在安全领域,利用密钥加密算法来对通信的过程进行加密是一种常见的安全手段。利用该手段能够保障数据安全通信的三个目标:
而常见的密钥加密算法类型大体可以分为三类:对称加密、非对称加密、单向加密。下面我们来了解下相关的算法原理及其常见的算法。
对称加密算法采用单密钥加密,在通信过程中,数据发送方将原始数据分割成固定大小的块,经过密钥和加密算法逐个加密后,发送给接收方;接收方收到加密后的报文后,结合密钥和解密算法解密组合后得出原始数据。由于加解密算法是公开的,因此在这过程中,密钥的安全传递就成为了至关重要的事了。而密钥通常来说是通过双方协商,以物理的方式传递给对方,或者利用第三方平台传递给对方,一旦这过程出现了密钥泄露,不怀好意的人就能结合相应的算法拦截解密出其加密传输的内容。
对称加密算法拥有着算法公开、计算量小、加密速度和效率高得特定,但是也有着密钥单一、密钥管理困难等缺点。
常见的对称加密算法有:
DES:分组式加密算法,以64位为分组对数据加密,加解密使用同一个算法。
3DES:三重数据加密算法,对每个数据块应用三次DES加密算法。
AES:高级加密标准算法,是美国联邦政府采用的一种区块加密标准,用于替代原先的DES,目前已被广泛应用。
Blowfish:Blowfish算法是一个64位分组及可变密钥长度的对称密钥分组密码算法,可用来加密64比特长度的字符串。
非对称加密算法采用公钥和私钥两种不同的密码来进行加解密。公钥和私钥是成对存在,公钥是从私钥中提取产生公开给所有人的,如果使用公钥对数据进行加密,那么只有对应的私钥才能解密,反之亦然。
下图为简单非对称加密算法的常见流程:
发送方Bob从接收方Alice获取其对应的公钥,并结合相应的非对称算法将明文加密后发送给Alice;Alice接收到加密的密文后,结合自己的私钥和非对称算法解密得到明文。这种简单的非对称加密算法的应用其安全性比对称加密算法来说要高,但是其不足之处在于无法确认公钥的来源合法性以及数据的完整性。
非对称加密算法具有安全性高、算法强度负复杂的优点,其缺点为加解密耗时长、速度慢,只适合对少量数据进行加密,其常见算法包括:
RSA :RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但那时想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥,可用于加密,也能用于签名。
DSA :数字签名算法,仅能用于签名,不能用于加解密。
DSS :数字签名标准,技能用于签名,也可以用于加解密。
ELGamal :利用离散对数的原理对数据进行加解密或数据签名,其速度是最慢的。
单向加密算法常用于提取数据指纹,验证数据的完整性。发送者将明文通过单向加密算法加密生成定长的密文串,然后传递给接收方。接收方在收到加密的报文后进行解密,将解密获取到的明文使用相同的单向加密算法进行加密,得出加密后的密文串。随后将之与发送者发送过来的密文串进行对比,若发送前和发送后的密文串相一致,则说明传输过程中数据没有损坏;若不一致,说明传输过程中数据丢失了。单向加密算法只能用于对数据的加密,无法被解密,其特点为定长输出、雪崩效应。常见的算法包括:MD5、sha1、sha224等等,其常见用途包括:数字摘要、数字签名等等。
密钥交换IKE(Internet Key Exchange)通常是指双方通过交换密钥来实现数据加密和解密,常见的密钥交换方式有下面两种:
1、公钥加密,将公钥加密后通过网络传输到对方进行解密,这种方式缺点在于具有很大的可能性被拦截破解,因此不常用;
2、Diffie-Hellman,DH算法是一种密钥交换算法,其既不用于加密,也不产生数字签名。DH算法的巧妙在于需要安全通信的双方可以用这个方法确定对称密钥。然后可以用这个密钥进行加密和解密。但是注意,这个密钥交换协议/算法只能用于密钥的交换,而不能进行消息的加密和解密。双方确定要用的密钥后,要使用其他对称密钥操作加密算法实际加密和解密消息。DH算法通过双方共有的参数、私有参数和算法信息来进行加密,然后双方将计算后的结果进行交换,交换完成后再和属于自己私有的参数进行特殊算法,经过双方计算后的结果是相同的,此结果即为密钥。
如:
在整个过程中,第三方人员只能获取p、g两个值,AB双方交换的是计算后的结果,因此这种方式是很安全的。
公钥基础设施是一个包括硬件、软件、人员、策略和规程的集合,用于实现基于公钥密码机制的密钥和证书的生成、管理、存储、分发和撤销的功能,其组成包括:签证机构CA、注册机构RA、证书吊销列表CRL和证书存取库CB。
PKI采用证书管理公钥,通过第三方可信任CA中心,把用户的公钥和其他用户信息组生成证书,用于验证用户的身份。
公钥证书是以数字签名的方式声明,它将公钥的值绑定到持有对应私钥的个人、设备或服务身份。公钥证书的生成遵循X.509协议的规定,其内容包括:证书名称、证书版本、序列号、算法标识、颁发者、有效期、有效起始日期、有效终止日期、公钥 、证书签名等等的内容。
