工作,但是这门课在理论、技术、方法上都对我们提供了系统而有效的训练,有利于提高软件人员的素质和能力。

③ 如何C语言与汇编混编

c语言可以嵌套汇编:
按照TC2.0的帮助系统所以说的,在TC2.0下是可以用汇编的,方法是使用asm关键字:其格式是:
asm opcode <operands> <;newline>,如同别的注释一样,<>之间的表示可选的;例如:

main()
{
char *c="hello,world/n/r$";
asm mov ah,9;asm mov dx,c;asm int 33;
printf("You sucessed!/n");

}
或者是:

main()
{
char *c="hello,world/n/r$";
asm mov ah,9
asm mov dx,c
asm int 33
printf("You sucessed!");
}
两种格式其实是一种.如果你用的是第一种的样式,记住:
每一句汇编语句都要以asm开头,如果一行内有多个句子,
那么千万不要忘记在两个句子之间的这个semicolon(分号),
但是最后一句汇编后面(如果后面没有其它的语句)的分号可有可无,象第一个例子中的
asm int 33;后面的分号就可以不要,因为它的后面没有其它
的语句了.但如果是这样:
asm mov ah,9; asm mov dx,c;asm int 33; printf("You sucessed!");
那么asm int 33;后面的分号便还是留下好,以免出现编译错误!
在这一点上颇象C语言.

还有一种格式是
asm{ assembly language statement},这种格式应该被普遍的欢迎.
它们的例子如下(其中的语句排列格式与上面两种相同):
asm{
mov ax,var1
add ax,var2
......
}
但是要注意这种格式TC2.0是不支持的!
只有后来的TC++3.0及后来的IDE支持!

工具的使用:
一旦你的C源文件里包括了这些好东西,则必须用TCC.EXE的COMMAND-LINE来编译,具体的命令参数TCC.EXE已经提供,这里不复阐述了.最简单的是:TCC C源文件名(使用这个方法,TCC会自动调用TASM.EXE和TLINK.EXE,并且能够使TLINK.EXE正确的找到需要的.obj和.lib文件,如果你单步编译的话,可能会碰到很多的问题,主要是TLINK.EXE它自己并不会去找.obj和.lib文件,你自己可以建一个.bat文件,如果要指定.lib文件的目录的话可以用/L参数,在文章的后面有一个例子).但大家要注意了,看一下你的TC目录下面到底是否有TASM.EXE文件,并在TURBOC.CFG(这个文件包括TCC.EXE运行期参数,这里面所有参数在运很期都将被自动TCC.EXE使用,例如:-IH:/TC/INCLUDE/
-LH:/TC/LIB/)文件中设置好一些参数,并确认TASM.EXE的版本号要2.0以上,以及是否能够向下兼容.但是在大多数的情况下TC的目录是没有TASM.EXE的,或是版本不正常.
如果你有TASM.EXE文件并且TURBOC.CFG文件也已经写好了,但是还要注意一个
问题:运行TCC.EXE时要在独立的DOS SHELL下面(不要害怕,这不是一个新东西,我的意思
是,不在诸如TC下的DOS SHELL下面运行,我曾经败在这个问题下,当我发现时直想揍电脑
一顿,还好没有,不然就没有这篇文件了.)
还有一句重要的话:TC2.0支持大部分8086指令(当然用法有一些约定,不过现在我并不打算
进行详细说明,因为那是一件很繁杂的事,以后有时间或许会写出来----如果大家需要的话).
如果说上面我所说的那些约定很繁杂的话,那么下面的方法该是多么简单啊!
让我们使用Borland为TC2.0内建的变量来进行伪汇编.
或许你还不知道在TC2.0中还有一些内建的pseudo寄存器(可以看作是register 型的变量,但是它们比register型的变量好用的多)
_AX,_AH,_AL,
_BX,_BH,_BL,
_CX,_CH,_CL,
_DX,_DH,_DL,
_DI,_SI,_SP,
_CS,_DS,_ES,_SS
注意这些寄存器的size,_AX,_BX,_CX,_DX,_CS,_DS,_ES,_SS,_SI,_DI,_SP等都是16位的寄存器相当于C语言的unsigned int类型,其余的都是8位的寄存器(相当于unsigned char)(TC怎么可能支持32位的寄存呢,所以EAX等是不能用的,FS,GS和IP寄存器都是无效的),还有就是在传递参数的时候千万不要忘记使用强制类型转换.
中断调用指令是:__int__(interrupt_#)(注意int的前辍和后辍都是两个underscores)
For example:
#include<dos.h>
unsigned int _stklen=0x200;
unsigned int _heaplen=0;

