1. VB 如何用:socket 发送数据
1、首先看控件区有无串口控件,表明串口控件并未被启用,选择工程→部件→Micosoft comm Control6.0选项,点击应用,即可添加串口控件。
2. 如何用mina的ProtocolDecoder来解析websocket的消息
MINA,Grizzly[grizzly-nio-framework],xSocket都是基于 java nio的 server framework.
这里的性能缺陷的焦点是指当一条channel上的SelectionKey.OP_READ ready时,1.是由select thread读完数据之后再分发给应用程序的handler,2.还是直接就分发,由handler thread来负责读数据和handle.
mina,xsocket是1. grizzly-nio-framework是2.
尽管读channel buffer中bytes是很快的,但是如果我们放大,当连接channel达到上万数量级,甚至更多,这种延迟响应的效果将会愈加明显.
MINA:
for all selectedKeys
{
read data then fireMessageReceived.
}
xSocket:
for all selectedKeys
{
read data ,append it to readQueue then performOnData.
}
其中mina在fireMessageReceived时没有使用threadpool来分发,所以需要应用程序在handler.messageReceived中再分发.而xsocket的performOnData默认是分发给threadpool[WorkerPool],WorkerPool虽然解决了线程池中的线程不能充到最大的问题[跟tomcat6的做法一样],但是它的调度机制依然缺乏灵活性.
Grizzly:
for all selectedKeys
{
[NIOContext---filterChain.execute--->our filter.execute]<------run In DefaultThreadPool
}
grizzly的DefaultThreadPool几乎重写了java util concurrent threadpool,并使用自己的LinkedTransferQueue,但同样缺乏灵活的池中线程的调度机制.
下面分别是MINA,xSocket,Grizzly的源码分析:
Apache MINA (mina-2.0.0-M6源码为例):
我们使用mina nio tcp最常用的样例如下:
NioSocketAcceptor acceptor = new NioSocketAcceptor(/*NioProcessorPool's size*/);
DefaultIoFilterChainBuilder chain = acceptor.getFilterChain();
//chain.addLast("codec", new ProtocolCodecFilter(
//new TextLineCodecFactory()));
......
// Bind
acceptor.setHandler(/*our IoHandler*/);
acceptor.bind(new InetSocketAddress(port));
3. GitHub上面有哪些经典的java框架源码
Bazel:来自Google的构建工具,可以快速、可靠地构建代码。官网
Gradle:使用Groovy(非XML)进行增量构建,可以很好地与Maven依赖管理配合工作。官网
Buck:Facebook构建工具。官网
字节码操作
编程方式操作字节码的开发库。
ASM:通用底层字节码操作和分析开发库。官网
Byte Buddy:使用流式API进一步简化字节码生成。官网
Byteman:在运行时通过DSL(规则)操作字节码进行测试和故障排除。官网
Javassist:一个简化字节码编辑尝试。官网
集群管理
在集群内动态管理应用程序的框架。
Apache Aurora:Apache Aurora是一个Mesos框架,用于长时间运行服务和定时任务(cron job)。官网
Singularity:Singularity是一个Mesos框架,方便部署和操作。它支持Web Service、后台运行、调度作业和一次性任务。官网
代码分析
测量代码指标和质量工具。
Checkstyle:代码编写规范和标准静态分析工具。官网
Error Prone:将常见编程错误作为运行时错误报告。官网
FindBugs:通过字节码静态分析查找隐藏bug。官网
jQAssistant:使用基于Neo4J查询语言进行代码静态分析。官网
PMD:对源代码分析查找不良的编程习惯。官网
SonarQube:通过插件集成其它分析组件,对过去一段时间内的数据进行统计。官网
编译器生成工具
用来创建解析器、解释器或编译器的框架。
ANTLR:复杂的全功能自顶向下解析框架。官网
JavaCC:JavaCC是更加专门的轻量级工具,易于上手且支持语法超前预测。官网
外部配置工具
支持外部配置的开发库。
config:针对JVM语言的配置库。官网
owner:减少冗余配置属性。官网
约束满足问题求解程序
帮助解决约束满足问题的开发库。
Choco:可直接使用的约束满足问题求解程序,使用了约束规划技术。官网
JaCoP:为FlatZinc语言提供了一个接口,可以执行MiniZinc模型。官网
OptaPlanner:企业规划与资源调度优化求解程序。官网
Sat4J:逻辑代数与优化问题最先进的求解程序。官网
持续集成
Bamboo:Atlassian解决方案,可以很好地集成Atlassian的其他产品。可以选择开源许可,也可以购买商业版。官网
CircleCI:提供托管服务,可以免费试用。官网
Codeship:提供托管服务,提供有限的免费模式。官网
fabric8:容器集成平台。官网
Go:ThoughtWork开源解决方案。官网
Jenkins:支持基于服务器的部署服务。官网
TeamCity:JetBrain的持续集成解决方案,有免费版。官网
Travis:通常用作开源项目的托管服务。官网
Buildkite: 持续集成工具,用简单的脚本就能设置pipeline,而且能快速构建,可以免费试用。官网
CSV解析
简化CSV数据读写的框架与开发库
uniVocity-parsers:速度最快功能最全的CSV开发库之一,同时支持TSV与固定宽度记录的读写。官网
数据库
简化数据库交互的相关工具。
Apache Phoenix:HBase针对低延时应用程序的高性能关系数据库层。官网
Crate:实现了数据同步、分片、缩放、复制的分布式数据存储。除此之外还可以使用基于SQL的语法跨集群查询。官网
Flyway:简单的数据库迁移工具。官网
H2:小型SQL数据库,以可以作为内存数据库使用着称。官网
HikariCP:高性能JDBC连接工具。官网
JDBI:便捷的JDBC抽象。官网
Protobuf:Google数据交换格式。官网
SBE:简单二进制编码,是最快速的消息格式之一。官网
Wire:整洁轻量级协议缓存。官网
帮实现依赖翻转范式的开发库。官网
Apache DeltaSpike:CDI扩展框架。官网
Dagger2:编译时注入框架,不需要使用反射。官网
Guice:可以匹敌Dagger的轻量级注入框架。官网
HK2:轻量级动态依赖注入框架。官网
开发流程增强工具
从最基本的层面增强开发流程。
ADT4J:针对代数数据类型的JSR-269代码生成器。官网
AspectJ:面向切面编程(AOP)的无缝扩展。官网
Auto:源代码生成器集合。官网
DCEVM:通过修改JVM在运行时支持对已加载的类进行无限次重定义。官网
HotswapAgent:支持无限次重定义运行时类与资源。官网
Immutables:类似Scala的条件类。官网
JHipster:基于Spring Boot与AngularJS应用程序的Yeoman源代码生成器。官网
JRebel:无需重新部署,可以即时重新加载代码与配置的商业软件。官网
Lombok:减少冗余的代码生成器。官网
Spring Loaded:类重载代理。官网
vert.x:多语言事件驱动应用框架。官网
分布式应用
用来编写分布式容错应用的开发库和框架。
Akka:用来编写分布式容错并发事件驱动应用程序的工具和运行时。官网
Apache Storm:实时计算系统。官网
Apache ZooKeeper:针对大型分布式系统的协调服务,支持分布式配置、同步和名称注册。官网
Hazelcast:高可扩展内存数据网格。官网
Hystrix:提供延迟和容错。官网
JGroups:提供可靠的消息传递和集群创建的工具。官网
Orbit:支持虚拟角色(Actor),在传统角色的基础上增加了另外一层抽象。官网
Quasar:为JVM提供轻量级线程和角色。官网
分布式数据库
对应用程序而言,在分布式系统中的数据库看起来就像是只有一个数据源。
Apache Cassandra:列式数据库,可用性高且没有单点故障。官网
Apache HBase:针对大数据的Hadoop数据库。官网
Druid:实时和历史OLAP数据存储,在聚集查询和近似查询方面表现不俗。官网
Infinispan:针对缓存的高并发键值对数据存储。官网
发布
以本机格式发布应用程序的工具。
Bintray:发布二进制文件版本控制工具。可以于Maven或Gradle一起配合使用。提供开源免费版本和几种商业收费版本。官网
Central Repository:最大的二进制组件仓库,面向开源社区提供免费服务。Apache Maven默认使用Central官网Repository,也可以在所有其他构建工具中使用。
IzPack:为跨平台部署建立创作工具(Authoring Tool)。官网
JitPack:打包GitHub仓库的便捷工具。可根据需要构建Maven、Gradle项目,发布可立即使用的组件。官网