CA证书认证的流程如下图,Bob为了向Alice证明自己是Bob和某个公钥是自己的,她便向一个Bob和Alice都信任的CA机构申请证书,Bob先自己生成了一对密钥对(私钥和公钥),把自己的私钥保存在自己电脑上,然后把公钥给CA申请证书,CA接受申请于是给Bob颁发了一个数字证书,证书中包含了Bob的那个公钥以及其它身份信息,当然,CA会计算这些信息的消息摘要并用自己的私钥加密消息摘要(数字签名)一并附在Bob的证书上,以此来证明这个证书就是CA自己颁发的。Alice得到Bob的证书后用CA的证书(自签署的)中的公钥来解密消息摘要,随后将摘要和Bob的公钥发送到CA服务器上进行核对。CA在接收到Alice的核对请求后,会根据Alice提供的信息核对Bob的证书是否合法,如果确认合法则回复Alice证书合法。Alice收到CA的确认回复后,再去使用从证书中获取的Bob的公钥加密邮件然后发送给Bob,Bob接收后再以自己的私钥进行解密。
❷ 对称密钥算法与非对称密钥算法有何区别
对称密钥算法与非对称密钥算法的区别
密码学中两种常见的密码算法为对称密码算法(单钥密码算法)和非对称密码算法(公钥密码算法)。
对称密码算法有时又叫传统密码算法,就是加密密钥能够从解密密钥中推算出来,反过来也成立。在大多数对称算法中,加密解密密钥是相同的。这些算法也叫秘密密钥算法或单密钥算法,它要求发送者和接收者在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都能对消息进行加密解密。只要通信需要保密,密钥就必须保密。对称算法的加密和解密表示为:
Ek(M)=C
Dk(C)=M
对称算法可分为两类。一次只对明文中的单个位(有时对字节)运算的算法称为序列算法或序列密码。另一类算法是对明文的一组位进行运算,这些位组称为分组,相应的算法称为分组算法或分组密码。现代计算机密码算法的典型分组长度为64位――这个长度大到足以防止分析破译,但又小到足以方便作用。
这种算法具有如下的特性:
Dk(Ek(M))=M
常用的采用对称密码术的加密方案有5个组成部分(如图所示)
l)明文:原始信息。
2)加密算法:以密钥为参数,对明文进行多种置换和转换的规则和步骤,变换结果为密文。
3)密钥:加密与解密算法的参数,直接影响对明文进行变换的结果。
4)密文:对明文进行变换的结果。
5)解密算法:加密算法的逆变换,以密文为输入、密钥为参数,变换结果为明文。
对称密码术的优点在于效率高(加/解密速度能达到数十兆/秒或更多),算法简单,系统开销小,适合加密大量悔敬数据。
尽管对称密码术有一些很好的特性,但它也存在着明显的缺陷,包括:
l)进行安全通信前需要以安全方式进行密钥交换。这一步骤,在某种情况下是可行的,但在某些情况下会非常困难,甚至无法实现。
2)规模复杂。举例来说,A与B两人之间的密钥必须不同于A和C两人之间的密钥,否则给B的消息的安全性就会受到威胁。在有1000个用户的团体中,A需要保持至少999个密钥(更确切的说是1000个,如果她需要留一个密钥给他自己加密数据)。对于该团体中的其它用户,此种倩况同样存在。这样,这个团体一共需要将近50万个不同的密钥!推而广之,n个用户的团体需要N2/2个不同的密钥。
通过应用基于对称密码的中心服务结构,上述问题有所缓解。在这个体系中,团体中的任何一个用户与中心服务器(通常称作密钥分配中心)共享一个密钥。因而,需要存储的密钥数量基本上和团体的人数差不多,而且中心服务器也可以为以前互相不认识的用户充当“介绍人”。但是,这个与安全密切相关的中心服务器必须随时都是在线的,因为只要服务器一掉线,用户间的通信将不可能进行。这就意味着中心服务器是整个通信成败的关键和受攻击的焦点,也意味着它还是一个庞大组织通信服务的“瓶颈”斗前数
非对称密钥算法是指一个加密算法的加密密钥和解密密钥是不一样的,或者说不能由其中一个密钥推导出另一个密钥。1、加解密时采用的密钥空首的差异:从上述对对称密钥算法和非对称密钥算法的描述中可看出,对称密钥加解密使用的同一个密钥,或者能从加密密钥很容易推出解密密钥;②对称密钥算法具有加密处理简单,加解密速度快,密钥较短,发展历史悠久等特点,非对称密钥算法具有加解密速度慢的特点,密钥尺寸大,发展历史较短等特点。
❸ 1、对称加密算法
指加密和解密使用相同密钥的加密算法。对称加密算法用来对敏感数据等信息进顷弊指行加密,常用的算法包括RC4、DES、3DES、AES、DESX、Blowfish、ChaCha20、RC5、RC6。前3种算法被认为是不安全的,通常禁止使用。
国内:SM1、SM4、ZUC
国际:DES、3DES、AES
说明:SM1的128位保密强度和性能与AES相当,SM4的128位已升级为国际标准
块密码算法:DES、3DES、AES
流密码算法:RC4
SM1:对称加密算法,加密强度为128位,采用硬件实现; 算法不公开 ,只能通过相关安全产品进行使用。
SM4:对称算法,随WAPI标准一起公布,可使用软件实现,加密强度为128位。