main()
{
_DX=(unsigned int)"Hello,world./r/n$";
_AX=0x900;
__int__(0x21);

}
dos.h它是包含__int__()内建中断调用语句的头文件,因此是不可
缺少的._stklen和_heaplen是定义运行期堆栈和堆大小的两个内部
引用变量(这是个我自己想的名词,意指如果这两个变量在源文件中
显式的声明了,那么编译程序会自会引用来构造编译时期的信息以产生
用户希望的目标文件,如果不显式的声明则编译程序自动确定).
这两个变量也有一些约定,如果_stklen不显式声明,_heaplen赋值为零
都表示栈和堆都是defult的.
最后在TC2.0中还有一个没有说明的标志位寄存器flags,它也是内建
pseudo寄存器是:_FLAGS,是一个16位寄存器.这些内建的寄存器都可以进行
运算,但是要注意它们所代表的类型(必要时进行类型转换);
看起来这是不是一种好的办法啊(而且使用这种方法只要用个一个dos.h头文件就好,
不需要用TCC编译,可以直接在TC20的IDE下编译).
TC2.0中也提供了一些简单好用的函数来实现对DOS功能的调用如:
int86(...),int86x(...)(但是这些方法实际仍然要调用函数,所以不如使用
伪寄存器,又因为要牵涉到union REGS结构的内存分配所以系统的开销是增大了,
而使用伪寄存器是最简洁的),端口通信函数如:inportb(...),inport(...),
outportb(...),outport(...),指针转换函数:FP_OFF,FP_SEG,MK_FP,这些函数在
帮助系统中都有,有用时大家可以查阅.

tlinkbat.bat的例子:
rem The lib environment variable is the directory of the .obj and .lib file
set lib=h:/tc/lib/
rem 这下面的句子中的c0s(C 零S)是一个.OBJ文件,是一个C程序的STARTUP文件
tlink %lib%c0s %1,%1,%1,/L%lib%emu.lib %lib%maths.lib %lib%cs.lib
set lib=
(使用时可将以rem开头的句子删除)

___________________________________________________
一些约定:
我们先说一下在TC20下写汇编(内联汇编--自己起的名字,大家可以想叫什么叫什么)时的编译器的编译原则:
1.所有在main()函数外的的汇编语言的语句都作为数据声明语句处理,也即在编译器编译时会将它放在数据段中,如:
asm string1 db "Hello",,,'world!',0ah,0xd,"$"
main()
{
asm mov dx,offset string1
asm mov ah,9
asm int 33
asm mov dx,offset string2
asm int 33
}
asm string2 db "the string can be declared after the main() function!$"
象这些样子在main()外面的汇编语言的数据定义语句(事实上不管是什么汇编语句,
只要是在main()之外,包括这个句子:asm mov ax,0x4c00),在编译后都放在数据段中,而C语言的数据声明语句仍按C的规则!
2.所有在main()函内的汇编语言的语句在编译后都放在代码段中,包括这个句子:
asm string2 db "the string can be declared after the main() function!$"
3.不要在以asm 开头的语句中使用C语言的关键字,这会导致编译阶段的错误

