1. 如何判断算法优劣
算法的好坏是看它的运行效率比如递归一般来说是比较耗时间的,也就是说效率低当然也看具体情况,有的算法在基数小的情况是差不多,性能反而还好点
2. 举例说明何谓算法,特点是什么评价一个算法的优劣,主要从哪些因素分析
评价算法优劣的四个分析因素:
1.正确性
能正确地实现预定的功能,满足具体问题的需要。处理数据使用的算法是否得当,能不能得到预想的结果。
2.易读性
易于阅读、理解和交流,便于调试、修改和扩充。写出的算法,能不能让别人看明白,能不能让别人明白算法的逻辑?如果通俗易懂,在系统调试和修改或者功能扩充的时候,使系统维护更为便捷。
3.健壮性
输入非法数据,算法也能适当地做出反应后进行处理,不会产生预料不到的运行结果。数据的形式多种多样,算法可能面临着接受各种各样的数据,当算法接收到不适合算法处理的数据,算法本身该如何处理呢?如果算法能够处理异常数据,处理能力越强,健壮性越好。
4.时空性
算法的时空性是该算法的时间性能和空间性能。主要是说算法在执行过程中的时间长短和空间占用多少问题。
算法处理数据过程中,不同的算法耗费的时间和内存空间是不同的。
(2)如何判断各种算法的好坏扩展阅读:
算法是对特定问题求解步骤的一种描述,它是指令的有限序列,其中每一条指令表示一个或多个操作。此外,一个算法还具有下列5个重要的特性。
(1)、有穷性
一个算法必须总是(对任何合法的输入值)在执行有穷步之后结束,且每一步都可在有穷时间内完成。
(2)、确定性
算法中每一条指令必须有明确的含义,读者理解时不会产生二义性。即对于相同的输入只能得到相同的输出。
(3)、可行性
一个算法是可行的,即算法中描述的操作都是可以通过已经实现的基本运算执行有限次来实现的。
(4)、输入
一个算法有零个或多个的输入,这些输入取自于某个特定的对象的集合。
(5)、输出
一个算法有一个或多个的输出,这些输出是同输入有着某种特定关系的量。
3. 数据结构中评价一个好的算法,应该从哪几个方面来考虑
数据结构中评价一个好的算法,应该从四个个方面来考虑,分别是:
一、算法的正确性。
二、算法的易读性。
三、是算法的健壮性。
四、是算法的时空效率(运行)。
算法的设计取决于数据(逻辑)结构,而算法的实现依赖于采用的存储结构。数据的存储结构实质上是它的逻辑结构在计算机存储器中的实现,为了全面的反映一个数据的逻辑结构,它在存储器中的映象包括两方面内容,即数据元素之间的信息和数据元素之间的关系。
不同数据结构有其相应的若干运算。数据的运算是在数据的逻辑结构上定义的操作算法,如检索、插入、删除、更新和排序等。
(3)如何判断各种算法的好坏扩展阅读:
分类
1、集合结构。该结构的数据元素间的关系是“属于同一个集合”。
2、线性结构。该结构的数据元素之间存在着一对一的关系。
3、树型结构。该结构的数据元素之间存在着一对多的关系。
4、图形结构。该结构的数据元素之间存在着多对多的关系,也称网状结构。
4. 如何比较两个算法的好坏,有什么指标
算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。
评价算法的好坏的因素:·算法是正确的;
·执行算法的时间;
·执行算法的存储空间(主要是辅助存储空间);
·算法易于理解、编码、调试。
**************************************************************************************************************
时间复杂度:是某个算法的时间耗费,它是该算法所求解问题规模n的函数。
渐近时间复杂度:是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。
评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度。
算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。
时间复杂度按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、……k次方阶O(n^k)、指数阶O(2^n)。
空间复杂度:是某个算法的空间耗费,它是该算法所求解问题规模n的函数。
算法的时间复杂度和空间复杂度合称算法复杂度。
5. 如何衡量一个算法的优劣有哪些标准
如何衡量一个算法的优劣,见人见智。一个好的算法首先是要能够满足场景的需求,其次是在能够最大限度的节省资源(最低成本原则),最后是实现逻辑简单,比较容易理解(本质上也是最低成本原则)。但是,在现实中硬件资源不变,算法不变情况下,算法执行的效率提高,相对应往往是资源消耗增加。一个合格的算法是在一个可以接受的范围内满足场景需求,而一个优秀的算法则是在满足场景需求的基础上,最大限度的节省资源,简化逻辑。
比如我要完成一项计算任务,要求是在5分钟执行完成。现在有算法1:需要执行1分钟,消耗内存8G;算法2需要执行3分钟,需要消耗内存256M。那么,我们应该如何选择呢?首先,这两种方案都能满足我们的需求;其次:算法1的需要消耗的资源是算法2的32倍,算法1的效率是算法2的3倍。在这种满足需求的情况下,往往更倾向于选择算法2。衡量一个算法的优劣往往要评估多方因素,结合实践,综合比较最终得出结论。
衡量一个算法的的标准主要有3个: 算法的执行效率 , 算法的内存消耗 和 算法的稳定性 。
6. 衡量算法好坏的标准
1:时间复杂度:
可以简单的说就是:大概程序要被执行的次数,而非时间。注意:是次数,不是时间,因为不同机器的性能是不一样的,不要用计时器在那里计时谁的更快。当然,如果在同一台电脑上运行计时另说。
Question:怎样看待一个程序执行的速度是快还是慢?
Answer:要看他里边最关键的运行次数最多的那一个步骤到底执行了几次,用这个来衡量算法的时间复杂度
2:空间复杂度:
同样简单来说就是:算法执行过程中大概所占用的最大的内存。
3:难易程度:
所研究的算法尽可能让大家能看懂。
4:健壮性:
简单来说哦,不要一碰就完不结实
5:正确性:
一定要正确,感觉这一特性说不说都是可以,不正确也不能用,这一切的前提都是以正确为前提的。
7. 如何判断一个算法的好坏
首先,这个算法必须是正确的
其次,好的算法应该是友好的,便于人们理解和交流,并且是机器可执行的。
这个算法还需要足够健壮,即当输入的数据非法或不合理时,也能适当的做出正确的反应或进行相应的处理
最后它还必须拥有高效率和低存储量要求。
也就是楼上几位说的时间复杂度和空间复杂度
占的地方越小,算得越快的算法才是好算法。