SM4分组密码算法是我国自主设计的分组对称密码算法,用于实现数据的加密/解密运算,以保证数据和信息的机密性。要保证一个对称密码算法的安全性的基本条件是其具备足够的密钥长度,SM4算法与AES算法具有相同的密钥长度分组长度128比特,因此在安全性上高于3DES算法。
DES(Data Encryption Standard) :数据加密标准,速度较快,适用于加密 大量数据 的场合。
3DES(Triple DES) :是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高。
AES(Advanced Encryption Standard) :高级加密标准,是下一代的加密算法标准,速度快,安全级别高;
ECB(Electronic Codebook)、特点:运算快速,支持并行处理,需要填充、说明:不推荐使用
CBC (Cipher Block Chaining)、特点:支持并行处理,需要填充、说明:推荐使用
CFB(Cipher Feedback)、特点:支持并行处理,不需要填充、说明:不推荐使用
OFB(Output Feedback)、特点:迭代运算使用流密码模式,不需要填充、说明:不推荐使用
CTR (Counter)、特点:迭代运算使用流密码模式,支持并行处理,不需要填充、说明:推荐使用
XTS(XEX-based tweaked-codebook)、特点:不需要填充、说明:用于本地硬盘存储解决方案中
填充标准:明文长度必须是分组长度的倍数,如雀配卜哗不是倍数,则必须有填充机制
PKCS#7填充:可处理的分组长度是1到255个字节
AES算法使用标准,比如:AES-128-CBC-PKCS#7,其中秘钥长度128,分组模式CBC,填充标准PKCS#7,AES算法默认分组128bit
❹ 对称加密算法和非对称加密算法
常见的对称加密算法包括瑞士的国际数据加密算法(International Data Encryption
Algorithm,IDEA)和美国的数据加密标准(Date Encryption Standard,DES)。
DES是一种迭代的分组密码,明文和密文都是64位,使用一个56位的密钥以及附加的8位奇偶校验位。攻击DES的主要技术是穷举法,由于DES的密钥长度较短,为了提高安全性,就出现了使用112位密钥对数据进行三次加密的算法(3DES),即用两个56位的密钥K1和K2,发送方用K1加密,K2解密,再使用K1加密;接收方则使用K1解密,K2加密,再使用K1解密,其效果相当于将密钥长度加倍。
IDEA是在DES的基础上发展起来的,类似于3DES。IDEA的明文和密文都是64位,密钥长度为128位。
非对称加密算法也称为公钥加密算法,是指加密密钥和解密密钥完全不同,其中一个为公钥,另一个为私钥,并且不可能从任何一个推导出另一个。它的优点在于可以适应开放性的使用环境,可以实现数字签名与验证。
最常见的非对称加密算法是RSA,该算法的名字以发明者的名字命名:Ron Rivest,AdiShamir 和Leonard Adleman。RSA算法的密钥长度为512位。RSA算法的保密性取决于数学上将一个大数分解为两个素数的问题的难度,根据已有的数学方法,其计算量极大,破解很难。但是加密/解密时要进行大指数模运算,因此加密/解密速度很慢,主要用在数字签名中。
用公钥进行加密,用私钥进行解密
❺ 对称加密算法的基本原理是什么
对称加密算法是应用较早的加密算法,技术成熟。
在对称加密算法中,其原理就是:数据发信方将明文(原始数据)和加密密钥(mi yao)一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。
在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。
❻ 对称加密算法以及使用方法
加密的原因:保证数据安全
加密必备要素:1、明文/密文 2、秘钥 3、算法
秘钥:在密码学中是一个定长的字符串、需要根据加密算法确定其长度
加密算法解密算法一般互逆、也可能相同
常用的两种加密方式:
对称加密:秘钥:加密解密使用同一个密钥、数据的机密性双向保证、加密效率高、适合加密于大数据大文件、加密强度不高(相对于非对称加密)
非对称加密:秘钥:加密解密使用的不同秘钥、有两个密钥、需要使用密钥生成算法生成两个秘钥、数据的机密性只能单向加密、如果想解决这个问题、双向都需要各自有一对秘钥、加密效率低、加密强度高
公钥:可以公开出来的密钥、公钥加密私钥解密
私钥:需要自己妥善保管、不能公开、私钥加密公钥解密
安全程度高:多次加密
按位异或运算
凯撒密码:加密方式 通过将铭文所使用的字母表按照一定的字数平移来进行加密
mod:取余
加密三要素:明文/密文(字母)、秘钥(3)、算法(向右平移3/-3)
安全常识:不要使用自己研发的算法、不要钻牛角尖、没必要研究底层实现、了解怎么应用;低强度的密码比不进行任何加密更危险;任何密码都会被破解;密码只是信息安全的一部分