那么,根据这三条大家会得到什么样的结论呢?(先闭上眼想一想,你可能会由此变的
很赞赏自己,是的你应该这样相信自己是对的!)
让我们一起看一下这个结论:
1.根据编译原则1得到:不可以在main()外面写汇编命令语句(不要笑,正是与C语言相同才值得注意!),在任何地方都不要进行任何的段定义和宏定义(这是因为编译后的形式决定的,也即:在TC20下所有的汇编格式的语句只能是,直接性的数据定义和语句指令)!
2根据编译原则2得到:不可以在main()之内使用汇编的语句进行数据定义(同样不要笑,
大多数人在第一次在TC20下写汇编都会有这样的错误的)
3.如同类强制类型这样的事是不可以在以asm开头的汇编语句中使用的
好了,天即朗,气瞬清!这样一说,一个大体的框架就出来了!只要遵守这个原则写,就可避免很多莫名其妙的错误出现!
通俗的说:
汇编语句的数据定义放在main()外面,指令放在main()里面.
如果你没有更好的文档,那么记住我的这些话!

一些细节的问题:
在以asm开头的内联汇编语句中是不支持C的转义字符的,但是用C语言声明一个字符数组(含有转义字符的),然后用int 33 ah=9这功能时输出这个字符串时,其中的转义字符是有效的(这主要是因为编译后其内部表示形式不同造成的,自己想想会有答案的).
内联汇编支持C的一些如数值表示,字符串声明格式等,
如:一个十六进制的数据可以用两种方式表示:0xa 和0ah,字符串可以是这样:
"Hello,world!$"(如同C)也可以这样'Hello,world!$'(用汇编自己的方式).
象C一样你同样要注意赋值的类型,而且要比C更严格(汇编从来不自己动手做
如同类型转换啊这样事),所以一切的事完全要你自己做好!而且你不要企图以C的形式
做这件事,如这样的格式 asm mov dx,(unsigned)a(a是一个这样的东西,
char a[ ]="hello,world!";),而且这样句子也会导致错误:asm mov dx,word ptr a(逻辑错误),不过这不是在编译时的错误,而是运行期的错误(具体的原因自己想一想,象word label这样的东西的运算作用和会导致的后果),你可以这样用一个句子做"中间人"如int i=(unsigned)a;asm mov dx,i(也千万不要用asm mov dx,(unsigned)a 这样的句子.但是,告诉大家一个好消息,你可以用指针指向一个字符串,然后你会惊讶你竟然可以这样:
char *p="hello,world";asm mov dx,p,然后用int 33 ah=9的功能输出这个字符串而不会有错误(这也表现出指针的特点,它是一个二字节的(TC20下)变量,含有的是一个地址,这与其指向的变量的类型是毫无关系的).
内汇汇编语句不支持->这个运算符.还有标号的问题,在最后的例子中你会年看到一些特别之处!

上面所说的只是很细小并微少的一些事(也是很常遇到的),尚有很多的细节要说,但由于本人时间有限不能一一列举,如C的结构在内联汇编的应用等大家可以按照其运行机理去想想一下用法;另外,由于这只是一件学习的事,所以还是大家自己学(找一下有关文档,当然现在已经没有什么比较完整的了),情况会好的多,我在对内联汇编的学习过程中领会到了不少的东西,例如编译原理方面的知识,以及如何做会使代码更高效,占空间最少等的方法.最后向大家推荐一种方法,在利用TCC的-S开关可以生成C源文件的汇编代码
(或许很多的人都用过)是很好的学习材料!祝大家学有所成!

