网络安全通信中要用到两类密码算法,一类是对称密码算法,另一类是非对称密码算法。对称密码算法有时又叫传统密码算法、秘密密钥算法或单密钥算法,非对称密码算法也叫公开密钥密码算法或双密钥算法。对称密码算法的加密密钥能够从解密密钥中推算出来,反过来也成立。在大多数对称算法中,加密解密密钥是相同的。它要求发送者和接收者在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都能对消息进行加密解密。只要通信需要保密,密钥就必须保密。
对称算法又可分为两类。一次只对明文中的单个位(有时对字节)运算的算法称为序列算法或序列密码。另一类算法是对明文的一组位进行运算,这些位组称为分组,相应的算法称为分组算法或分组密码。现代计算机密码算法的典型分组长度为64位――这个长度既考虑到分析破译密码的难度,又考虑到使用的方便性。后来,随着破译能力的发展,分组长度又提高到128位或更长。
常用的采用对称密码术的加密方案有5个组成部分(如图所示)
1)明文:原始信息。
2)加密算法:以密钥为参数,对明文进行多种置换和转换的规则和步骤,变换结果为密文。
3)密钥:加密与解密算法的参数,直接影响对明文进行变换的结果。
4)密文:对明文进行变换的结果。
5)解密算法:加密算法的逆变换,以密文为输入、密钥为参数,变换结果为明文。
对称密码当中有几种常用到的数学运算。这些运算的共同目的就是把被加密的明文数码尽可能深地打乱,从而加大破译的难度。
◆移位和循环移位
移位就是将一段数码按照规定的位数整体性地左移或右移。循环右移就是当右移时,把数码的最后的位移到数码的最前头,循环左移正相反。例如,对十进制数码12345678循环右移1位(十进制位)的结果为81234567,而循环左移1位的结果则为23456781。
◆置换
就是将数码中的某一位的值根据置换表的规定,用另一位代替。它不像移位操作那样整齐有序,看上去杂乱无章。这正是加密所需,被经常应用。
◆扩展
就是将一段数码扩展成比原来位数更长的数码。扩展方法有多种,例如,可以用置换的方法,以扩展置换表来规定扩展后的数码每一位的替代值。
◆压缩
就是将一段数码压缩成比原来位数更短的数码。压缩方法有多种,例如,也可以用置换的方法,以表来规定压缩后的数码每一位的替代值。
◆异或
这是一种二进制布尔代数运算。异或的数学符号为⊕ ,它的运算法则如下:
1⊕1 = 0
0⊕0 = 0
1⊕0 = 1
0⊕1 = 1
也可以简单地理解为,参与异或运算的两数位如相等,则结果为0,不等则为1。
◆迭代
迭代就是多次重复相同的运算,这在密码算法中经常使用,以使得形成的密文更加难以破解。
下面我们将介绍一种流行的对称密码算法DES。
DES是Data Encryption Standard(数据加密标准)的缩写。它是由IBM公司研制的一种对称密码算法,美国国家标准局于1977年公布把它作为非机要部门使用的数据加密标准,三十年来,它一直活跃在国际保密通信的舞台上,扮演了十分重要的角色。
DES是一个分组加密算法,典型的DES以64位为分组对数据加密,加密和解密用的是同一个算法。它的密钥长度是56位(因为每个第8 位都用作奇偶校验),密钥可以是任意的56位的数,而且可以任意时候改变。其中有极少数被认为是易破解的弱密钥,但是很容易避开它们不用。所以保密性依赖于密钥。
DES加密的算法框架如下:
首先要生成一套加密密钥,从用户处取得一个64位长的密码口令,然后通过等分、移位、选取和迭代形成一套16个加密密钥,分别供每一轮运算中使用。
DES对64位(bit)的明文分组M进行操作,M经过一个初始置换IP,置换成m0。将m0明文分成左半部分和右半部分m0 = (L0,R0),各32位长。然后进行16轮完全相同的运算(迭代),这些运算被称为函数f,在每一轮运算过程中数据与相应的密钥结合。
在每一轮中,密钥位移位,然后再从密钥的56位中选出48位。通过一个扩展置换将数据的右半部分扩展成48位,并通过一个异或操作替代成新的48位数据,再将其压缩置换成32位。这四步运算构成了函数f。然后,通过另一个异或运算,函数f的输出与左半部分结合,其结果成为新的右半部分,原来的右半部分成为新的左半部分。将该操作重复16次。
经过16轮迭代后,左,右半部分合在一起经过一个末置换(数据整理),这样就完成了加密过程。
加密流程如图所示。
DES解密过程:
在了解了加密过程中所有的代替、置换、异或和循环迭代之后,读者也许会认为,解密算法应该是加密的逆运算,与加密算法完全不同。恰恰相反,经过密码学家精心设计选择的各种操作,DES获得了一个非常有用的性质:加密和解密使用相同的算法!