Launch4j:将JAR包装为轻量级本机Windows可执行程序。官网
Nexus:支持代理和缓存功能的二进制管理工具。官网
packr:将JAR、资源和JVM打包成Windows、linux和Mac OS X本地发布文件。官网
文档处理工具
处理Office文档的开发库。
Apache POI:支持OOXML规范(XLSX、DOCX、PPTX)以及OLE2规范(XLS、DOC、PPT)。官网
documents4j:使用第三方转换器进行文档格式转换,转成类似MS Word这样的格式。官网
jOpenDocument:处理OpenDocument格式(由Sun公司提出基于XML的文档格式)。官网
函数式编程
函数式编程支持库。
Cyclops:支持一元(Monad)操作和流操作工具类、comprehension(List语法)、模式匹配、trampoline等特性。官网
Fugue:Guava的函数式编程扩展。官网
Functional Java:实现了多种基础和高级编程抽象,用来辅助面向组合开发(composition-oriented development)。官网
Javaslang:一个函数式组件库,提供持久化数据类型和函数式控制结构。官网
jOOλ:旨在填补Java 8 lambda差距的扩展,提供了众多缺失的类型和一组丰富的顺序流API。官网
游戏开发
游戏开发框架。
jMonkeyEngine:现代3D游戏开发引擎。官网
libGDX:全面的跨平台高级框架。官网
LWJGL:对OpenGL/CL/AL等技术进行抽象的健壮框架。官网
GUI
现代图形化用户界面开发库。
JavaFX:Swing的后继者。官网
Scene Builder:开发JavaFX应用的可视化布局工具。官网
高性能计算
涵盖了从集合到特定开发库的高性能计算相关工具。
Agrona:高性能应用中常见的数据结构和工具方法。官网
Disruptor:线程间消息传递开发库。官网
fastutil:快速紧凑的特定类型集合(Collection)。官网
GS Collections:受Smalltalk启发的集合框架。官网
HPPC:基础类型集合。官网
Javolution:实时和嵌入式系统的开发库。官网
JCTools:JDK中缺失的并发工具。官网
Koloboke:Hash set和hash map。官网
Trove:基础类型集合。官网
High-scale-bli:Cliff Click 个人开发的高性能并发库官网
IDE
简化开发的集成开发环境。
Eclipse:老牌开源项目,支持多种插件和编程语言。官网
IntelliJ IDEA:支持众多JVM语言,是安卓开发者好的选择。商业版主要针对企业客户。官网
NetBeans:为多种技术提供集成化支持,包括Java SE、Java EE、数据库访问、HTML5
Imgscalr:纯Java 2D实现,简单、高效、支持硬件加速的图像缩放开发库。官网
Picasso:安卓图片下载和图片缓存开发库。官网
Thumbnailator:Thumbnailator是一个高质量Java缩略图开发库。官网
ZXing:支持多种格式的一维、二维条形码图片处理开发库。官网
im4java: 基于ImageMagick或GraphicsMagick命令行的图片处理开发库,基本上ImageMagick能够支持的图片格式和处理方式都能够处理。官网
Apache Batik:在Java应用中程序以SVG格式显示、生成及处理图像的工具集,包括SVG解析器、SVG生成器、SVG DOM等模块,可以集成使用也可以单独使用,还可以扩展自定义的SVG标签。官网
JSON
简化JSON处理的开发库。
Genson:强大且易于使用的Java到JSON转换开发库。官网
Gson:谷歌官方推出的JSON处理库,支持在对象与JSON之间双向序列化,性能良好且可以实时调用。官网
Jackson:与GSON类似,在频繁使用时性能更佳。官网
LoganSquare:基于Jackson流式API,提供对JSON解析和序列化。比GSON与Jackson组合方式效果更好。官网
Fastjson:一个Java语言编写的高性能功能完善的JSON库。官网
Kyro:快速、高效、自动化的Java对象序列化和克隆库。官网
JVM与JDK
目前的JVM和JDK实现。
JDK 9:JDK 9的早期访问版本。官网
OpenJDK:JDK开源实现。官网
基于JVM的语言
除Java外,可以用来编写JVM应用程序的编程语言。
Scala:融合了面向对象和函数式编程思想的静态类型编程语言。官网
Groovy:类型可选(Optionally typed)的动态语言,支持静态类型和静态编译。目前是一个Apache孵化器项目。官网
Clojure:可看做现代版Lisp的动态类型语言。官网
Ceylon:RedHat开发的面向对象静态类型编程语言。官网
Kotlin:JetBrain针对JVM、安卓和浏览器提供的静态类型编程语言。官网
Xtend:一种静态编程语言,能够将其代码转换为简洁高效的Java代码,并基于JVM运行。官网
日志
记录应用程序行为日志的开发库。
Apache Log4j 2:使用强大的插件和配置架构进行完全重写。官网
kibana:分析及可视化日志文件。官网
Logback:强健的日期开发库,通过Groovy提供很多有趣的选项。官网
logstash:日志文件管理工具。官网
Metrics:通过JMX或HTTP发布参数,并且支持存储到数据库。官网
SLF4J:日志抽象层,需要与具体的实现配合使用。官网
机器学习
提供具体统计算法的工具。其算法可从数据中学习。
Apache Flink:快速、可靠的大规模数据处理引擎。官网
Apache Hadoop:在商用硬件集群上用来进行大规模数据存储的开源软件框架。官网
Apache Mahout:专注协同过滤、聚类和分类的可扩展算法。官网
Apache Spark:开源数据分析集群计算框架。官网
DeepDive:从非结构化数据建立结构化信息并集成到已有数据库的工具。官网
Deeplearning4j:分布式多线程深度学习开发库。官网
H2O:用作大数据统计的分析引擎。官网
Weka:用作数据挖掘的算法集合,包括从预处理到可视化的各个层次。官网
QuickML:高效机器学习库。官网、GitHub
消息传递
在客户端之间进行消息传递,确保协议独立性的工具。
Aeron:高效可扩展的单播、多播消息传递工具。官网
Apache ActiveMQ:实现JMS的开源消息代理(broker),可将同步通讯转为异步通讯。官网
Apache Camel:通过企业级整合模式(Enterprise Integration Pattern EIP)将不同的消息传输API整合在一起。官网
Apache Kafka:高吞吐量分布式消息系统。官网
Hermes:快速、可靠的消息代理(Broker),基于Kafka构建。官网
JBoss HornetQ:清晰、准确、模块化,可以方便嵌入的消息工具。官网
JeroMQ:ZeroMQ的纯Java实现。官网
Smack:跨平台XMPP客户端函数库。官网
Openfire:是开源的、基于XMPP、采用Java编程语言开发的实时协作服务器。 Openfire安装和使用都非常简单,并可利用Web界面进行管理。官网GitHub
Spark:是一个开源,跨平台IM客户端。它的特性支持集组聊天,电话集成和强大安全性能。如果企业内部部署IM使用Openfire+Spark是最佳的组合。官网GitHub
Tigase: 是一个轻量级的可伸缩的 Jabber/XMPP 服务器。无需其他第三方库支持,可以处理非常高的复杂和大量的用户数,可以根据需要进行水平扩展。官网
杂项
未分类其它资源。
Design Patterns:实现并解释了最常见的设计模式。官网
Jimfs:内存文件系统。官网
Lanterna:类似curses的简单console文本GUI函数库。官网
LightAdmin:可插入式CRUD UI函数库,可用来快速应用开发。官网
OpenRefine:用来处理混乱数据的工具,包括清理、转换、使用Web Service进行扩展并将其关联到数据库。官网
RoboVM:Java编写原生iOS应用。官网
Quartz:强大的任务调度库.官网
应用监控工具
监控生产环境中应用程序的工具。
AppDynamics:性能监测商业工具。官网
JavaMelody:性能监测和分析工具。官网
Kamon:Kamon用来监测在JVM上运行的应用程序。官网
New Relic:性能监测商业工具。官网
SPM:支持对JVM应用程序进行分布式事务追踪的性能监测商业工具。官网
Takipi:产品运行时错误监测及调试商业工具。官网
原生开发库
用来进行特定平台开发的原生开发库。
JNA:不使用JNI就可以使用原生开发库。此外,还为常见系统函数提供了接口。官网
自然语言处理
用来专门处理文本的函数库。
Apache OpenNLP:处理类似分词等常见任务的工具。官网
CoreNLP:斯坦佛CoreNLP提供了一组基础工具,可以处理类似标签、实体名识别和情感分析这样的任务。官网
LingPipe:一组可以处理各种任务的工具集,支持POS标签、情感分析等。官网
Mallet:统计学自然语言处理、文档分类、聚类、主题建模等。官网
网络
网络编程函数库。
Async Http Client:异步HTTP和WebSocket客户端函数库。官网
Grizzly:NIO框架,在Glassfish中作为网络层使用。官网
Netty:构建高性能网络应用程序开发框架。官网
OkHttp:一个android和Java应用的HTTP+SPDY客户端。官网
Undertow:基于NIO实现了阻塞和非阻塞API的Web服务器,在WildFly中作为网络层使用。官网
ORM
处理对象持久化的API。
Ebean:支持快速数据访问和编码的ORM框架。官网
EclipseLink:支持许多持久化标准,JPA、JAXB、JCA和SDO。官网
Hibernate:广泛使用、强健的持久化框架。Hibernate的技术社区非常活跃。官网
