导航:首页 > 源码编译 > 数据库分析和算法

数据库分析和算法

发布时间:2023-03-09 23:48:17

㈠ 大数据分析工具详尽介绍&数据分析算法

大数据分析工具详尽介绍&数据分析算法

1、 Hadoop

Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。
Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下几个优点:
⒈高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。
⒉高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。
⒊高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。
⒋高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。
Hadoop带有用 Java 语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++。
2、 HPCC
HPCC,High Performance Computing and Communications(高性能计算与通信)的缩写。1993年,由美国科学、工程、技术联邦协调理事会向国会提交了“重大挑战项目:高性能计算与 通信”的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国 实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆 比特网络技术,扩展研究和教育机构及网络连接能力。
该项目主要由五部分组成:
1、高性能计算机系统(HPCS),内容包括今后几代计算机系统的研究、系统设计工具、先进的典型系统及原有系统的评价等;
2、先进软件技术与算法(ASTA),内容有巨大挑战问题的软件支撑、新算法设计、软件分支与工具、计算计算及高性能计算研究中心等;
3、国家科研与教育网格(NREN),内容有中接站及10亿位级传输的研究与开发;
4、基本研究与人类资源(BRHR),内容有基础研究、培训、教育及课程教材,被设计通过奖励调查者-开始的,长期 的调查在可升级的高性能计算中来增加创新意识流,通过提高教育和高性能的计算训练和通信来加大熟练的和训练有素的人员的联营,和来提供必需的基础架构来支 持这些调查和研究活动;
5、信息基础结构技术和应用(IITA ),目的在于保证美国在先进信息技术开发方面的领先地位。
3、 Storm
Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。Storm很简单,支持许多种编程语言,使用起来非常有趣。Storm由Twitter开源而来,其它知名的应用企业包括Groupon、淘宝、支付宝、阿里巴巴、乐元素、Admaster等等。
Storm有许多应用领域:实时分析、在线机器学习、不停顿的计算、分布式RPC(远过程调用协议,一种通过网络从远程计算机程序上请求服务)、 ETL(Extraction-Transformation-Loading的缩写,即数据抽取、转换和加载)等等。Storm的处理速度惊人:经测 试,每个节点每秒钟可以处理100万个数据元组。Storm是可扩展、容错,很容易设置和操作。
4、 Apache Drill
为了帮助企业用户寻找更为有效、加快Hadoop数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。Apache Drill 实现了 Google’s Dremel.
据Hadoop厂商MapR Technologies公司产品经理Tomer Shiran介绍,“Drill”已经作为Apache孵化器项目来运作,将面向全球软件工程师持续推广。
该项目将会创建出开源版本的谷歌Dremel Hadoop工具(谷歌使用该工具来为Hadoop数据分析工具的互联网应用提速)。而“Drill”将有助于Hadoop用户实现更快查询海量数据集的目的。
“Drill”项目其实也是从谷歌的Dremel项目中获得灵感:该项目帮助谷歌实现海量数据集的分析处理,包括分析抓取Web文档、跟踪安装在Android Market上的应用程序数据、分析垃圾邮件、分析谷歌分布式构建系统上的测试结果等等。
通过开发“Drill”Apache开源项目,组织机构将有望建立Drill所属的API接口和灵活强大的体系架构,从而帮助支持广泛的数据源、数据格式和查询语言。
5、 RapidMiner
RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。
功能和特点
免费提供数据挖掘技术和库
100%用Java代码(可运行在操作系统)
数据挖掘过程简单,强大和直观
内部XML保证了标准化的格式来表示交换数据挖掘过程
可以用简单脚本语言自动进行大规模进程
多层次的数据视图,确保有效和透明的数据
图形用户界面的互动原型
命令行(批处理模式)自动大规模应用
Java API(应用编程接口)
简单的插件和推广机制
强大的可视化引擎,许多尖端的高维数据的可视化建模
400多个数据挖掘运营商支持
耶鲁大学已成功地应用在许多不同的应用领域,包括文本挖掘,多媒体挖掘,功能设计,数据流挖掘,集成开发的方法和分布式数据挖掘。
6、 Pentaho BI
Pentaho BI 平台不同于传统的BI 产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。它的出现,使得一系列的面向商务智能的独立产品如Jfree、Quartz等等,能够集成在一起,构成一项项复杂的、完整的商务智能解决方案。