Cstarter
02-11-17

/* 由于个人的时间和能力有限,难免有错误和不详细的地方,请大家见谅!
My Email:[email protected] [email protected] QQ:170594633 */
一些例子:
下面这个例子是对沈美明 温冬婵的
<<IBM-PC 汇编语言程序设计>>清华版第十一章程序的改写
可直接在命令行上键入 tcc filename 就可以,当然你要有TASM.EXE
/*
asm mus_frep dw 330,294,262,294,3 p(330)
asm dw 3 p(294),330,392,392
asm dw 330,294,262,294,4 p(330)
asm dw 294,294,330,294,262,-1
asm mus_time dw 6 p(25),50
asm dw 2 p (25,25,50)
asm dw 12 p(25),100
*/
asm mus_frep dw 330,392,330,294,330,392,330,294,330
asm dw 330,392,330,294,262,294,330,392,294
asm dw 262,262,220,196,196,220,262,294,330,262
asm dw -1
asm mus_time dw 3 p (50),25,25,50,25,25,100
asm dw 2 p (50,50,25,25),100
asm dw 3 p (50,25,25),100

main()
{
asm jmp start
/*设置发声的频率,这一段在沈美明 温冬婵的
<<IBM-PC 汇编语言程序设计>>清华版第十一章有详细的说明 */

sound:
asm mov al,0b6h
asm out 43h,al
asm mov dx,12h
asm mov ax,533h*896
asm div di
asm out 42h, al
asm mov al,ah
/* 这个延时是用来防止两次IO操作的最后一次操作的错误,
因为CPU比总线的速度快很多,所以 要延时等待第一次操作完成后再进行第二次操作*/

asm mov cx,1000
delay:
asm loop delay

asm out 42h,al
asm in al,61h
asm mov ah,al
asm or al,3
asm out 61h,al

/* 使用中断15H功能86H延时CX:DX=微秒数*/
asm mov ax,2710h
asm mul bx
asm mov cx,dx
asm mov dx,ax
asm mov ah,86h
asm int 15h /*可用__int__(0x15);代替*/

asm mov al,ah
asm out 61h,al
asm jmp add_count
/*------------------*/
start:
asm mov si,offset mus_frep
asm lea bp,mus_time
frep:
asm mov di,[si]
asm cmp di,-1
asm je end_mus
asm mov bx,[bp]
asm jmp sound
add_count: /*标号不能用汇编语言写*/
asm add si,2
asm add bp,2
asm jmp frep
end_mus:;

}

对于上面的程序大家可用伪寄存器的方法写一个,要容易的多!

/*一个发声程序!(引自<<PC技术内幕>>电力版--这个版不好,不如清华版的)*/
#include"dos.h"
main()
{
static union REGS ourregs;
outportb(0x43,0xb6);
outportb(0x42,0xee);
outportb(0x42,0);
outportb(0x61,(inportb(0x61)|0x03));
ourregs.h.ah=0x86;
ourregs.x.cx=0x001e;
ourregs.x.dx=0x8480;
int86(0x15,&ourregs,&ourregs);
outportb(0x61,(inportb(0x61)&0xfc));
}

④ 操作系统,汇编语言,编译原理,这三门课程学习步骤是什么 以及原因,求详细解释,非常感谢。

汇编语言、编译原理、操作系统吧

1.首先编译原理肯定要在汇编之后学的,你不会汇编编什么译
2.汇编语言肯定讲的是实模式的内容,学完了实模式对计算机内程序有个基本概念了,研究保护模式的时候就要涉及到操作系统了
3.至于编译原理我没学过,姑且认为应该也是实模式的内容吧,所以放到操作系统之前学习

⑤ 汇编语言/编译原理

应该先学汇编语言,在编译原理中要用到汇编语言,因为汇编语言向机器语言的“翻译”较简单,所以编译器会将高级语言程序代码译为等价的汇编语言程序,然后再由汇编器将汇编语言程序译为机器语言代码。

⑥ 编译原理有有符号un-1.u=un吗

编译程序把源程序翻译为目标程序。根据源程序的语言种类,翻译程序可以分为汇编程序与编译程序。与之相对,解释程序是对源程序进行解释执行的程序。相应的可以将高级语言分为

编译型 C/C++, Swift, etc.
解释型 Python, javascript, etc.
混合型 Java, etc.
本文重点放在编译程序的设计上。典型的编译程序具有 7 77 个逻辑部分