MyBatis:带有存储过程或者SQL语句的耦合对象(Couples object)。官网
OrmLite:轻量级开发包,免除了其它ORM产品中的复杂性和开销。官网
Nutz:另一个SSH。官网,Github
JFinal:JAVA WEB + ORM框架。官网,Github
用来帮助创建PDF文件的资源。
Apache FOP:从XSL-FO创建PDF。官网
Apache PDFBox:用来创建和操作PDF的工具集。官网
DynamicReports:JasperReports的精简版。官网
flyingsaucer:XML/XHTML和CSS 2.1渲染器。官网
iText:一个易于使用的PDF函数库,用来编程创建PDF文件。注意,用于商业用途时需要许可证。官网
JasperReports:一个复杂的报表引擎。官网
性能分析
性能分析、性能剖析及基准测试工具。
jHiccup:提供平台中JVM暂停的日志和记录。官网
JMH:JVM基准测试工具。官网
JProfiler:商业分析器。官网
LatencyUtils:测量和报告延迟的工具。官网
VisualVM:对运行中的应用程序信息提供了可视化界面。官网
YourKit Java Profiler:商业分析器。官网
响应式开发库
用来开发响应式应用程序的开发库。
Reactive Streams:异步流处理标准,支持非阻塞式反向压力(backpressure)。官网
Reactor:构建响应式快速数据(fast-data)应用程序的开发库。官网
RxJava:通过JVM可观察序列(observable sequence)构建异步和基于事件的程序。官网
REST框架
用来创建RESTful 服务的框架。
Dropwizard:偏向于自己使用的Web框架。用来构建Web应用程序,使用了Jetty、Jackson、Jersey和Metrics。官网
Feign:受Retrofit、JAXRS-2.0和WebSocket启发的HTTP客户端连接器(binder)。官网
Jersey:JAX-RS参考实现。官网
RESTEasy:经过JAX-RS规范完全认证的可移植实现。官网
RestExpress:一个Java类型安全的REST客户端。官网
RestX:基于注解处理和编译时源码生成的框架。官网
Retrofit:类型安全的REST客户端。官网
Spark:受到Sinatra启发的Java REST框架。官网
Swagger:Swagger是一个规范且完整的框架,提供描述、生产、消费和可视化RESTful Web Service。官网
Blade:国人开发的一个轻量级的MVC框架. 它拥有简洁的代码,优雅的设计。官网
科学计算与分析
用于科学计算和分析的函数库。
DataMelt:用于科学计算、数据分析及数据可视化的开发环境。官网
JGraphT:支持数学图论对象和算法的图形库。官网
JScience:用来进行科学测量和单位的一组类。官网
搜索引擎
文档索引引擎,用于搜索和分析。
Apache Solr:一个完全的企业搜索引擎。为高吞吐量通信进行了优化。官网
Elasticsearch:一个分布式、支持多租户(multitenant)全文本搜索引擎。提供了RESTful Web接口和无schema的JSON文档。官网
Apache Lucene:是一个开放源代码的全文检索引擎工具包,是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎,部分文本分析引擎。官网
安全
用于处理安全、认证、授权或会话管理的函数库。
Apache Shiro:执行认证、授权、加密和会话管理。官网
Bouncy Castle,涵盖了从基础的帮助函数到PGP/SMIME操作。官网:多途加密开发库。支持JCA提供者(JCA provider)
Cryptomator:在云上进行客户端跨平台透明加密。官网
Keycloak:为浏览器应用和RESTful Web Service集成SSO和IDM。目前还处于beta版本,但是看起来非常有前途。官网
PicketLink:PicketLink是一个针对Java应用进行安全和身份认证管理的大型项目(Umbrella Project)。官网
序列化
用来高效处理序列化的函数库。
FlatBuffers:高效利用内存的序列化函数库,无需解包和解析即可高效访问序列化数据。官网
Kryo:快速、高效的对象图形序列化框架。官网
FST:提供兼容JDK的高性能对象图形序列化。官网
MessagePack:一种高效的二进制序列化格式。官网
应用服务器
用来部署应用程序的服务器。
Apache Tomcat:针对Servlet和JSP的应用服务器,健壮性好且适用性强。官网
Apache TomEE:Tomcat加Java EE。官网
Jetty:轻量级、小巧的应用服务器,通常会嵌入到项目中。官网
WebSphere Liberty:轻量级、模块化应用服务器,由IBM开发。官网
WildFly:之前被称作JBoss,由Red Hat开发。支持很多Java EE功能。官网
模板引擎
在模板中替换表达式的工具。
Apache Velocity:提供HTML页面模板、email模板和通用开源代码生成器模板。官网
FreeMarker:通用模板引擎,不需要任何重量级或自己使用的依赖关系。官网
Handlebars.java:使用Java编写的模板引擎,逻辑简单,支持语义扩展(semantic Mustache)。官网
Thymeleaf:旨在替换JSP,支持XML文件的工具。官网
测试
测试内容从对象到接口,涵盖性能测试和基准测试工具。
Apache JMeter:功能性测试和性能评测。官网
Arquillian:集成测试和功能行测试平台,集成Java EE容器。官网
AssertJ:支持流式断言提高测试的可读性。官网
Awaitility:用来同步异步操作的DSL。官网
Cucumber:BDD测试框架。官网
Gatling:设计为易于使用、可维护的和高性能负载测试工具。官网
Hamcrest:可用来灵活创建意图(intent)表达式的匹配器。官网
JMockit:用来模拟静态、final方法等。官网
JUnit:通用测试框架。官网
Mockito:在自动化单元测试中创建测试对象,为TDD或BDD提供支持。官网
PowerMock: 支持模拟静态方法、构造函数、final类和方法、私有方法以及移除静态初始化器的模拟工具。官网
REST Assured:为REST/HTTP服务提供方便测试的Java DSL。官网
Selenide:为Selenium提供精准的周边API,用来编写稳定且可读的UI测试。官网
Selenium:为Web应用程序提供可移植软件测试框架。官网
Spock:JUnit-compatible framework featuring an expressive Groovy-derived specification language.官网兼容JUnit框架,支持衍生的Groovy范的语言。
TestNG:测试框架。官网
Truth:Google的断言和命题(proposition)框架。官网
Unitils:模块化测试函数库,支持单元测试和集成测试。官网
WireMock:Web Service测试桩(Stub)和模拟函数。官网
通用工具库
通用工具类函数库。
Apache Commons:提供各种用途的函数,比如配置、验证、集合、文件上传或XML处理等。官网
args4j:命令行参数解析器。官网
CRaSH:为运行进行提供CLI。官网
Gephi:可视化跨平台网络图形化操作程序。官网
Guava:集合、缓存、支持基本类型、并发函数库、通用注解、字符串处理、I/O等。官网
JADE:构建、调试多租户系统的框架和环境。官网
javatuples:正如名字表示的那样,提供tuple支持。尽管目前tuple的概念还有留有争议。官网
JCommander:命令行参数解析器。官网
Protégé:提供存在论(ontology)编辑器以及构建知识系统的框架。官网
网络爬虫
用于分析网站内容的函数库。
Apache Nutch:可用于生产环境的高度可扩展、可伸缩的网络爬虫。官网
Crawler4j:简单的轻量级网络爬虫。官网
JSoup:刮取、解析、操作和清理HTML。官网
Web框架
用于处理Web应用程序不同层次间通讯的框架。
Apache Tapestry:基于组件的框架,使用Java创建动态、强健的、高度可扩展的Web应用程序。官网
Apache Wicket:基于组件的Web应用框架,与Tapestry类似带有状态显示GUI。官网
Google Web Toolkit:一组Web开发工具集,包含在客户端将Java代码转为JavaScript的编译器、XML解析器、RCP官网API、JUnit集成、国际化支持和GUI控件。
Grails:Groovy框架,旨在提供一个高效开发环境,使用约定而非配置、没有XML并支持混入(mixin)。官网
Ninja:Java全栈Web开发框架。非常稳固、快速和高效。官网
Pippo:小型、高度模块化的类Sinatra框架。官网
Play:使用约定而非配置,支持代码热加载并在浏览器中显示错误。官网
PrimeFaces:JSF框架,提供免费和带支持的商业版本。包括若干前端组件。官网
Ratpack:一组Java开发函数库,用于构建快速、高效、可扩展且测试完备的HTTP应用程序。官网
Spring Boot:微框架,简化了Spring新程序的开发过程。官网
Spring:旨在简化Java EE的开发过程,提供依赖注入相关组件并支持面向切面编程。官网
Vaadin:基于GWT构建的事件驱动框架。使用服务端架构,客户端使用Ajax。官网
Blade:国人开发的一个轻量级的MVC框架. 它拥有简洁的代码,优雅的设计。官网
业务流程管理套件
流程驱动的软件系统构建。
jBPM:非常灵活的业务流程管理框架,致力于构建开发与业务分析人员之间的桥梁。官网
Activity:轻量级工作流和业务流程管理框架。官网github
资源
社区
4. 求聊天系统中客户端通信C/C++源代码!!!