保证数据的机密性、完整性、认证、不可否认性
计算机操作对象不是文字、而是由0或1排列而成的比特序列、程序存储在磁盘是二进制的字符串、为比特序列、将现实的东西映射为比特序列的操作称为编码、加密又称之为编码、解密称之为解码、根据ASCII对照表找到对应的数字、转换成二进制
三种对称加密算法:DES\3DES\ AES
DES:已经被破解、除了用它来解密以前的明文、不再使用
密钥长度为56bit/8、为7byte、每隔7个bit会设置一个用于错误检查的比特、因此实际上是64bit
分组密码(以组为单位进行处理):加密时是按照一个单位进行加密(8个字节/64bit为一组)、每一组结合秘钥通过加密算法得到密文、加密后的长度不变
3DES:三重DES为了增加DES的强度、将DES重复三次所得到的一种加密算法 密钥长度24byte、分成三份 加密--解密--加密 目的:为了兼容DES、秘钥1秘钥2相同==三个秘钥相同 ---加密一次 密钥1秘钥3相同--加密三次 三个密钥不相同最好、此时解密相当于加密、中间的一次解密是为了有三个密钥相同的情况
此时的解密操作与加密操作互逆,安全、效率低
数据先解密后加密可以么?可以、解密相当于加密、加密解密说的是算法
AES:(首选推荐)底层算法为Rijndael 分组长度为128bit、密钥长度为128bit到256bit范围内就可以 但是在AES中、密钥长度只有128bit\192bit\256bit 在go提供的接口中、只能是16字节(128bit)、其他语言中秘钥可以选择
目前为止最安全的、效率高
底层算法
分组密码的模式:
按位异或、对数据进行位运算、先将数据转换成二进制、按位异或操作符^、相同为真、不同为假、非0为假 按位异或一次为加密操作、按位异或两次为解密操作:a和b按位异或一次、结果再和b按位异或
ECB : 如果明文有规律、加密后的密文有规律不安全、go里不提供该接口、明文分组分成固定大小的块、如果最后一个分组不满足分组长度、则需要补位
CBC:密码链
问题:如何对字符串进行按位异或?解决了ECB的规律可查缺点、但是他不能并行处理、最后一个明文分组也需要填充 、初始化向量长度与分组长度相同
CFB:密文反馈模式
不需要填充最后一个分组、对密文进行加密
OFB:
不需要对最后一组进行填充
CTR计数器:
不需要对最后一组进行填充、不需要初始化向量
Go中的实现
官方文档中:
在创建aes或者是des接口时都是调用如下的方法、返回的block为一个接口
func NewCipher(key [] byte ) ( cipher . Block , error )
type Block interface {
// 返回加密字节块的大小
BlockSize() int
// 加密src的第一块数据并写入dst,src和dst可指向同一内存地址
Encrypt(dst, src []byte)
// 解密src的第一块数据并写入dst,src和dst可指向同一内存地址
Decrypt(dst, src []byte)
}
Block接口代表一个使用特定密钥的底层块加/解密器。它提供了加密和解密独立数据块的能力。
Block的Encrypt/Decrypt也能进行加密、但是只能加密第一组、因为aes的密钥长度为16、所以进行操作的第一组数据长度也是16
如果分组模式选择的是cbc
func NewCBCEncrypter(b Block, iv []byte) BlockMode 加密
func NewCBCDecrypter(b Block, iv []byte) BlockMode 解密
加密解密都调用同一个方法CryptBlocks()
并且cbc分组模式都会遇到明文最后一个分组的补充、所以会用到加密字节的大小
返回一个密码分组链接模式的、底层用b加密的BlockMode接口,初始向量iv的长度必须等于b的块尺寸。iv自己定义
返回的BlockMode同样也是一个接口类型
type BlockMode interface {
// 返回加密字节块的大小
BlockSize() int
// 加密或解密连续的数据块,src的尺寸必须是块大小的整数倍,src和dst可指向同一内存地址
CryptBlocks(dst, src []byte)
}
BlockMode接口代表一个工作在块模式(如CBC、ECB等)的加/解密器
返回的BlockMode其实是一个cbc的指针类型中的b和iv
# 加密流程:
1. 创建一个底层使用des/3des/aes的密码接口 "crypto/des" func NewCipher(key []byte) (cipher.Block, error) # -- des func NewTripleDESCipher(key []byte) (cipher.Block, error) # -- 3des "crypto/aes" func NewCipher(key []byte) (cipher.Block, error) # == aes
