导航:首页 > 源码编译 > 分治算法基本思想基本步骤

分治算法基本思想基本步骤

发布时间:2023-03-11 18:50:11

❶ 分治的设计步骤

1. 划分步:把输入的问题划分为k个子问题,并尽量使这k个子问题的规模大致相同。
2. 治理步:当问题的规模大于某个预定的阈值n0时,治理步由k个递归调用组成。
3. 组合步:组合步把各个子问题的解组合起来,它对分治算法的实际性能至关重要,算法的有效性很大地依赖于组合步的实现。
分治法的关键是算法的组合步。究竟应该怎样合并,目前没有统一的模式,因此需要对具体问题进行具体分析,以得出比较好的合并算法。

❷ 分治法指的是什么呢

分治法指的是将原问题递归地分成若干个子问题,直到子问题满足边界条件,停止递归,将子问题逐个解决(一般是同种方法),将已经解决的子问题合并,最后,算法会层层合并得到原问题的答案

分治算法步骤:

分:递归地将问题分解为各个的子问题(性质相同的,相互独立的子问题)。

治:将这些规模更小的子问题逐个击破。

合:将已解决的问题逐层合并,最终得出原问题的解。

分治法适用条件

1、问题的规模缩小到一定的规模就可以较容易地解决。

2、问题可以分解为若干个规模较小的模式相同的子问题,即该问题具有最优子结构性质。

3、合并问题分解出的子问题的解可以得到问题的解。

4、问题所分解出的各个子问题之间是独立的,即子问题之间不存在公共的子问题。

❸ 什么是分治算法

分治法就是将一个复杂的问题分成多个相对简单的独立问题进行求解,并且综合所有简单问题的解可以组成这个复杂问题的解。
例如快速排序算法就是一个分治法的例子。即将一个大的无序序列排序成有序序列,等于将两个无序的子序列排序成有序,且两个子序列之间满足一个序列的元素普遍大于另一个序列中的元素。

❹ 分治法的步骤

分治法在每一层递归上都有三个步骤:
分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;
解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;
合并:将各个子问题的解合并为原问题的解。
它的一般的算法设计模式如下:
Divide-and-Conquer(P)
1. if |P|≤n0
2. then return(ADHOC(P))
3. 将P分解为较小的子问题 P1 ,P2 ,...,Pk
4. for i←1 to k
5. do yi ← Divide-and-Conquer(Pi) △ 递归解决Pi
6. T ← MERGE(y1,y2,...,yk) △ 合并子问题
7. return(T)
其中|P|表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。ADHOC(P)是该分治法中的基本子算法,用于直接解小规模的问题P。因此,当P的规模不超过n0时直接用算法ADHOC(P)求解。算法MERGE(y1,y2,...,yk)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,...,Pk的相应的解y1,y2,...,yk合并为P的解。
根据分治法的分割原则,原问题应该分为多少个子问题才较适宜?
各个子问题的规模应该怎样才为适当?
答: 但人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。换句话说,将一个问题分成大小相等的k个子问题的处理方法是行之有效的。许多问题可以取 k = 2。这种使子问题规模大致相等的做法是出自一种平衡(balancing)子问题的思想,它几乎总是比子问题规模不等的做法要好。
出处:网络
实践题目:
给定一个顺序表,编写一个求出其最大值和最小值的分治算法。
分析:
由于顺序表的结构没有给出,作为演示分治法这里从简顺序表取一整形数组数组大小由用户定义,数据随机生成。我们知道如果数组大小为 1 则可以直接给出结果,如果大小为 2则一次比较即可得出结果,于是我们找到求解该问题的子问题即: 数组大小 <= 2。到此我们就可以进行分治运算了,只要求解的问题数组长度比 2 大就继续分治,否则求解子问题的解并更新全局解
以下是代码。
*/
/*** 编译环境TC ***/
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#define M 40
/* 分治法获取最优解 */
void PartionGet(int s,int e,int *meter,int *max,int *min){
/* 参数:
* s 当前分治段的开始下标
* e 当前分治段的结束下标
* meter 表的地址
* max 存储当前搜索到的最大值
* min 存储当前搜索到的最小值
*/
int i;
if(e-s <= 1){ /* 获取局部解,并更新全局解 */
if(meter[s] > meter[e]){
if(meter[s] > *max)
*max = meter[s];
if(meter[e] < *min)
*min = meter[e];
}
else{
if(meter[e] > *max)
*max = meter[e];
if(meter[s] < *min)
*min = meter[s];
}
return ;
}
i = s + (e-s)/2; /* 不是子问题继续分治,这里使用了二分,也可以是其它 */
PartionGet(s,i,meter,max,min);
PartionGet(i+1,e,meter,max,min);
}
int main(){
int i,meter[M];
int max = INT_MIN; /* 用最小值初始化 */
int min = INT_MAX; /* 用最大值初始化 */
printf(The array's element as followed: );
rand(); /* 初始化随机数发生器 */
for(i = 0; i < M; i ++){ /* 随机数据填充数组 */
meter[i] = rand()%10000;
if(!((i+1)%10)) /* 输出表的随机数据 */
printf(%-6d ,meter[i]);
else
printf(%-6d,meter[i]);
}
PartionGet(0,M - 1,meter,&max,&min); /* 分治法获取最值 */
printf( Max : %d Min : %d ,max,min);
system(pause);
return 0;
}