我有, 不是是基于Windows事件模型的 异步的,封装好的。头文件和CPP都有。
5. android_studio手机蓝牙串口通信源代码
初涉android的蓝牙操作,按照固定MAC地址连接获取Device时,程序始终是异常终止,查了好多天代码都没查出原因。今天改了一下API版本,突然就成功连接了。总结之后发现果然是个坑爹之极的错误。
为了这种错误拼命查原因浪费大把时间是非常不值得的,但是问题不解决更是揪心。可惜我网络了那么多,都没有给出确切原因。今天特此mark,希望后来者遇到这个问题的时候能轻松解决。
下面是我的连接过程,中间崩溃原因及解决办法。
1:用AT指令获得蓝牙串口的MAC地址,地址是简写的,按照常理猜测可得标准格式。
2:开一个String adress= "************" //MAC地址, String MY_UUID= "************"//UUID根据通信而定,网上都有。
3:取得本地Adapter用getDefaultAdapter(); 远程的则用getRemoteDevice(adress); 之后便可用UUID开socket进行通信。
如果中途各种在getRemoteDevice处崩溃,大家可以查看一下当前的API版本,如果是2.1或以下版本的话,便能确定是API版本问题,只要换成2.2或者以上就都可以正常运行了~ 这么坑爹的错误的确很为难初学者。 唉·········· 为这种小trick浪费很多时间真是难过。
(另外有个重要地方,别忘了给manifest里面加以下两个蓝牙操作权限哦~)
<uses-permissionandroid:name="android.permission.BLUETOOTH"></uses-permission>
<uses-permissionandroid:name="android.permission.BLUETOOTH_ADMIN"></uses-permission>
下面附上Android蓝牙操作中用固定MAC地址传输信息的模板,通用搜索模式日后再补删模板:
=null;
=null;
privateOutputStreamoutStream=null;
privateInputStreaminStream=null;
privatestaticfinalUUIDMY_UUID=UUID.fromString("00001101-0000-1000-8000-00805F9B34FB");//这条是蓝牙串口通用的UUID,不要更改
privatestaticStringaddress="00:12:02:22:06:61";//<==要连接的蓝牙设备MAC地址
/*获得通信线路过程*/
/*1:获取本地BlueToothAdapter*/
mBluetoothAdapter=BluetoothAdapter.getDefaultAdapter();
if(mBluetoothAdapter==null)
{
Toast.makeText(this,"Bluetoothisnotavailable.",Toast.LENGTH_LONG).show();
finish();
return;
}
if(!mBluetoothAdapter.isEnabled())
{
Toast.makeText(this,"-runthisprogram.",Toast.LENGTH_LONG).show();
finish();
return;
}
/*2:获取远程BlueToothDevice*/
BluetoothDevicedevice=mBluetoothAdapter.getRemoteDevice(address);
if(mBluetoothAdapter==null)
{
Toast.makeText(this,"Can'tgetremotedevice.",Toast.LENGTH_LONG).show();
finish();
return;
}
/*3:获得Socket*/
try{
btSocket=device.(MY_UUID);
}catch(IOExceptione){
Log.e(TAG,"ONRESUME:Socketcreationfailed.",e);
}
/*4:取消discovered节省资源*/
mBluetoothAdapter.cancelDiscovery();
/*5:连接*/
try{
btSocket.connect();
Log.e(TAG,"ONRESUME:BTconnectionestablished,datatransferlinkopen.");
}catch(IOExceptione){
try{
btSocket.close();
}catch(IOExceptione2){
Log.e(TAG,"ONRESUME:",e2);
}
}
/*此时可以通信了,放在任意函数中*/
/*try{
outStream=btSocket.getOutputStream();
inStream=btSocket.getInputStream();//可在TextView里显示
}catch(IOExceptione){
Log.e(TAG,"ONRESUME:Outputstreamcreationfailed.",e);
}
Stringmessage="1";
byte[]msgBuffer=message.getBytes();
try{
outStream.write(msgBuffer);
}catch(IOExceptione){
Log.e(TAG,"ONRESUME:Exceptionringwrite.",e);
}
*/
通用搜索模式代码模板:
简洁简洁方式1 demo
作用: 用VerticalSeekBar控制一个 LED屏幕的亮暗。
直接上码咯~
packagecom.example.seed2;
importandroid.app.Activity;
importandroid.app.AlertDialog;
importandroid.app.Dialog;
importandroid.os.Bundle;
importjava.io.IOException;
importjava.io.InputStream;
importjava.io.OutputStream;
importjava.util.UUID;
importandroid.bluetooth.BluetoothAdapter;
importandroid.bluetooth.BluetoothDevice;
importandroid.bluetooth.BluetoothSocket;
importandroid.content.DialogInterface;
importandroid.util.Log;
importandroid.view.KeyEvent;
importandroid.widget.Toast;
{
privatestaticfinalStringTAG="BluetoothTest";
=null;
=null;
privateOutputStreamoutStream=null;
privateInputStreaminStream=null;
privateVerticalSeekBarvskb=null;
privatestaticfinalUUIDMY_UUID=UUID.fromString("00001101-0000-1000-8000-00805F9B34FB");//这条是蓝牙串口通用的UUID,不要更改
privatestaticStringaddress="00:12:02:22:06:61";//<==要连接的蓝牙设备MAC地址
/**.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
this.vskb=(VerticalSeekBar)super.findViewById(R.id.mskb);
this.vskb.setOnSeekBarChangeListener(newOnSeekBarChangeListenerX());
mBluetoothAdapter=BluetoothAdapter.getDefaultAdapter();
if(mBluetoothAdapter==null)
{
Toast.makeText(this,"Bluetoothisnotavailable.",Toast.LENGTH_LONG).show();
finish();
return;
}
if(!mBluetoothAdapter.isEnabled())
{
Toast.makeText(this,"-runthisprogram.",Toast.LENGTH_LONG).show();
finish();
return;
}
}
.OnSeekBarChangeListener{
publicvoidonProgressChanged(VerticalSeekBarseekBar,intprogress,booleanfromUser){
//Main.this.clue.setText(seekBar.getProgress());
/*Stringmessage;
byte[]msgBuffer;
try{
outStream=btSocket.getOutputStream();
}catch(IOExceptione){
Log.e(TAG,"ONRESUME:OutputStreamcreationfailed.",e);
}
message=Integer.toString(seekBar.getProgress());
msgBuffer=message.getBytes();
try{
outStream.write(msgBuffer);
}catch(IOExceptione){
Log.e(TAG,"ONRESUME:Exceptionringwrite.",e);
}*/
}
(VerticalSeekBarseekBar){
Stringmessage;
byte[]msgBuffer;
try{
outStream=btSocket.getOutputStream();
}catch(IOExceptione){
Log.e(TAG,"ONRESUME:OutputStreamcreationfailed.",e);
}
message=Integer.toString(seekBar.getProgress());
msgBuffer=message.getBytes();
try{
outStream.write(msgBuffer);
}catch(IOExceptione){
Log.e(TAG,"ONRESUME:Exceptionringwrite.",e);
}
}
publicvoidonStopTrackingTouch(VerticalSeekBarseekBar){
Stringmessage;
byte[]msgBuffer;
try{
outStream=btSocket.getOutputStream();
}catch(IOExceptione){
Log.e(TAG,"ONRESUME:OutputStreamcreationfailed.",e);
}
message=Integer.toString(seekBar.getProgress());
msgBuffer=message.getBytes();
try{
outStream.write(msgBuffer);
}catch(IOExceptione){
Log.e(TAG,"ONRESUME:Exceptionringwrite.",e);
}
}
}
@Override
publicvoidonStart()
{
super.onStart();
}
@Override
publicvoidonResume()
{
super.onResume();
BluetoothDevicedevice=mBluetoothAdapter.getRemoteDevice(address);
try{
btSocket=device.(MY_UUID);
}catch(IOExceptione){
Log.e(TAG,"ONRESUME:Socketcreationfailed.",e);
}
mBluetoothAdapter.cancelDiscovery();
try{
btSocket.connect();
Log.e(TAG,"ONRESUME:BTconnectionestablished,datatransferlinkopen.");
}catch(IOExceptione){
try{
btSocket.close();
}catch(IOExceptione2){
Log.e(TAG,"ONRESUME:",e2);
}
}
//.
/*try{
outStream=btSocket.getOutputStream();
inStream=btSocket.getInputStream();
}catch(IOExceptione){
Log.e(TAG,"ONRESUME:Outputstreamcreationfailed.",e);
}
Stringmessage="read";
byte[]msgBuffer=message.getBytes();
try{
outStream.write(msgBuffer);
}catch(IOExceptione){
Log.e(TAG,"ONRESUME:Exceptionringwrite.",e);
}
intret=-1;
while(ret!=-1)
{
try{
ret=inStream.read();
}catch(IOExceptione)
{
e.printStackTrace();
}
}
*/
}
@Override
6. 求一C语言写的tcp程序的源码,程序越简单越好,C++也可以,最好带注释
最简单的那种?我给你写一个=,=
//服务器
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
main()
{
//创建套接字
int serverSocket= socket(AF_INET,SOCK_STREAM,0);
struct sockaddr_in server_addr;
struct sockaddr_in clientAddr;
int addr_len = sizeof(clientAddr);
int client;
char buffer[200];
//创建地址
bzero(&server_addr,sizeof(server_addr));
server_addr.sin_family =AF_INET;
server_addr.sin_port = htons(5555);
server_addr.sin_addr.s_addr = htonl(INADDR_ANY);
//绑定
bind(serverSocket,(struct sockaddr *)&server_addr,sizeof(server_addr));
//帧听
listen(serverSocket,5);
printf("客户端发过来的 :\n");
//接收
client=accept(serverSocket,(sockaddr *)&clientAddr,(socklen_t*)&addr_len);
printf("客户端发过来的 :\n");
while(1)
{
if(recv(client,buffer,sizeof(buffer),0)>0)
printf("客户端发过来的 : %s\n",buffer);
}
return 0;
}
//客户端
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
main()
{
struct sockaddr_in serverAddr;
int clientSocket=socket(AF_INET,SOCK_STREAM,0);
char sendbuf[200];
//创建地址信息
serverAddr.sin_family=AF_INET;
serverAddr.sin_port=htons(5555);
serverAddr.sin_addr.s_addr=inet_addr("127.0.0.1");
//连接服务器
connect(clientSocket,(sockaddr*)&serverAddr,sizeof(serverAddr));
printf("连接目标主机中.....\n连接完成......\n");
//
while(1)
{
printf("请输入发给服务器的数据 : ");
scanf("%s",sendbuf);
//strcmp函数作用,比较两个东东(按ASCII值大小相比较),相同就==0。
if(strcmp(sendbuf,"x")==0)
break;
send(clientSocket,sendbuf,sizeof(sendbuf),0);
}
close(clientSocket);
return 0;
}
7. 分析X-Scan,写出它的使用方法以及配置方法,同时抓包分析其扫描原理。如果有兴趣分析一下其脚本
.命令行:Xscan -h [起始地址]-[终止地址] [扫描选项]
这里如果只对一个ip进行扫描 就不需要填 终止地址了
扫描选项 这里 可以一次填多个 选项
[扫描选项]含义如下:
-p: 扫描标准端口(端口列表可通过\dat\config.ini文件定制);
-b: 获取开放端口的banner信息,需要与-p参数合用;
-c: 扫描CGI漏洞;
-r: 扫描RPC漏洞;
-s: 扫描SQL-SERVER默认帐户;
-f: 尝试FTP默认用户登录(用户名及口令可以通过\dat\config.ini文件定制);
-n: 获取NetBios信息(若远程主机操作系统为Windows9x/NT4.0/2000);
-g: 尝试弱口令用户连接(若远程主机操作系统为Windows NT4.0/2000);
-a: 扫描以上全部内容;
-x [代理服务器:端口]: 通过代理服务器扫描CGI漏洞;
-t: 设置线程数量,默认为20个线程;
-v: 显示详细扫描进度;
-d: 禁止扫描前PING被扫主机。
2.示例:
Xscan -h 222.222.1.1-222.222.10.255 -a
含义:扫描XXX.XXX.1.1-XXX.XXX.10.255网段内主机的所有信息;
Xscan -h xxx.xxx.1.1 -n -g -t 30
含义:获取XXX.XXX.1.1主机的Netbios信息,并检测NT弱口令用户,线程数量为30;
Xscan -h 211.108.1.1 -p -b -c -x 211.108.2.255:80 -v -d
我们来试一下
上面的这些参数都是需要大家来学习掌握的
现在我们进行一个简单的cgi漏洞扫描,这次演练是在控制台模式下进行的:xscan 211.100.8.87 -port
这个命令是让xscan扫描服务器211.100.8.87的开放端口,扫描器不会对65535个端口全部进行扫描(太慢),它只会检测网络上最常用的几百个端口,而且每一个端口对应的网络服务在扫描器中都已经做过定义,从最后返回的结果很容易了解服务器运行了什么网络服务。扫描结果显示如下:
Initialize dynamic library succeed.