Pentaho BI 平台,Pentaho Open BI 套件的核心架构和基础,是以流程为中心的,因为其中枢控制器是一个工作流引擎。工作流引擎使用流程定义来定义在BI 平台上执行的商业智能流程。流程可以很容易的被定制,也可以添加新的流程。BI 平台包含组件和报表,用以分析这些流程的性能。目前,Pentaho的主要组成元素包括报表生成、分析、数据挖掘和工作流管理等等。这些组件通过 J2EE、WebService、SOAP、HTTP、Java、JavaScript、Portals等技术集成到Pentaho平台中来。 Pentaho的发行,主要以Pentaho SDK的形式进行。
Pentaho SDK共包含五个部分:Pentaho平台、Pentaho示例数据库、可独立运行的Pentaho平台、Pentaho解决方案示例和一个预先配制好的 Pentaho网络服务器。其中Pentaho平台是Pentaho平台最主要的部分,囊括了Pentaho平台源代码的主体;Pentaho数据库为 Pentaho平台的正常运行提供的数据服务,包括配置信息、Solution相关的信息等等,对于Pentaho平台来说它不是必须的,通过配置是可以用其它数据库服务取代的;可独立运行的Pentaho平台是Pentaho平台的独立运行模式的示例,它演示了如何使Pentaho平台在没有应用服务器支持的情况下独立运行;
Pentaho解决方案示例是一个Eclipse工程,用来演示如何为Pentaho平台开发相关的商业智能解决方案。
Pentaho BI 平台构建于服务器,引擎和组件的基础之上。这些提供了系统的J2EE 服务器,安全,portal,工作流,规则引擎,图表,协作,内容管理,数据集成,分析和建模功能。这些组件的大部分是基于标准的,可使用其他产品替换之。
7、 SAS Enterprise Miner
§ 支持整个数据挖掘过程的完备工具集
§ 易用的图形界面,适合不同类型的用户快速建模
§ 强大的模型管理和评估功能
§ 快速便捷的模型发布机制, 促进业务闭环形成
数据分析算法
大数据分析主要依靠机器学习和大规模计算。机器学习包括监督学习、非监督学习、强化学习等,而监督学习又包括分类学习、回归学习、排序学习、匹配学习等(见图1)。分类是最常见的机器学习应用问题,比如垃圾邮件过滤、人脸检测、用户画像、文本情感分析、网页归类等,本质上都是分类问题。分类学习也是机器学习领域,研究最彻底、使用最广泛的一个分支。
最近、Fernández-Delgado等人在JMLR(Journal of Machine Learning Research,机器学习顶级期刊)杂志发表了一篇有趣的论文。他们让179种不同的分类学习方法(分类学习算法)在UCI 121个数据集上进行了“大比武”(UCI是机器学习公用数据集,每个数据集的规模都不大)。结果发现Random Forest(随机森林)和SVM(支持向量机)名列第一、第二名,但两者差异不大。在84.3%的数据上、Random Forest压倒了其它90%的方法。也就是说,在大多数情况下,只用Random Forest 或 SVM事情就搞定了。
KNN
K最近邻算法。给定一些已经训练好的数据,输入一个新的测试数据点,计算包含于此测试数据点的最近的点的分类情况,哪个分类的类型占多数,则此测试点的分类与此相同,所以在这里,有的时候可以复制不同的分类点不同的权重。近的点的权重大点,远的点自然就小点。详细介绍链接
Naive Bayes
朴素贝叶斯算法。朴素贝叶斯算法是贝叶斯算法里面一种比较简单的分类算法,用到了一个比较重要的贝叶斯定理,用一句简单的话概括就是条件概率的相互转换推导。详细介绍链接
朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。通俗来说,就好比这么个道理,你在街上看到一个黑人,我问你你猜这哥们哪里来的,你十有八九猜非洲。为什么呢?因为黑人中非洲人的比率最高,当然人家也可能是美洲人或亚洲人,但在没有其它可用信息下,我们会选择条件概率最大的类别,这就是朴素贝叶斯的思想基础。
SVM
支持向量机算法。支持向量机算法是一种对线性和非线性数据进行分类的方法,非线性数据进行分类的时候可以通过核函数转为线性的情况再处理。其中的一个关键的步骤是搜索最大边缘超平面。详细介绍链接
Apriori
Apriori算法是关联规则挖掘算法,通过连接和剪枝运算挖掘出频繁项集,然后根据频繁项集得到关联规则,关联规则的导出需要满足最小置信度的要求。详细介绍链接
PageRank
网页重要性/排名算法。PageRank算法最早产生于Google,核心思想是通过网页的入链数作为一个网页好快的判定标准,如果1个网页内部包含了多个指向外部的链接,则PR值将会被均分,PageRank算法也会遭到LinkSpan攻击。详细介绍链接
RandomForest
随机森林算法。算法思想是决策树+boosting.决策树采用的是CART分类回归数,通过组合各个决策树的弱分类器,构成一个最终的强分类器,在构造决策树的时候采取随机数量的样本数和随机的部分属性进行子决策树的构建,避免了过分拟合的现象发生。详细介绍链接
Artificial Neural Network
“神经网络”这个词实际是来自于生物学,而我们所指的神经网络正确的名称应该是“人工神经网络(ANNs)”。
人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。人工神经网络是一个具有学习能力的系统,可以发展知识,以致超过设计者原有的知识水平。通常,它的学习训练方式可分为两种,一种是有监督或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督学习或称无为导师学习,这时,只规定学习方式或某些规则,则具体的学习内容随系统所处环境 (即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似人脑的功能。