2. 如果使用的是cbc/ecb分组模式需要对明文分组进行填充
3. 创建一个密码分组模式的接口对象 - cbc func NewCBCEncrypter(b Block, iv []byte) BlockMode # 加密 - cfb func NewCFBEncrypter(block Block, iv []byte) Stream # 加密 - ofb - ctr
4. 加密, 得到密文
流程:
填充明文:
先求出最后一组中的字节数、创建新切片、长度为新切片、值也为切片的长度、然后利用bytes.Reapet将长度换成字节切片、追加到原明文中
//明文补充
func padPlaintText(plaintText []byte,blockSize int)[]byte{
//1、求出需要填充的个数
padNum := blockSize-len(plaintText) % blockSize
//2、对填充的个数进行操作、与原明文进行合并
newPadding := []byte{byte(padNum)}
newPlain := bytes.Repeat(newPadding,padNum)
plaintText = append(plaintText,newPlain...)
return plaintText
}
去掉填充数据:
拿去切片中的最后一个字节、得到尾部填充的字节个数、截取返回
//解密后的明文曲调补充的地方
func createPlaintText(plaintText []byte,blockSize int)[]byte{
//1、得到最后一个字节、并将字节转换成数字、去掉明文中此数字大小的字节
padNum := int(plaintText[len(plaintText)-1])
newPadding := plaintText[:len(plaintText)-padNum]
return newPadding
}
des加密:
1、创建一个底层使用des的密码接口、参数为秘钥、返回一个接口
2、对明文进行填充
3、创建一个cbc模式的接口、需要创建iv初始化向量、返回一个blockmode对象
4、加密、调用blockmode中的cryptBlock函数进行加密、参数为目标参数和源参数
//des利用分组模式cbc进行加密
func EncryptoText(plaintText []byte,key []byte)[]byte{
//1、创建des对象
cipherBlock,err := des.NewCipher(key)
if err != nil {
panic(err)
}
//2、对明文进行填充
newText := padPlaintText(plaintText,cipherBlock.BlockSize())
//3、选择分组模式、其中向量的长度必须与分组长度相同
iv := make([]byte,cipherBlock.BlockSize())
blockMode := cipher.NewCBCEncrypter(cipherBlock,iv)
//4、加密
blockMode.CryptBlocks(newText,newText)
return newText
}
des解密:
1、创建一个底层使用des的密码接口、参数为秘钥、返回一个接口
2、创建一个cbc模式的接口、需要创建iv初始化向量,返回一个blockmode对象
3、加密、调用blockmode中的cryptBlock函数进行解密、参数为目标参数和源参数
4、调用去掉填充数据的方法
//des利用分组模式cbc进行解密
func DecryptoText(cipherText []byte, key []byte)[]byte{
//1、创建des对象
cipherBlock,err := des.NewCipher(key)
if err != nil {
panic(err)
}
//2、创建cbc分组模式接口
iv := []byte("12345678")
blockMode := cipher.NewCBCDecrypter(cipherBlock,iv)
//3、解密
blockMode.CryptBlocks(cipherText,cipherText)
//4、将解密后的数据进行去除填充的数据
newText := clearPlaintText(cipherText,cipherBlock.BlockSize())
return newText
}
Main函数调用
func main(){
//需要进行加密的明文
plaintText := []byte("CBC--密文没有规律、经常使用的加密方式,最后一个分组需要填充,需要初始化向量" +
"(一个数组、数组的长度与明文分组相等、数据来源:负责加密的人提供,加解密使用的初始化向量必须相同)")
//密钥Key的长度需要与分组长度相同、且加密解密的密钥相同