Scanning 211.100.8.87 ......
[211.100.8.87]: Scaning port state ...
[211.100.8.87]: Port 21 is listening!!!
[211.100.8.87]: Port 25 is listening!!!
[211.100.8.87]: Port 53 is listening!!!
[211.100.8.87]: Port 79 is listening!!!
[211.100.8.87]: Port 80 is listening!!!
[211.100.8.87]: Port 110 is listening!!!
[211.100.8.87]: Port 3389 is listening!!!
[211.100.8.87]: Port scan completed, found 7.
[211.100.8.87]: All done.
这个结果还会同时在log目录下生成一个html文档,阅读文档可以了解发放的端口对应的服务项目
8. 在远程shell工具里,用"wc"命令,计算一下linux源码包里,总共包含了多少行源码仅限
Linux系统越来越受到电脑用户的欢迎,于是很多人开始学习Linux时,学习linux,你可能会遇到Linux网络操作命令问题,这里将介绍Linux网络操作命令知识,在这里拿出来和大家分享一下。计算机网络的主要优点是能够实现资源和信息的共享,并且用户可以远程访问信息。Linux提供了一组强有力的网络命令来为用户服务,这些工具能够帮助用户登录到远程计算机上、传输文件和执行远程命令等。介绍下列几个常用的有关网络操作命令:ftp传输文件telnet登录到远程计算机上r-使用各种远程命令netstat查看网络的状况nslookup查询域名和IP地址的对应finger查询某个使用者的信息ping查询某个机器是否在工作使用ftp命令进行远程文件传输ftp命令是标准的文件传输协议的用户接口。ftp是在TCP/IP网络上的计算机之间传输文件的简单有效的方法。它允许用户传输ASCII文件和二进制文件。在ftp会话过程中,用户可以通过使用ftp客户程序连接到另一台计算机上。从此,用户可以在目录中上下移动、列出目录内容、把文件从远程机拷贝到本地机上、把文件从本地机传输到远程系统中。需要注意的是,如果用户没有那个文件的存取权限,就不能从远程系统中获得文件或向远程系统传输文件。为了使用ftp来传输文件,用户必须知道远程计算机上的合法用户名和口令。这个用户名/口令的组合用来确认ftp会话,并用来确定用户对要传输的文件可以进行什么样的访问。另外,用户显然需要知道对其进行ftp会话的计算机的名字或IP地址。Ftp命令的功能是在本地机和远程机之间传送文件。该命令的一般格式如下:$ftp主机名/IP其中“主机名/IP”是所要连接的远程机的主机名或IP地址。在命令行中,主机名属于选项,如果指定主机名,ftp将试图与远程机的ftp服务程序进行连接;如果没有指定主机名,ftp将给出提示符,等待用户输入命令:$ftpftp>此时在ftp>提示符后面输入open命令加主机名或IP地址,将试图连接指定的主机。不管使用哪一种方法,如果连接成功,需要在远程机上登录。用户如果在远程机上有帐号,就可以通过ftp使用这一帐号并需要提供口令。在远程机上的用户帐号的读写权限决定该用户在远程机上能下载什么文件和将上载文件放到哪个目录中。如果没有远程机的专用登录帐号,许多ftp站点设有可以使用的特殊帐号。这个帐号的登录名为anonymous(也称为匿名ftp),当使用这一帐号时,要求输入email地址作为口令。如果远程系统提供匿名ftp服务,用户使用这项服务可以登录到特殊的,供公开使用的目录。一般专门提供两个目录:pub目录和incoming目录。pub目录包含该站点供公众使用的所有文件,incoming目录存放上载到该站点的文件。一旦用户使用ftp在远程站点上登录成功,将得到“ftp>”提示符。现在可以自由使用ftp提供的命令,可以用help命令取得可供使用的命令清单,也可以在help命令后面指定具体的命令名称,获得这条命令的说明。最常用的命令有:ls列出远程机的当前目录cd在远程机上改变工作目录lcd在本地机上改变工作目录ascii设置文件传输方式为ASCII模式binary设置文件传输方式为二进制模式close终止当前的ftp会话hash每次传输完数据缓冲区中的数据后就显示一个#号get(mget)从远程机传送指定文件到本地机put(mput)从本地机传送指定文件到远程机open连接远程ftp站点quit断开与远程机的连接并退出ftp?显示本地帮助信息!转到Shell中下面简单将ftp常用命令作一简介。启动ftp会话open命令用于打开一个与远程主机的会话。该命令的一般格式是:open主机名/IP如果在ftp会话期间要与一个以上的站点连接,通常只用不带参数的ftp命令。如果在会话期间只想与一台计算机连接,那么在命令行上指定远程主机名或IP地址作为ftp命令的参数。终止ftp会话close、disconnect、quit和bye命令用于终止与远程机的会话。close和disronnect命令关闭与远程机的连接,但是使用户留在本地计算机的ftp程序中。quit和bye命令都关闭用户与远程机的连接,然后退出用户机上的ftp程序。改变目录“cd[目录]”命令用于在ftp会话期间改变远程机上的目录,lcd命令改变本地目录,使用户能指定查找或放置本地文件的位置。远程目录列表ls命令列出远程目录的内容,就像使用一个交互shell中的ls命令一样。ls命令的一般格式是:ls[目录][本地文件]如果指定了目录作为参数,那么ls就列出该目录的内容。如果给出一个本地文件的名字,那么这个目录列表被放入本地机上您指定的这个文件中。从远程系统获取文件get和mget命令用于从远程机上获取文件。get命令的一般格式为:get文件名您还可以给出本地文件名,这个文件名是这个要获取的文件在您的本地机上创建时的文件名。如果您不给出一个本地文件名,那么就使用远程文件原来的名字。mget命令一次获取多个远程文件。mget命令的一般格式为:mget文件名列表使用用空格分隔的或带通配符的文件名列表来指定要获取的文件,对其中的每个文件都要求用户确认是否传送。向远程系统发送文件put和mput命令用于向远程机发送文件。Put命令的一般格式为:put文件名mput命令一次发送多个本地文件,mput命令的一般格式为:mput文件名列表使用用空格分隔的或带通配符的文件名列表来指定要发送的文件。对其中的每个文件都要求用户确认是否发送。改变文件传输模式默认情况下,ftp按ASCII模式传输文件,用户也可以指定其他模式。ascii和brinary命令的功能是设置传输的模式。用ASCII模式传输文件对纯文本是非常好的,但为避免对二进制文件的破坏,用户可以以二进制模式传输文件。检查传输状态传输大型文件时,可能会发现让ftp提供关于传输情况的反馈信息是非常有用的。hash命令使ftp在每次传输完数据缓冲区中的数据后,就在屏幕上打印一个#字符。本命令在发送和接收文件时都可以使用。ftp中的本地命令当您使用ftp时,字符“!”用于向本地机上的命令shell传送一个命令。如果用户处在ftp会话中,需要shell做某些事,就很有用。例如用户要建立一个目录来保存接收到的文件。如果输入!mkdirnew_dir,那么Linux就在用户当前的本地目录中创建一个名为new_dir的目录。从远程机grunthos下载二进制数据文件的典型对话过程如下:$(grunthos:pc):anonymous33lGuestloginok,sendyourcompletee-mailaddressaspassword.Password:230Guest1oginok,accessrestrictionsapply.RemotesystemtypeisUNIX.ftp>cdpub250CWDcommandsuccessful.ftp>ls200PORTcommandsuccessful./bin/1s..ftp>binary200typesettoI.ftp>hashHashmarkprintingon(1024bytes/hashmark).ftp>.(l4684bytes).#############226Transfercomplete.14684bytesreceivedin0.0473secs(3e+02Kbytes/sec)ftp>quit22lGoodbye.使用telnet命令访问远程计算机用户使用telnet命令进行远程登录。该命令允许用户使用telnet协议在远程计算机之间进行通信,用户可以通过网络在远程计算机上登录,就像登录到本地机上执行命令一样。为了通过telnet登录到远程计算机上,必须知道远程机上的合法用户名和口令。虽然有些系统确实为远程用户提供登录功能,但出于对安全的考虑,要限制来宾的操作权限,因此,这种情况下能使用的功能是很少的。当允许远程用户登录时,系统通常把这些用户放在一个受限制的shell中,以防系统被怀有恶意的或不小心的用户破坏。用户还可以使用telnet从远程站点登录到自己的计算机上,检查电子邮件、编辑文件和运行程序,就像在本地登录一样。但是,用户只能使用基于终端的环境而不是XWndows环境,telnet只为普通终端提供终端仿真,而不支持XWndow等图形环境。telnet命令的一般形式为:telnet主机名/IP其中“主机名/IP”是要连接的远程机的主机名或IP地址。如果这一命令执行成功,将从远程机上得到login:提示符。使用telnet命令登录的过程如下:$telnet主机名/IP启动telnet会话。一旦telnet成功地连接到远程系统上,就显示登录信息并提示用户输人用户名和口令。如果用户名和口令输入正确,就能成功登录并在远程系统上工作。在telnet提示符后面可以输入很多命令,用来控制telnet会话过程,在telnet联机帮助手册中对这些命令有详细的说明。下面是一台Linux计算机上的telnet会话举例:$telnetserver.somewhere.comTrying127.0.0.1…Connectedtoserve.somewhere.com.Escapecharacteris\'?]