对源程序扫描一次被称为一遍 (pass)。典型的一遍扫描编译程序有如下形式

通常将中间代码生成前的分析部分称为编译器的前端,其后的综合部分则被称为后端。这样就把一个编译程序分为了与源语言相关和与目标机有关的两个独立的部分,降低了程序的耦合。假设 llvm 编译器 支持 M MM 种源语言到 N NN 种目标语言的编译
传统的编译器如 gcc 可能需要开发 M × N M \times NM×N 个不同的子模块。而 llvm 使用统一的中间语言 llvm Intermediate Representation 只需要 M MM 个前端与 N NN 个后端,大大降低了开发成本。

文法
设非空有穷集合 Σ \SigmaΣ 为一字母表,则其上的符号串为 ∀ s ∈ Σ ∗ \forall s \in \Sigma^*∀s∈Σ

,其中 ∗ *∗ 表示集合的闭包。特别的记 Σ 0 = ε \Sigma^0 = {\varepsilon}Σ
0
=ε 为空串组成的集合。规则通常写作

U : : = x  or  U → x , ∣ U ∣ = 1 , ∣ x ∣ ≥ 0 U ::= x\text{ or }U\rightarrow x,\quad |U| = 1, |x| \ge 0U::=x or U→x,∣U∣=1,∣x∣≥0

其中左部 U UU 是符号,右部 x xx 是有穷符号串。规则的集合 P PP 即可确定一个文法 G GG

<程序> ::= <常量说明><变量说明><函数说明>
<常量说明> ::= {const<常量定义>;}
<常量定义> ::= int<标识符>=<整数>{,<标识符>=<整数>}|char<标识符>=<字符>{,<标识符>=<字符>}
<变量说明> ::= {<类型标识符><变量定义>;}
<变量定义> ::= <标识符>[<下标>]{,<标识符>[<下标>]}
<下标> ::= '['<无符号整数>']' // <无符号整数>表示数组元素的个数,其值需大于0
<函数说明> ::= {(<类型标识符>|void)<函数定义>}void<主函数>
<函数定义> ::= <标识符>'('<参数表>')'<复合语句>
<参数表> ::= [<类型标识符><标识符>{,<类型标识符><标识符>}]
<主函数> ::= main'('')'<复合语句>

<复合语句> ::= '{'<常量说明><变量说明>{<语句>}'}'
<语句> ::= <条件语句>|'{'{<语句>}'}'|<函数调用语句>;|<赋值语句>;|<读语句>;|<写语句>;|<返回语句>;|;
<条件语句> ::= <if语句>|<while语句>|<do语句>|<for语句>
<if语句> ::= if'('<条件>')'<语句>[else<语句>]
<while语句> ::= while'('<条件>')'<语句>
<do语句> ::= do<语句>while'('<条件>')'
<for语句> ::= for'('<标识符>=<表达式>;<条件>;<标识符>=<标识符><加法运算符><无符号整数>')'<语句>
<条件> ::= <表达式>[<关系运算符><表达式>] // 表达式为0条件为假,否则为真
<函数调用语句> ::= <标识符>'('[<表达式>{,<表达式>}]')'
<赋值语句> ::= <标识符>['['<表达式>']']=<表达式>
<读语句> ::= scanf'('<标识符>{,<标识符>}')'
<写语句> ::= printf'('<字符串>[,<表达式>]')'|printf'('<表达式>')'
<返回语句> ::= return['('<表达式>')']

<表达式> ::= [<加法运算符>]<项>{<加法运算符><项>} // [+|-]只作用于第一个<项>
<项> ::= <因子>{<乘法运算符><因子>}
<因子> ::= <标识符>['['<表达式>']']|'('<表达式>')'|<整数>|<字符>|<函数调用语句>
<整数> ::= [<加法运算符>]<无符号整数>