key := []byte("1234abcd")
//调用加密函数
cipherText := EncryptoText(plaintText,key)
newPlaintText := DecryptoText(cipherText,key)
fmt.Println(string(newPlaintText))
}
AES加密解密相同、所以只需要调用一次方法就可以加密、调用两次则解密
推荐是用分组模式:cbc、ctr
aes利用分组模式cbc进行加密
//对明文进行补充
func paddingPlaintText(plaintText []byte , blockSize int ) []byte {
//1、求出分组余数
padNum := blockSize - len(plaintText) % blockSize
//2、将余数转换为字节切片、然后利用bytes.Repeat得出有该余数的大小的字节切片
padByte := bytes.Repeat([]byte{byte(padNum)},padNum)
//3、将补充的字节切片添加到原明文中
plaintText = append(plaintText,padByte...)
return plaintText
}
//aes加密
func encryptionText(plaintText []byte, key []byte) []byte {
//1、创建aes对象
block,err := aes.NewCipher(key)
if err != nil {
panic(err)
}
//2、明文补充
newText := paddingPlaintText(plaintText,block.BlockSize())
//3、创建cbc对象
iv := []byte("12345678abcdefgh")
blockMode := cipher.NewCBCEncrypter(block,iv)
//4、加密
blockMode.CryptBlocks(newText,newText)
return newText
}
//解密后的去尾
func clearplaintText(plaintText []byte, blockSize int) []byte {
//1、得到最后一个字节、并转换成整型数据
padNum := int(plaintText[len(plaintText)-1])
//2、截取明文字节中去掉得到的整型数据之前的数据、此处出错、没有用len-padNum
newText := plaintText[:len(plaintText)-padNum]
return newText
}
//aes解密
func deCryptionText(crypherText []byte, key []byte ) []byte {
//1、创建aes对象
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
//2、创建cbc对象
iv := []byte("12345678abcdefgh")
blockMode := cipher.NewCBCDecrypter(block,iv)
//3、解密
blockMode.CryptBlocks(crypherText,crypherText)
//4、去尾
newText := clearplaintText(crypherText,block.BlockSize())
return newText
}
func main(){
//需要进行加密的明文
plaintText := []byte("CBC--密文没有规律、经常使用的加密方式,最后一个分组需要填充,需要初始化向量")
//密钥Key的长度需要与分组长度相同、且加密解密的密钥相同
key := []byte("12345678abcdefgh")
//调用加密函数
cipherText := encryptionText(plaintText,key)
//调用解密函数
newPlaintText := deCryptionText(cipherText,key)
fmt.Println("解密后",string(newPlaintText))
}
//aes--ctr加密
func encryptionCtrText(plaintText []byte, key []byte) []byte {
//1、创建aes对象
block,err := aes.NewCipher(key)
if err != nil {
panic(err)
}
//2、创建ctr对象,虽然ctr模式不需要iv,但是go中使用ctr时还是需要iv
iv := []byte("12345678abcdefgh")
stream := cipher.NewCTR(block,iv)
stream.XORKeyStream(plaintText,plaintText)
return plaintText