\'.“TurboLinuxrelease4.0(Colgate)kernel2.0.18onanI486login:bubbapassword:Lastlogin:MonNovl520:50:43forlocalhostLinux2.0.6.(Posix).server:~$server:~$$用户结束了远程会话后,一定要确保使用logout命令退出远程系统。然后telnet报告远程会话被关闭,并返回到用户的本地机的Shell提示符下。r-系列命令除ftp和telnet以外,还可以使用r-系列命令访问远程计算机和在网络上交换文件。使用r-系列命令需要特别注意,因为如果用户不小心,就会造成严重的安全漏洞。用户发出一个r-系列命令后,远程系统检查名为/etc/hosts.equiv的文件,以查看用户的主机是否列在这个文件中。如果它没有找到用户的主机,就检查远程机上同名用户的主目录中名为.rhosts的文件,看是否包括该用户的主机。如果该用户的主机包括在这两个文件中的任何一个之中,该用户执行r-系列命令就不用提供口令。虽然用户每次访问远程机时不用键入口令可能是非常方便的,但是它也可能会带来严重的安全问题。我们建议用户在建立/etc/hosts.equiv和.rhosts文件之前,仔细考虑r-命令隐含的安全问题。rlogin命令rlogin是“remotelogin”(远程登录)的缩写。该命令与telnet命令很相似,允许用户启动远程系统上的交互命令会话。rlogin的一般格式是:rlogin[-8EKLdx][-echar][-krealm][-lusername]host一般最常用的格式是:rloginhost该命令中各选项的含义为:-8此选项始终允许8位输入数据通道。该选项允许发送格式化的ANSI字符和其他的特殊代码。如果不用这个选项,除非远端的终止和启动字符不是或,否则就去掉奇偶校验位。-E停止把任何字符当作转义字符。当和-8选项一起使用时,它提供一个完全的透明连接。-K关闭所有的Kerberos确认。只有与使用Kerberos确认协议的主机连接时才使用这个选项。-L允许rlogin会话在litout模式中运行。要了解信息,请查阅tty联机帮助。-d打开与远程主机进行通信的TCPsockets的socket调试。要了解信息,请查阅setsockopt的联机帮助。-e为rlogin会话设置转义字符,默认的转义字符是“~”,用户可以指定一个文字字符或一个\\nnn形式的八进制数。-k请求rlogin获得在指定区域内的远程主机的Kerberos许可,而不是获得由krb_realmofhost(3)确定的远程主机区域内的远程主机的Kerberos许可。-x为所有通过rlogin会话传送的数据打开DES加密。这会影响响应时间和CPU利用率,但是可以提高安全性。rsh命令rsh是“remoteshell”(远程shell)的缩写。该命令在指定的远程主机上启动一个shell并执行用户在rsh命令行中指定的命令。如果用户没有给出要执行的命令,rsh就用rlogin命令使用户登录到远程机上。rsh命令的一般格式是:rsh[-Kdnx][-krealm][-lusername]host[command]一般常用的格式是:rshhost[command]command可以是从shell提示符下键人的任何Linux命令。rsh命令中各选项的含义如下:-K关闭所有的Kerbero确认。该选项只在与使用Kerbero确认的主机连接时才使用。-d打开与远程主机进行通信的TCPsockets的socket调试。要了解的信息,请查阅setsockopt的联机帮助。-k请求rsh获得在指定区域内的远程主机的Kerberos许可,而不是获得由krb_relmofhost(3)确定的远程主机区域内的远程主机的Kerberos许可。-l缺省情况下,远程用户名与本地用户名相同。本选项允许指定远程用户名,如果指定了远程用户名,则使用Kerberos确认,与在rlogin命令中一样。-n重定向来自特殊设备/dev/null的输入。-x为传送的所有数据打开DES加密。这会影响响应时间和CPU利用率,但是可以提高安全性。Linux把标准输入放入rsh命令中,并把它拷贝到要远程执行的命令的标准输入中。它把远程命令的标准输出拷贝到rsh的标准输出中。它还把远程标准错误拷贝到本地标准错误文件中。任何退出、中止和中断信号都被送到远程命令中。当远程命令终止了,rsh也就终止了。rcp命令rcp代表“remotefile”(远程文件拷贝)。该命令用于在计算机之间拷贝文件。rcp命令有两种格式。第一种格式用于文件到文件的拷贝;第二种格式用于把文件或目录拷贝到另一个目录中。rcp命令的一般格式是:rcp[-px][-krealm]file1file2rcp[-px][-r][-krealm]filedirectory每个文件或目录参数既可以是远程文件名也可以是本地文件名。远程文件名具有如下形式:rname@rhost:path,其中rname是远程用户名,rhost是远程计算机名,path是这个文件的路径。rcp命令的各选项含义如下:-r递归地把源目录中的所有内容拷贝到目的目录中。要使用这个选项,目的必须是一个目录。-p试图保留源文件的修改时间和模式,忽略umask。-k请求rcp获得在指定区域内的远程主机的Kerberos许可,而不是获得由krb_relmofhost(3)确定的远程主机区域内的远程主机的Kerberos许可。-x为传送的所有数据打开DES加密。这会影响响应时间和CPU利用率,但是可以提高安全性。如果在文件名中指定的路径不是完整的路径名,那么这个路径被解释为相对远程机上同名用户的主目录。如果没有给出远程用户名,就使用当前用户名。如果远程机上的路径包含特殊shell字符,需要用反斜线(\\)、双引号(”)或单引号(’)括起来,使所有的shell元字符都能被远程地解释。需要说明的是,rcp不提示输入口令,它通过rsh命令来执行拷贝。-Turbolinux提供稿件。通过本文你就了解Linux网络操作命令,希望对你有所帮助。叹号!进入ftpftp>help!!Escapetotheshell实际叹号!新建shell要再ftp敲exit命令退新建shell即
9. socket 和mina 有区别吗
MINA,Grizzly[grizzly-nio-framework],xSocket都是基于 java nio的 server framework.
这里的性能缺陷的焦点是指当一条channel上的SelectionKey.OP_READ ready时,1.是由select thread读完数据之后再分发给应用程序的handler,2.还是直接就分发,由handler thread来负责读数据和handle.
mina,xsocket是1. grizzly-nio-framework是2.
尽管读channel buffer中bytes是很快的,但是如果我们放大,当连接channel达到上万数量级,甚至更多,这种延迟响应的效果将会愈加明显.
MINA:
for all selectedKeys
{
read data then fireMessageReceived.
}
xSocket:
for all selectedKeys
{
read data ,append it to readQueue then performOnData.
}
其中mina在fireMessageReceived时没有使用threadpool来分发,所以需要应用程序在handler.messageReceived中再分发.而xsocket的performOnData默认是分发给threadpool[WorkerPool],WorkerPool虽然解决了线程池中的线程不能充到最大的问题[跟tomcat6的做法一样],但是它的调度机制依然缺乏灵活性.
Grizzly:
for all selectedKeys
{
[NIOContext---filterChain.execute--->our filter.execute]<------run In DefaultThreadPool
}
grizzly的DefaultThreadPool几乎重写了java util concurrent threadpool,并使用自己的LinkedTransferQueue,但同样缺乏灵活的池中线程的调度机制.下面分别是MINA,xSocket,Grizzly的源码分析:
Apache MINA (mina-2.0.0-M6源码为例):
我们使用mina nio tcp最常用的样例如下:
NioSocketAcceptor acceptor = new NioSocketAcceptor(/*NioProcessorPool's size*/);
DefaultIoFilterChainBuilder chain = acceptor.getFilterChain();
//chain.addLast("codec", new ProtocolCodecFilter(
//new TextLineCodecFactory()));
......
// Bind
acceptor.setHandler(/*our IoHandler*/);
acceptor.bind(new InetSocketAddress(port));
------------------------------------------------------------------------------------
首先从NioSocketAcceptor(extends AbstractPollingIoAcceptor)开始,
bind(SocketAddress)--->bindInternal--->startupAcceptor:启动AbstractPollingIoAcceptor.Acceptor.run使用executor[Executor]的线程,注册[interestOps:SelectionKey.OP_ACCEPT],然后wakeup selector.