<标识符> ::= <字母>{<字母>|<数字>}
<无符号整数> ::= <非零数字>{<数字>}|0
<数字> ::= 0|<非零数字>
<非零数字> ::= 1|...|9
<字符> ::= '<加法运算符>'|'<乘法运算符>'|'<字母>'|'<数字>'
<字符串> ::= "{十进制编码为32,33,35-126的ASCII字符}"
<类型标识符> ::= int|char
<加法运算符> ::= +|-
<乘法运算符> ::= *|/
<关系运算符> ::= <|<=|>|>=|!=|==
<字母> ::= _|a|...|z|A|...|Z
复制

上述文法使用扩充的 BNF 表示法进行描述

符号 定义 说明
∣ \vert∣ 或 作用域由括号限定
{ t } n m \{t\}^m_n{t}
n
m

将 t tt 重复连接 n ∼ m n \sim mn∼m 次 缺省时 m = ∞ ,   n = 0 m = \infin,\ n = 0m=∞, n=0
[ t ] [t][t] 符号串 t tt 可有可无 等价于 { t } 1 \{t\}^1{t}
1

( t ) (t)(t) 局部作用域 主要用于限定 ∣ \vert∣ 范围
相关概念有

概念 符号 定义 示例
识别符号 Z ZZ 文法中第一条规则的左部符号 <程序>
字汇表 V VV 文法中出现的全部符号 { <程序>, <常量说明>, …, 0, 1, … }
非终结符号集 V n V_nV
n

全部规则的左部组成的集合 { <程序>, <常量说明>, <变量说明>, … }
终结符号集 V t V_tV
t

V − V n V - V_nV−V
n

{ 0, 1, …, _, a, b, … }
设 U : : = u ∈ P U ::= u \in PU::=u∈P 则对于 ∀ x , y ∈ V ∗ \forall x, y \in V^*∀x,y∈V

有直接推导 x U y ⇒ x u y xUy \Rightarrow xuyxUy⇒xuy 。如果 y ∈ V t ∗ y \in V_t^*y∈V
t


则 x U y   ⤃   x u y xUy\ ⤃\ xuyxUy ⤃ xuy 称为规范推导。直接推导序列 u 0 ⇒ u 1 ⇒ ⋯ ⇒ u n u_0 \Rightarrow u_1 \Rightarrow \cdots \Rightarrow u_nu
0

⇒u
1

⇒⋯⇒u
n

可简记为

{ u 0 ⇒ + u n n > 0 u 0 ⇒ ∗ u n n ≥ 0 \begin{cases} u_0 \mathop\Rightarrow\limits^+ u_n & n > 0\\ u_0 \mathop\Rightarrow\limits^* u_n & n \ge 0\\ \end{cases}{
u
0


+
u
n

u
0



u
n



n
>
0
n

0


进一步定义

句型 V ∗ ∋ x ⇐ ∗ Z V^* \ni x \mathop\Leftarrow\limits^* ZV

∋x


Z
句子 V t ∗ ∋ x ⇐ + Z V_t^* \ni x \mathop\Leftarrow\limits^+ ZV
t


∋x

+
Z
语言 L ( G ) = { x ∣ x  is sentence } L(G) = \{ x| x\text{ is sentence} \}L(G)={x∣x is sentence}
如果文法 G GG 和 G ′ G'G

有 L ( G ) = L ( G ′ ) L(G) = L(G')L(G)=L(G

) ,则称这两个文法等价。设 w = x u y w=xuyw=xuy 为一句型,称 u uu 为一个相对于 U ∈ V n U \in V_nU∈V
n



w ww 的短语 如果 Z ⇒ ∗ x U y ∧ U ⇒ + u Z \mathop\Rightarrow\limits^* xUy \land U \mathop\Rightarrow\limits^+ uZ


xUy∧U

+
u
w ww 的简单短语 如果 u uu 是短语且 U ⇒ u U \mathop\Rightarrow\limits uU⇒u
句型的最左简单短语称为句柄。