}
func main() {
//aes--ctr加密解密、调用两次即为解密、因为加密解密函数相同stream.XORKeyStream
ctrcipherText := encryptionCtrText(plaintText, key)
ctrPlaintText := encryptionCtrText(ctrcipherText,key)
fmt.Println("aes解密后", string(ctrPlaintText))
}
英文单词:
明文:plaintext 密文:ciphertext 填充:padding/fill 去掉clear 加密Encryption 解密Decryption
❼ 哪些是对称加密算法
对称加密(也叫私钥加密)指加密和解密使用相同密钥的加密算法。有时又叫传统密码算法,就是加密密钥能够从解密密钥中推算出来,同时解密密钥也可以从加密密钥中推算出来。
主要有DES算法,3DES算法,TDEA算法,Blowfish算法,RC5算法,IDEA算法。
❽ 对称加密算法的加密算法主要有哪些
1、3DES算法
3DES(即Triple DES)是DES向AES过渡的加密算法(1999年,NIST将3-DES指定为过渡的加密标准),加密算法,其具体实现如下:设Ek()和Dk()代表DES算法的加密和解密过程,K代表DES算法使用的密钥,M代表明文,C代表密文,这样:
3DES加密过程为:C=Ek3(Dk2(Ek1(M)))
3DES解密过程为:M=Dk1(EK2(Dk3(C)))
2、Blowfish算法
BlowFish算法用来加密64Bit长度的字符串。
BlowFish算法使用两个“盒”——unsignedlongpbox[18]和unsignedlongsbox[4,256]。
BlowFish算法中,有一个核心加密函数:BF_En(后文详细介绍)。该函数输入64位信息,运算后,以64位密文的形式输出。用BlowFish算法加密信息,需要两个过程:密钥预处理和信息加密。
分别说明如下:
密钥预处理:
BlowFish算法的源密钥——pbox和sbox是固定的。我们要加密一个信息,需要自己选择一个key,用这个key对pbox和sbox进行变换,得到下一步信息加密所要用的key_pbox和key_sbox。具体的变化算法如下:
1)用sbox填充key_sbox
2)用自己选择的key8个一组地去异或pbox,用异或的结果填充key_pbox。key可以循环使用。
比如说:选的key是"abcdefghijklmn"。则异或过程为:
key_pbox[0]=pbox[0]abcdefgh;
key_pbox[1]=pbox[1]ijklmnab;
…………
…………
如此循环,直到key_pbox填充完毕。
3)用BF_En加密一个全0的64位信息,用输出的结果替换key_pbox[0]和key_pbox[1],i=0;
4)用BF_En加密替换后的key_pbox,key_pbox[i+1],用输出替代key_pbox[i+2]和key_pbox[i+3];
5)i+2,继续第4步,直到key_pbox全部被替换;
6)用key_pbox[16]和key_pbox[17]做首次输入(相当于上面的全0的输入),用类似的方法,替换key_sbox信息加密。
信息加密就是用函数把待加密信息x分成32位的两部分:xL,xRBF_En对输入信息进行变换。
3、RC5算法
RC5是种比较新的算法,Rivest设计了RC5的一种特殊的实现方式,因此RC5算法有一个面向字的结构:RC5-w/r/b,这里w是字长其值可以是16、32或64对于不同的字长明文和密文块的分组长度为2w位,r是加密轮数,b是密钥字节长度。
(8)对称密钥加密算法扩展阅读:
普遍而言,有3个独立密钥的3DES(密钥选项1)的密钥长度为168位(三个56位的DES密钥),但由于中途相遇攻击,它的有效安全性仅为112位。密钥选项2将密钥长度缩短到了112位,但该选项对特定的选择明文攻击和已知明文攻击的强度较弱,因此NIST认定它只有80位的安全性。
对密钥选项1的已知最佳攻击需要约2组已知明文,2部,2次DES加密以及2位内存(该论文提到了时间和内存的其它分配方案)。
这在现在是不现实的,因此NIST认为密钥选项1可以使用到2030年。若攻击者试图在一些可能的(而不是全部的)密钥中找到正确的,有一种在内存效率上较高的攻击方法可以用每个密钥对应的少数选择明文和约2次加密操作找到2个目标密钥中的一个。
❾ 快速了解常用的对称加密算法,再也不用担心面试官的刨根问底
加密算法通常被分为两种: 对称加密 和 非对称加密 。其中,对称加密算法在加密和解密时使用的密钥相同;非对称加密算法在加密和解密时使用的密钥不同,分为公钥和私钥。此外,还有一类叫做 消息摘要算法 ,是对数据进行摘要并且不可逆的算法。
这次我们了解一下对称加密算法。
对称加密算法在加密和解密时使用的密钥相同,或是使用两个可以简单地相互推算的密钥。在大多数的对称加密算法中,加密和解密的密钥是相同的。