一旦有连接进来就构建NioSocketSession--对应--channal,然后session.getProcessor().add(session)将当前的channal加入到NioProcessor的selector中去[interestOps:SelectionKey.OP_READ],这样每个连接中有请求过来就由相应的NioProcessor来处理.
这里有几点要说明的是:
1.一个NioSocketAcceptor对应了多个NioProcessor,比如NioSocketAcceptor就使用了SimpleIoProcessorPool DEFAULT_SIZE = Runtime.getRuntime().availableProcessors() + 1.当然这个size在new NioSocketAcceptor的时候可以设定.
2.一个NioSocketAcceptor对应一个java nio selector[OP_ACCEPT],一个NioProcessor也对应一个java nio selector[OP_READ].
3.一个NioSocketAcceptor对应一个内部的AbstractPollingIoAcceptor.Acceptor---thread.
4.一个NioProcessor也对应一个内部的AbstractPollingIoProcessor.Processor---thread.
5.在new NioSocketAcceptor的时候如果你不提供Executor(线程池)的话,那么默认使用Executors.newCachedThreadPool().
这个Executor将被NioSocketAcceptor和NioProcessor公用,也就是说上面的Acceptor---thread(一条)和Processor---thread(多条)都是源于这个Executor.
当一个连接java nio channal--NioSession被加到ProcessorPool[i]--NioProcessor中去后就转入了AbstractPollingIoProcessor.Processor.run,
AbstractPollingIoProcessor.Processor.run方法是运行在上面的Executor中的一条线程中的,当前的NioProcessor将处理注册在它的selector上的所有连接的请求[interestOps:SelectionKey.OP_READ].
AbstractPollingIoProcessor.Processor.run的主要执行流程:
for (;;) {
......
int selected = selector(final SELECT_TIMEOUT = 1000L);
.......
if (selected > 0) {
process();
}
......
}
process()-->for all session-channal:OP_READ -->read(session):这个read方法是AbstractPollingIoProcessor.private void read(T session)方法.
read(session)的主要执行流程是read channal-data to buf,if readBytes>0 then IoFilterChain.fireMessageReceived(buf)/*我们的IoHandler.messageReceived将在其中被调用*/;
到此mina Nio 处理请求的流程已经明了.
mina处理请求的线程模型也出来了,性能问题也来了,那就是在AbstractPollingIoProcessor.Processor.run-->process-->read(per session)中,在process的时候mina是for all selected-channals 逐次read data再fireMessageReceived到我们的IoHandler.messageReceived中,而不是并发处理,这样一来很明显后来的请求将被延迟处理.
我们假设:如果NioProcessorPool's size=2 现在有200个客户端同时连接过来,假设每个NioProcessor都注册了100个连接,对于每个NioProcessor将依次顺序处理这100个请求,那么这其中的第100个请求要得到处理,那它只有等到前面的99个被处理完了.
有人提出了改进方案,那就是在我们自己的IoHandler.messageReceived中利用线程池再进行分发dispatching,这个当然是个好主意.
但是请求还是被延迟处理了,因为还有read data所消耗的时间,这样第100个请求它的数据要被读,就要等前面的99个都被读完才行,即便是增加ProcessorPool的尺寸也不能解决这个问题.
此外mina的陷阱(这个词较时髦)也出来了,就是在read(session)中,在说这个陷阱之前先说明一下,我们的client端向server端发送一个消息体的时候不一定是完整的只发送一次,可能分多次发送,特别是在client端忙或要发送的消息体的长度较长的时候.而mina在这种情况下就会call我们的IoHandler.messageReceived多次,结果就是消息体被分割了若干份,等于我们在IoHandler.messageReceived中每次处理的数据都是不完整的,这会导致数据丢失,无效.
下面是read(session)的源码:
private void read(T session) {
IoSessionConfig config = session.getConfig();
IoBuffer buf = IoBuffer.allocate(config.getReadBufferSize());
final boolean hasFragmentation =
session.getTransportMetadata().hasFragmentation();
try {
int readBytes = 0;
int ret;
try {
if (hasFragmentation/*hasFragmentation一定为ture,也许mina的开发人员也意识到了传输数据的碎片问题,但是靠下面的处理是远远不够的,因为client一旦间隔发送,ret就可能为0,退出while,不完整的readBytes将被fire*/) {
while ((ret = read(session, buf)) > 0) {
readBytes += ret;
if (!buf.hasRemaining()) {
break;
}
}
} else {
ret = read(session, buf);
if (ret > 0) {
readBytes = ret;
}
}
} finally {
buf.flip();
}
if (readBytes > 0) {
IoFilterChain filterChain = session.getFilterChain();
filterChain.fireMessageReceived(buf);
buf = null;
if (hasFragmentation) {
if (readBytes << 1 < config.getReadBufferSize()) {
session.decreaseReadBufferSize();
} else if (readBytes == config.getReadBufferSize()) {
session.increaseReadBufferSize();
}
}
}
if (ret < 0) {
scheleRemove(session);
}
} catch (Throwable e) {
if (e instanceof IOException) {
scheleRemove(session);
}
IoFilterChain filterChain = session.getFilterChain();
filterChain.fireExceptionCaught(e);
}
}
这个陷阱大家可以测试一下,看会不会一个完整的消息被多次发送,你的IoHandler.messageReceived有没有被多次调用.
要保持我们应用程序消息体的完整性也很简单只需创建一个断点breakpoint,然后set it to the current IoSession,一旦消息体数据完整就dispatching it and remove it from the current session.
--------------------------------------------------------------------------------------------------
下面以xSocket v2_8_8源码为例:
tcp usage e.g:
IServer srv = new Server(8090, new EchoHandler());
srv.start() or run();
-----------------------------------------------------------------------
class EchoHandler implements IDataHandler {
public boolean onData(INonBlockingConnection nbc)
throws IOException,
BufferUnderflowException,
MaxReadSizeExceededException {
String data = nbc.readStringByDelimiter("/r/n");
nbc.write(data + "/r/n");
return true;
}
}
------------------------------------------------------------------------
说明1.Server:Acceptor:IDataHandler ------1:1:1
Server.run-->IoAcceptor.accept()在port上阻塞,一旦有channel就从IoSocketDispatcherPool中获取一个IoSocketDispatcher,同时构建一个IoSocketHandler和NonBlockingConnection,调用
Server.LifeCycleHandler.onConnectionAccepted(ioHandler) initialize the IoSocketHandler.注意:IoSocketDispatcherPool.size默认为2,也就是说只有2条do select的线程和相应的2个IoSocketDispatcher.这个和MINA的NioProcessor数是一样的.
说明2.IoSocketDispatcher[java nio Selector]:IoSocketHandler:NonBlockingConnection------1:1:1
在IoSocketDispatcher[对应一个Selector].run中--->IoSocketDispatcher.handleReadWriteKeys:
for all selectedKeys
{
IoSocketHandler.onReadableEvent/onWriteableEvent.
}
IoSocketHandler.onReadableEvent的处理过程如下:
1.readSocket();
2.NonBlockingConnection.IoHandlerCallback.onData
NonBlockingConnection.onData--->appendDataToReadBuffer: readQueue append data
3.NonBlockingConnection.IoHandlerCallback.onPostData
NonBlockingConnection.onPostData--->HandlerAdapter.onData[our dataHandler] performOnData in WorkerPool[threadpool].因为是把channel中的数据读到readQueue中,应用程序的dataHandler.onData会被多次调用直到readQueue中的数据读完为止.所以依然存在类似mina的陷阱.解决的方法依然类似,因为这里有NonBlockingConnection.
----------------------------------------------------------------------------------------------
再下面以grizzly-nio-framework v1.9.18源码为例:
tcp usage e.g:
Controller sel = new Controller();
sel.(new (){
public ProtocolChain poll() {
ProtocolChain protocolChain = protocolChains.poll();
if (protocolChain == null){
protocolChain = new DefaultProtocolChain();
//protocolChain.addFilter(our app's filter/*应用程序的处理从filter开始,类似mina.ioHandler,xSocket.dataHandler*/);
//protocolChain.addFilter(new ReadFilter());
}
return protocolChain;
}
});
//如果你不增加自己的SelectorHandler,Controller就默认使用TCPSelectorHandler port:18888
sel.addSelectorHandler(our app's selectorHandler on special port);
sel.start();
------------------------------------------------------------------------------------------------------------
说明1.Controller:ProtocolChain:Filter------1:1:n,
Controller:SelectorHandler------1:n,SelectorHandler[对应一个Selector]:SelectorHandlerRunner------1:1,
Controller. start()--->for per SelectorHandler start SelectorHandlerRunner to run.
SelectorHandlerRunner.run()--->selectorHandler.select() then handleSelectedKeys:
for all selectedKeys
{
NIOContext.execute:dispatching to threadpool for ProtocolChain.execute--->our filter.execute.
}你会发现这里没有read data from channel的动作,因为这将由你的filter来完成.所以自然没有mina,xsocket它们的陷阱问题,分发提前了.但是你要注意SelectorHandler:Selector:SelectorHandlerRunner:Thread[SelectorHandlerRunner.run]都是1:1:1:1,也就是说只有一条线程在doSelect then handleSelectedKeys.
相比之下虽然grizzly在并发性能上更优,但是在易用性方面却不如mina,xsocket,比如类似mina,xsocket中表示当前连接或会话的IoSession,INonBlockingConnection对象在grizzly中由NIOContext来负责,但是NIOContext并没有提供session/connection lifecycle event,以及常规的read/write操作,这些都需要你自己去扩展SelectorHandler和ProtocolFilter,从另一个方面也可以说明grizzly的可扩展性,灵活性更胜一筹.