二义性
文法 G GG 是二义性的,如果 ∃ x ∈ L ( G ) \exist x \in L(G)∃x∈L(G) 使下列条件之一成立

x xx 可以对应两颗不同的语法树
x xx 有两个不同的规范推导

⑦ 编译原理与汇编语言一样吗

编译原理是研究各种语言转换(不够专业)为机器语言的过程中的各种理论。
编译原理是将计算机语言转化为可以在计算机硬件上直接运行的机器语言,是翻译语言的一种。
1、将高级语言变为机器语言,包括两种方法,编译是一种,另一种是解释;
2、将汇编语言变成机器语言的,叫汇编程序.
编译: 高级语言 --> 机器语言(指令);
汇编: 汇编指令 --> 机器指令;

⑧ C语言编译原理是什么

编译共分为四个阶段:预处理阶段、编译阶段、汇编阶段、链接阶段。

1、预处理阶段:

主要工作是将头文件插入到所写的代码中,生成扩展名为“.i”的文件替换原来的扩展名为“.c”的文件,但是原来的文件仍然保留,只是执行过程中的实际文件发生了改变。(这里所说的替换并不是指原来的文件被删除)

2、汇编阶段:

插入汇编语言程序,将代码翻译成汇编语言。编译器首先要检查代码的规范性、是否有语法错误等,以确定代码的实际要做的工作,在检查无误后,编译器把代码翻译成汇编语言,同时将扩展名为“.i”的文件翻译成扩展名为“.s”的文件。

3、编译阶段:

将汇编语言翻译成机器语言指令,并将指令打包封存成可重定位目标程序的格式,将扩展名为“.s”的文件翻译成扩展名为“.o”的二进制文件。

4、链接阶段:

在示例代码中,改代码文件调用了标准库中printf函数。而printf函数的实际存储位置是一个单独编译的目标文件(编译的结果也是扩展名为“.o”的文件),所以此时主函数调用的时候,需要将该文件(即printf函数所在的编译文件)与hello world文件整合到一起,此时链接器就可以大显神通了,将两个文件合并后生成一个可执行目标文件。

⑨ 编译原理课程讲什么内容

《编译原理》课程介绍编译器构造的一般原理和基本实现方法,主要介绍编译器的各个阶段:词法分析、语法分析、语义分析、中间代码生成、代码优化和目标代码生成。本课程在介绍命令式程序设计语言实现技术的同时,强调一些相关的理论知识,如形式语言和自动机理论、语法制导的定义和属性文法、类型论等。它们是计算机专业理论知识的重要一部分,在本书中结合应用来介绍这些知识,有助于学生较快领会和掌握。本课程强调形式化描述技术,并以语法制导定义作为翻译的主要描述工具。本课程强调对编译原理和技术在宏观上的理解,作为原理性的教学,本课程主要介绍基本的理论和方法,不偏向于某种源语言或目标机器。

阅读全文

与混合语言编译原理相关的资料

热点内容
1加手机号码放哪个文件夹 浏览:728
大兵程序员 浏览:785
青桔app福利中心在哪里 浏览:170
算法安全是智能化战争的博弈焦点 浏览:497
编译器用vs多少 浏览:316
pc单机游戏压缩包下载 浏览:570
服务器锁定什么意思 浏览:731
吐司解压神器 浏览:70
程序员的电脑一般用什么 浏览:934
如何从服务器中查询表是否存在 浏览:323
android首页布局源码 浏览:45
虎牙主播是怎么安卓投屏的 浏览:782
redmonk编程语言排行榜 浏览:110
android嵌入html5 浏览:676
云服务器能永久使用吗 浏览:904
linux安装openresty 浏览:386
ubunt配置php 浏览:975
达达取货码在app哪里 浏览:49
精灵宝可梦服务器有什么好玩的 浏览:261
开源java工作流 浏览:845