它要求双方在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送的信息进行解密,这也是对称加密算法的主要缺点之一。
常见的对称加密算法有:DES算法、3DES算法、AES算法。
DES算法(Data Encryption Standard)是一种常见的分组加密算法。
分组加密算法是将明文分成固定长度的组,每一组都采用同一密钥和算法进行加密,输出也是固定长度的密文。
由IBM公司在1972年研制,1976年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),随后在国际上广泛流传开来。
在DES算法中,密钥固定长度为64位。明文按64位进行分组,分组后的明文组和密钥按位置换或交换的方法形成密文组,然后再把密文组拼装成密文。
密钥的每个第八位设置为奇偶校验位,也就是第8、16、24、32、40、48、56、64位,所以密钥的实际参与加密的长度为56位。
我们用Java写个例子:
运行结果如下:
DES现在已经不是一种安全的加密方法,主要因为它使用的密钥过短,很容易被暴力破解。
3DES算法(Triple Data Encryption Algorithm)是DES算法的升级版本,相当于是对明文进行了三次DES加密。
由于计算机运算能力的增强,DES算法由于密钥长度过低容易被暴力破解;3DES算法提供了一种相对简单的方法,即通过增加DES的密钥长度来避免类似的攻击,而不是设计一种全新的块密码算法。
在DES算法中,密钥固定长度为192位。在加密和解密时,密钥会被分为3个64位的密钥。
加密过程如下:
解密过程如下:
我们用Java写个例子:
运行结果如下:
虽然3DES算法在安全性上有所提升,但是因为使用了3次DES算法,加密和解密速度比较慢。
AES(Advanced Encryption Standard,高级加密标准)主要是为了取代DES加密算法的,虽然出现了3DES的加密方法,但由于它的加密时间是DES算法的3倍多,密钥位数还是不能满足对安全性的要求。
1997年1月2号,美国国家标准与技术研究院(NIST)宣布什望征集高级加密标准,用以取代DES。全世界很多密码工作者都提交了自己设计的算法。经过甄选流程,高级加密标准由美国国家标准与技术研究院于2001年11月26日发布于FIPS PUB 197,并在2002年5月26日成为有效的标准。
该算法为比利时密码学家Joan Daemen和Vincent Rijmen所设计,结合两位作者的名字,以 Rijndael 为名投稿高级加密标准的甄选流程。
AES算法的密钥长度是固定,密钥的长度可以使用128位、192位或256位。
AES算法也是一种分组加密算法,其分组长度只能是128位。分组后的明文组和密钥使用几种不同的方法来执行排列和置换运算形成密文组,然后再把密文组拼装成密文。
我们用Java写个例子:
运行结果如下:
AES算法是目前应用最广泛的对称加密算法。
对称加密算法在加密和解密时使用的密钥相同,常见的对称加密算法有:DES算法、3DES算法、AES算法。
由于安全性低、加密解密效率低,DES算法和3DES算法是不推荐使用的,AES算法是目前应用最广泛的对称加密算法。
❿ 属于对称加密算法的有哪些
主要有DES算法,3DES算法,TDEA算法,Blowfish算法,RC5算法,IDEA算法。
对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。优点在于加解密的高速度和使用长密钥时的难破解性,缺点是交易双方都使用同样钥匙,安全性得不到保证。
对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送或接收的消息解密,所以密钥的保密性对通信的安全性至关重要。
(10)对称密钥加密算法扩展阅读
常见的加密算法
DES算法是密码体制中的对称密码体制,把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位。
3DES是基于DES的对称算法,对一块数据用三个不同的密钥进行三次加密,强度更高。
RC2和RC4是对称算法,用变长密钥对大量数据进行加密,比DES快。
IDEA算法是在DES算法的基础上发展出来的,是作为迭代的分组密码实现的,使用128位的密钥和8个循环。
RSA是由RSA公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的,非对称算法。
DSA,即数字签名算法,是一种标准的 DSS(数字签名标准),严格来说不算加密算法。
AES是高级加密标准对称算法,是下一代的加密算法标准,速度快,安全级别高,在21世纪AES 标准的一个实现是 Rijndael算法。
Blowfish算法是一个64位分组及可变密钥长度的对称密钥分组密码算法,可用来加密64比特长度的字符串。