转载
10. php100 socket类源码
email.class.php <?php class smtp { /* Public Variables */ var $smtp_port; var $time_out; var $host_name; var $log_file; var $relay_host; var $debug; var $auth; var $user; var $pass; /* Private Variables */ var $sock; /* Constractor */ function smtp($relay_host = "", $smtp_port = 25,$auth = false,$user,$pass) { $this->debug = FALSE; $this->smtp_port = $smtp_port; $this->relay_host = $relay_host; $this->time_out = 30; //is used in fsockopen() # $this->auth = $auth;//auth $this->user = $user; $this->pass = $pass; # $this->host_name = "localhost"; //is used in HELO command $this->log_file =""; $this->sock = FALSE; } /* Main Function */ function sendmail($to, $from, $subject = "", $body = "", $mailtype, $cc = "", $bcc = "", $additional_headers = "") { $mail_from = $this->get_address($this->strip_comment($from)); $body = ereg_replace("(^|(\r\n))(\\.)", "\\1.\\3", $body); $header .= "MIME-Version:1.0\r\n"; if($mailtype=="HTML"){ $header .= "Content-Type:text/html\r\n"; } $header .= "To: ".$to."\r\n"; if ($cc != "") { $header .= "Cc: ".$cc."\r\n"; } $header .= "From: $from<".$from.">\r\n"; $header .= "Subject: ".$subject."\r\n"; $header .= $additional_headers; $header .= "Date: ".date("r")."\r\n"; $header .= "X-Mailer:By Redhat (PHP/".phpversion().")\r\n"; list($msec, $sec) = explode(" ", microtime()); $header .= "Message-ID: <".date("YmdHis", $sec).".".($msec*1000000).".".$mail_from.">\r\n"; $TO = explode(",", $this->strip_comment($to)); if ($cc != "") { $TO = array_merge($TO, explode(",", $this->strip_comment($cc))); } if ($bcc != "") { $TO = array_merge($TO, explode(",", $this->strip_comment($bcc))); } $sent = TRUE; foreach ($TO as $rcpt_to) { $rcpt_to = $this->get_address($rcpt_to); if (!$this->smtp_sockopen($rcpt_to)) { $this->log_write("Error: Cannot send email to ".$rcpt_to."\n"); $sent = FALSE; continue; } if ($this->smtp_send($this->host_name, $mail_from, $rcpt_to, $header, $body)) { $this->log_write("E-mail has been sent to <".$rcpt_to.">\n"); } else { $this->log_write("Error: Cannot send email to <".$rcpt_to.">\n"); $sent = FALSE; } fclose($this->sock); $this->log_write("Disconnected from remote host\n"); } echo "<br>"; echo $header; return $sent; } /* Private Functions */ function smtp_send($helo, $from, $to, $header, $body = "") { if (!$this->smtp_putcmd("HELO", $helo)) { return $this->smtp_error("sending HELO command"); } #auth if($this->auth){ if (!$this->smtp_putcmd("AUTH LOGIN", base64_encode($this->user))) { return $this->smtp_error("sending HELO command"); } if (!$this->smtp_putcmd("", base64_encode($this->pass))) { return $this->smtp_error("sending HELO command"); } } # if (!$this->smtp_putcmd("MAIL", "FROM:<".$from.">")) { return $this->smtp_error("sending MAIL FROM command"); } if (!$this->smtp_putcmd("RCPT", "TO:<".$to.">")) { return $this->smtp_error("sending RCPT TO command"); } if (!$this->smtp_putcmd("DATA")) { return $this->smtp_error("sending DATA command"); } if (!$this->smtp_message($header, $body)) { return $this->smtp_error("sending message"); } if (!$this->smtp_eom()) { return $this->smtp_error("sending <CR><LF>.<CR><LF> [EOM]"); } if (!$this->smtp_putcmd("QUIT")) { return $this->smtp_error("sending QUIT command"); } return TRUE; } function smtp_sockopen($address) { if ($this->relay_host == "") { return $this->smtp_sockopen_mx($address); } else { return $this->smtp_sockopen_relay(); } } function smtp_sockopen_relay() { $this->log_write("Trying to ".$this->relay_host.":".$this->smtp_port."\n"); $this->sock = @fsockopen($this->relay_host, $this->smtp_port, $errno, $errstr, $this->time_out); if (!($this->sock && $this->smtp_ok())) { $this->log_write("Error: Cannot connenct to relay host ".$this->relay_host."\n"); $this->log_write("Error: ".$errstr." (".$errno.")\n"); return FALSE; } $this->log_write("Connected to relay host ".$this->relay_host."\n"); return TRUE;; } function smtp_sockopen_mx($address) { $domain = ereg_replace("^.+@([^@]+)$", "\\1", $address); if (!@getmxrr($domain, $MXHOSTS)) { $this->log_write("Error: Cannot resolve MX \"".$domain."\"\n"); return FALSE; } foreach ($MXHOSTS as $host) { $this->log_write("Trying to ".$host.":".$this->smtp_port."\n"); $this->sock = @fsockopen($host, $this->smtp_port, $errno, $errstr, $this->time_out); if (!($this->sock && $this->smtp_ok())) { $this->log_write("Warning: Cannot connect to mx host ".$host."\n"); $this->log_write("Error: ".$errstr." (".$errno.")\n"); continue; } $this->log_write("Connected to mx host ".$host."\n"); return TRUE; } $this->log_write("Error: Cannot connect to any mx hosts (".implode(", ", $MXHOSTS).")\n"); return FALSE; } function smtp_message($header, $body) { fputs($this->sock, $header."\r\n".$body); $this->smtp_debug("> ".str_replace("\r\n", "\n"."> ", $header."\n> ".$body."\n> ")); return TRUE; } function smtp_eom() { fputs($this->sock, "\r\n.\r\n"); $this->smtp_debug(". [EOM]\n"); return $this->smtp_ok(); } function smtp_ok() { $response = str_replace("\r\n", "", fgets($this->sock, 512)); $this->smtp_debug($response."\n"); if (!ereg("^[23]", $response)) { fputs($this->sock, "QUIT\r\n"); fgets($this->sock, 512); $this->log_write("Error: Remote host returned \"".$response."\"\n"); return FALSE; } return TRUE; } function smtp_putcmd($cmd, $arg = "") { if ($arg != "") { if($cmd=="") $cmd = $arg; else $cmd = $cmd." ".$arg; } fputs($this->sock, $cmd."\r\n"); $this->smtp_debug("> ".$cmd."\n"); return $this->smtp_ok(); } function smtp_error($string) { $this->log_write("Error: Error occurred while ".$string.".\n"); return FALSE; } function log_write($message) { $this->smtp_debug($message); if ($this->log_file == "") { return TRUE; } $message = date("M d H:i:s ").get_current_user()."[".getmypid()."]: ".$message; if (!@file_exists($this->log_file) || !($fp = @fopen($this->log_file, "a"))) { $this->smtp_debug("Warning: Cannot open log file \"".$this->log_file."\"\n"); return FALSE; } flock($fp, LOCK_EX); fputs($fp, $message); fclose($fp); return TRUE; } function strip_comment($address) { $comment = "\\([^()]*\\)"; while (ereg($comment, $address)) { $address = ereg_replace($comment, "", $address); } return $address; } function get_address($address) { $address = ereg_replace("([ \t\r\n])+", "", $address); $address = ereg_replace("^.*<(.+)>.*$", "\\1", $address); return $address; } function smtp_debug($message) { if ($this->debug) { echo $message."<br>"; } } function get_attach_type($image_tag) { // $filedata = array(); $img_file_con=fopen($image_tag,"r"); unset($image_data); while ($tem_buffer=AddSlashes(fread($img_file_con,filesize($image_tag)))) $image_data.=$tem_buffer; fclose($img_file_con); $filedata['context'] = $image_data; $filedata['filename']= basename($image_tag); $extension=substr($image_tag,strrpos($image_tag,"."),strlen($image_tag)-strrpos($image_tag,".")); switch($extension){ case ".gif": $filedata['type'] = "image/gif"; break; case ".gz": $filedata['type'] = "application/x-gzip"; break; case ".htm": $filedata['type'] = "text/html"; break; case ".html": $filedata['type'] = "text/html"; break; case ".jpg": $filedata['type'] = "image/jpeg"; break; case ".tar": $filedata['type'] = "application/x-tar"; break; case ".txt": $filedata['type'] = "text/plain"; break; case ".zip": $filedata['type'] = "application/zip"; break; default: $filedata['type'] = "application/octet-stream"; break; } return $filedata; } } ?> ----------------------------------------- sendmail.php <?php require_once ('email.class.php'); //########################################## $smtpserver = "smtp.163.com";//SMTP服务器 $smtpserverport =25;//SMTP服务器端口 $smtpusermail = "";//SMTP服务器的用户邮箱 $smtpemailto = "";//发送给谁 $smtpuser = "";//SMTP服务器的用户帐号 $smtppass = "";//SMTP服务器的用户密码 $mailsubject = "PHP100测试邮件系统";//邮件主题 $mailbody = "<h1> 这是一个测试程序 PHP100.com </h1>";//邮件内容 $mailtype = "HTML";//邮件格式(HTML/TXT),TXT为文本邮件 ########################################## $smtp = new smtp($smtpserver,$smtpserverport,true,$smtpuser,$smtppass);//这里面的一个true是表示使用身份验证,否则不使用身份验证. $smtp->debug = FALSE;//是否显示发送的调试信息 $smtp->sendmail($smtpemailto, $smtpusermail, $mailsubject, $mailbody, $mailtype); ?>