㈡ 数据库和算法是什么关系

算法的范围很大。 一般应用,数据的存储都委托给数据库了。
数据库是一种应用软件,用来存放各种数据的。 数据结构是计算机存储、组织数据的方式。 数据库是程序写出来的,而程序=数据结构+算法。 不

㈢ 数据结构与算法分析

本文出自:

www点54manong点com

请尊重原创,转载请注明出处,谢谢!

什么是数据结构,为什么要学习数据结构?数据结构是否是一门纯数学课程?它在专业课程体系中起什么样的作用?我们要怎么才能学好数据结构?… 相信同学们在刚开始《数据结构》这门课的学习时,心里有着类似前面几个问题的这样那样的疑问。希望下面的内容能帮助大家消除疑惑,下定决心坚持学好这门课:

1 学习数据数据结构的意义

数据结构是计算机科学与技术专业、计算机信息管理与应用专业,电子商务等专业的基础课,是十分重要的核心课程。所有的计算机系统软件和应用软件都要用到各种类型的数据结构。因此,要想更好地运用计算机来解决实际问题,仅掌握几种计算机程序设计语言是难以应付当前众多复杂的课题。要想有效地使用计算机、充分发挥计算机的性能,还必须学习和掌握好数据结构的有关知识。打好“数据结构”这门课程的扎实基础,对于学习计算机专业的其他课程,如操作系统、数据库管理系统、软件工程、编译原理、人工智能、图视学等都是十分有益的。

2 为什么要学习数据结构

在计算机发展的初期,人们使用计算机的目的主要是处理数值计算问题。当我们使用计算机来解决一个具体问题时,一般需要经过下列几个步骤:首先要从该具体问题抽象出一个适当的数学模型,然后设计或选择一个解此数学模型的算法,最后编出程序进行调试、测试,直至得到最终的解答。例如,求解梁架结构中应力的数学模型的线性方程组,可以使用迭代算法来求解。

由于当时所涉及的运算对象是简单的整型、实型或布尔类型数据,所以程序设计者的主要精力是集中于程序设计的技巧上,而无须重视数据结构。随着计算机应用领域的扩大和软、硬件的发展,非数值计算问题越来越显得重要。据统计,当今处理非数值计算性问题占用了85%以上的机器时间。这类问题涉及到的数据结构更为复杂,数据元素之间的相互关系一般无法用数学方程式加以描述。因此,解决这类问题的关键不再是数学分析和计算方法,而是要设计出合适的数据结构,才能有效地解决问题。下面所列举的就是属于这一类的具体问题。

例1:图书馆信息检索系统。当我们根据书名查找某本书有关情况的时候;或者根据作者或某个出版社查找有关书籍的时候,或根据书刊号查找作者和出版社等有关情况的时候,只要我们建立了相关的数据结构,按照某种算法编写了相关程序,就可以实现计算机自动检索。由此,可以在图书馆信息检索系统中建立一张按书刊号顺序排列的图书信息表和分别按作者、书名、出版社顺序排列的索引表,如图1.1所示。由这四张表构成的文件便是图书信息检索的数学模型,计算机的主要操作便是按照某个特定要求(如给定书名)对图书馆藏书信息文件进行查询。

诸如此类的还有学生信息查询系统、商场商品管理系统、仓库物资管理系统等。在这类文档管理的数学模型中,计算机处理的对象之间通常存在着的是一种简单的线性关系,这类数学模型可称为线性的数据结构。

例2:八皇后问题。在八皇后问题中,处理过程不是根据某种确定的计算法则,而是利用试探和回溯的探索技术求解。为了求得合理布局,在计算机中要存储布局的当前状态。从最初的布局状态开始,一步步地进行试探,每试探一步形成一个新的状态,整个试探过程形成了一棵隐含的状态树。如图1.2所示(为了描述方便,将八皇后问题简化为四皇后问题)。回溯法求解过程实质上就是一个遍历状态树的过程。在这个问题中所出现的树也是一种数据结构,它可以应用在许多非数值计算的问题中。