❺ 分治算法时间复杂度

一:分治算法和递归
1.简述递归

我们要讲到分治算法,我觉得有必要说一下递归,他们就像一对孪生兄弟,经常同时应用在算法设计中,并由此产生许多高效的算法。
直接或间接的调用自身的算法称为递归算法。用函数自身给出定义的函数称为递归函数。

int fibonacci(int n){
if (n <= 1) return 1;
return fibonacci(n-1)+fibonacci(n-2);
}
先简单看一下经典的递归例子,博主会找个时间系统详细的总结一下关于递归的内容。

2.简述分治

分治法的设计思想是:

分–将问题分解为规模更小的子问题;
治–将这些规模更小的子问题逐个击破;
合–将已解决的子问题合并,最终得出“母”问题的解;
一个先自顶向下,再自底向上的过程。

凡治众如治寡,分数是也。—孙子兵法

3.分治法与递归的联系

由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。

二:分治法的适用条件
分治法所能解决的问题一般具有以下几个特征:

1) 该问题的规模缩小到一定的程度就可以容易地解决
2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
3) 利用该问题分解出的子问题的解可以合并为该问题的解;
4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

第一条特征是绝大多数问题都可以满足的,因为问题的复杂性一般是随着问题规模的增加而增加;

第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;、

第三条是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。

第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好

三:分治法的基本步骤
分解问题:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;(自顶向下)
这里涉及到一个平衡子问题的思想:人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。即将一个问题分成大小相等的k个子问题的处理方法是行之有效的。这种使子问题规模大致相等的做法是出自一种平衡子问题的思想,它几乎总是比子问题规模不等的做法要好。

解决问题:如果问题规模较小而容易被解决则直接解,否则递归地解各个子问题,以得到小问题的解。
合并结果:将各个子问题的解合并为原问题的解:(自底向上)。
它的一般算法设计模式如下:
divide-and-conquer(P){
if ( | P | <= n0) adhoc(P); //(2)解决问题:递归到小问题,则解决小规模的问题(自顶向下)
divide P into smaller subinstances P1,P2,...,Pk;//(1)分解问题
for (i=1,i<=k,i++)
yi=divide-and-conquer(Pi); //利用递归的解各子问题
return merge(y1,...,yk); //将各子问题的解合并为原问题的解(自底向上)
}
四:分治法的复杂性分析
从分治法的一般设计模式可以看出,用他设计出的程序一般是递归算法。因此分治法的计算效率通常可以用递归方程来进行分析。
一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。设分解阀值(表示当问题P规模不超过n0时,问题已容易解出,不必再继续分解)n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:

通常可以用展开递归式的方法来解这类递归方程,反复带入求解得

阅读全文

与分治算法基本思想基本步骤相关的资料

热点内容
手机内存压缩软件 浏览:33
生成树是否与遍历算法有关 浏览:727
python强化学习迷宫 浏览:449
老包子解压视频 浏览:885
服务器注册是什么意思 浏览:418
程序员群体焦虑如何破局 浏览:584
程序员在广州上班 浏览:802
androidlinuxadt 浏览:512
广联达软件加密锁原装芯片 浏览:338
如何打开数据库服务器 浏览:310
kppm是什么app 浏览:538
python多个数组命名 浏览:192
a算法csdn 浏览:23
r720服务器什么年代 浏览:975
本地电脑怎么设置传奇服务器 浏览:1002
安卓10框架怎么制作 浏览:959
程序员退休工资待遇 浏览:609
湛江中文编程数控系统代理 浏览:419
openglandroid书 浏览:170
奇妙组件安卓版叫什么 浏览:729