例3:教学计划编排问题。一个教学计划包含许多课程,在教学计划包含的许多课程之间,有些必须按规定的先后次序进行,有些则没有次序要求。即有些课程之间有先修和后续的关系,有些课程可以任意安排次序。这种各个课程之间的次序关系可用一个称作图的数据结构来表示,如图1.3所示。有向图中的每个顶点表示一门课程,如果从顶点vi到vj之间存在有向边<vi,vj>,则表示课程i必须先于课程j进行。由以上三个例子可见,描述这类非数值计算问题的数学模型不再是数学方程,而是诸如线性表、树、图之类的数据结构。因此,可以说数据结构课程主要是研究非数值计算的程序设计问题中所出现的计算机操作对象以及它们之间的关系和操作的学科。

学习数据结构的目的是为了了解计算机处理对象的特性,将实际问题中所涉及的处理对象在计算机中表示出来并对它们进行处理。与此同时,通过算法训练来提高学生的思维能力,通过程序设计的技能训练来促进学生的综合应用能力和专业素质的提高。

3数据结构课程的内容

数据结构与数学、计算机硬件和软件有十分密切的关系,它是介于数学、计算机硬件和计算机软件之间的一门计算机专业的核心课程,是高级程序设计语言、操作系统、编译原理、数据库、人工智能、图视学等课程的基础。同时,数据结构技术也广泛应用于信息科学、系统工程、应用数学以及各种工程技术领域。

数据结构课程重在讨论软件开发过程中的方案设计阶段、同时设计编码和分析阶段的若干基本问题。此外,为了构造出好的数据结构及其实现,还需考虑数据结构及其实现的评价与选择。因此,数据结构的内容包括三个层次的五个“要素”,如图1.3所示。

数据结构的核心技术是分解与抽象。通过分解可以划分出数据的三个层次;再通过抽象,舍弃数据元素的具体内容,就得到逻辑结构。类似地,通过分解将处理要求划分成各种功能,再通过抽象舍弃实现细节,就得到运算的定义。上述两个方面的结合使我们将问题变换为数据结构。这是一个从具体(即具体问题)到抽象(即数据结构)的过程。然后,通过增加对实现细节的考虑进一步得到存储结构和实现运算,从而完成设计任务。这是一个从抽象(即数据结构)到具体(即具体实现)的过程。熟练地掌握这两个过程是数据结构课程在专业技能培养方面的基本目标。

结束语:数据结构作为一门独立的课程在国外是从1968年才开始的,但在此之前其有关内容已散见于编译原理及操作系统之中。20世纪60年代中期,美国的一些大学开始设立有关课程,但当时的课程名称并不叫数据结构。1968年美国唐.欧.克努特教授开创了数据结构的最初体系,他所着的《计算机程序设计技巧》第一卷《基本算法》是第一本较系统地阐述数据的逻辑结构和存储结构及其操作的着作。从20世纪60年代末到70年代初,出现了大型程序,软件也相对独立,结构程序设计成为程序设计方法学的主要内容,人们越来越重视数据结构。从70年代中期到80年代,各种版本的数据结构着作相继出现。目前,数据结构的发展并未终结,一方面,面向各专门领域中特殊问题的数据结构得到研究和发展,如多维图形数据结构等;另一方面,从抽象数据类型和面向对象的观点来讨论数据结构已成为一种新的趋势,越来越被人们所重视。

㈣ 数据分析包括哪些算法

1. Analytic Visualizations(可视化分析)

不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。

2. Data Mining Algorithms(数据挖掘算法)

可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。

3. Predictive Analytic Capabilities(预测性分析能力)

数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。

4. Semantic Engines(语义引擎)

我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。

5. Data Quality and Master Data Management(数据质量和数据管理)

数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。

阅读全文

与数据库分析和算法相关的资料

热点内容
找酒吧设计公司用什么app 浏览:678
基本初等函数的导数公式及导数的运算法则 浏览:915
为什么小米app启动广告关不了 浏览:877
空调压缩机一直不停 浏览:511
养殖系统开发源码 浏览:82
pdf的目录 浏览:406
光遇安卓如何一个人拍视频 浏览:277
怨女pdf 浏览:708
扭曲服务器什么时候开 浏览:23
加密货币换平台 浏览:609
手机内存压缩软件 浏览:33
生成树是否与遍历算法有关 浏览:728
python强化学习迷宫 浏览:450
老包子解压视频 浏览:885
服务器注册是什么意思 浏览:418
程序员群体焦虑如何破局 浏览:585
程序员在广州上班 浏览:803
androidlinuxadt 浏览:512
广联达软件加密锁原装芯片 浏览:338
如何打开数据库服务器 浏览:311