DES加密和解密唯一的不同是密钥的次序相反。如果各轮加密密钥分别是K1,K2,K3…K16,那么解密密钥就是K16,K15,K14…K1。这也就是DES被称为对称算法的理由吧。
至于对称密码为什么能对称? DES具体是如何操作的?本文附录中将做进一步介绍,有兴趣的读者不妨去读一读探个究竟
4.DES算法的安全性和发展
DES的安全性首先取决于密钥的长度。密钥越长,破译者利用穷举法搜索密钥的难度就越大。目前,根据当今计算机的处理速度和能力,56位长度的密钥已经能够被破解,而128位的密钥则被认为是安全的,但随着时间的推移,这个数字也迟早会被突破。
另外,对DES算法进行某种变型和改进也是提高DES算法安全性的途径。
例如后来演变出的3-DES算法使用了3个独立密钥进行三重DES加密,这就比DES大大提高了安全性。如果56位DES用穷举搜索来破译需要2∧56次运算,而3-DES 则需要2∧112次。
又如,独立子密钥DES由于每轮都使用不同的子密钥,这意味着其密钥长度在56位的基础上扩大到768位。DES还有DESX、CRYPT、GDES、RDES等变型。这些变型和改进的目的都是为了加大破译难度以及提高密码运算的效率
㈡ 对称加密算法之DES介绍
DES (Data Encryption Standard)是分组对称密码算法。
DES算法利用 多次组合替代算法 和 换位算法 ,分散和错乱的相互作用,把明文编制成密码强度很高的密文,它的加密和解密用的是同一算法。
DES算法,是一种 乘积密码 ,其在算法结构上主要采用了 置换 、 代替 、 模二相加 等函数,通过 轮函数 迭代的方式来进行计算和工作。
DES算法也会使用到数据置换技术,主要有初始置换 IP 和逆初始置换 IP^-1 两种类型。DES算法使用置换运算的目的是将原始明文的所有格式及所有数据全部打乱重排。而在轮加密函数中,即将数据全部打乱重排,同时在数据格式方面,将原有的32位数据格式,扩展成为48位数据格式,目的是为了满足S盒组对数据长度和数据格式规范的要求。
一组数据信息经过一系列的非线性变换以后,很难从中推导出其计算的过程和使用的非线性组合;但是如果这组数据信息使用的是线性变换,计算就容易的多。在DES算法中,属于非线性变换的计算过程只有S盒,其余的数据计算和变换都是属于线性变换,所以DES算法安全的关键在于S盒的安全强度。此外,S盒和置换IP相互配合,形成了很强的抗差分攻击和抗线性攻击能力,其中抗差分攻击能力更强一些。
DES算法是一种分组加密机制,将明文分成N个组,然后对各个组进行加密,形成各自的密文,最后把所有的分组密文进行合并,形成最终的密文。
DES加密是对每个分组进行加密,所以输入的参数为分组明文和密钥,明文分组需要置换和迭代,密钥也需要置换和循环移位。在初始置换IP中,根据一张8*8的置换表,将64位的明文打乱、打杂,从而提高加密的强度;再经过16次的迭代运算,在这些迭代运算中,要运用到子密钥;每组形成的初始密文,再次经过初始逆置换 IP^-1 ,它是初始置换的逆运算,最后得到分组的最终密文。
图2右半部分,给出了作用56比特密钥的过程。DES算法的加密密钥是64比特,但是由于密钥的第n*8(n=1,2…8)是校验(保证含有奇数个1),因此实际参与加密的的密钥只有 56比特 。开始时,密钥经过一个置换,然后经过循环左移和另一个置换分别得到子密钥ki,供每一轮的迭代加密使用。每轮的置换函数都一样,但是由于密钥位的重复迭代使得子密钥互不相同。
DES算法 利用多次组合替代算法和换位算法,分散和错乱的相互作用,把明文编制成密码强度很高的密文,它的加密和解密用的是同一算法。
DES算法详述:DES对64位明文分组(密钥56bit)进行操作。
1、 初始置换函数IP:64位明文分组x经过一个初始置换函数IP,产生64位的输出x0,再将分组x0分成左半部分L0和右半部分R0:即将输入的第58位换到第一位,第50位换到第2位,…,依次类推,最后一位是原来的第7位。L0、R0则是换位输出后的两部分,L0是输出的左32位,R0是右32位。例,设置换前的输入值为D1D2D3…D64,则经过初始置换后的结果为:L0=D58D50…D8;R0=D57D49…D7.其置换规则如表1所示。
DES加密过程最后的逆置换 IP^-1 ,是表1的 逆过程 。就是把原来的每一位都恢复过去,即把第1位的数据,放回到第58位,把第2位的数据,放回到第50位。
2、 获取子密钥 Ki :DES加密算法的密钥长度为56位,一般表示为64位(每个第8位用于奇偶校验),将用户提供的64位初始密钥经过一系列的处理得到K1,K2,…,K16,分别作为 1~16 轮运算的 16个子密钥 。
(1). 将64位密钥去掉8个校验位,用密钥置换 PC-1 (表2)置换剩下的56位密钥;
(2). 将56位分成前28位C0和后28位D0,即 PC-1(K56)=C0D0 ;
(3). 根据轮数,这两部分分别循环左移1位或2位,表3:
(4). 移动后,将两部分合并成56位后通过压缩置换PC-2(表4)后得到48位子密钥,即Ki=PC-2(CiDi).
子密钥产生如图2所示:
3、 密码函数F(非线性的)
(1). 函数F的操作步骤:密码函数F 的输入是32比特数据和48比特的子密钥:
A.扩展置换(E):将数据的右半部分Ri从32位扩展为48位。位选择函数(也称E盒),如表5所示:
B.异或:扩展后的48位输出E(Ri)与压缩后的48位密钥Ki作异或运算;
C.S盒替代:将异或得到的48位结果分成八个6位的块,每一块通过对应的一个S盒产生一个4位的输出。
(2)、D、P盒置换:将八个S盒的输出连在一起生成一个32位的输出,输出结果再通过置换P产生一个32位的输出即:F(Ri,Ki),F(Ri,Ki)算法描述如图3,最后,将P盒置换的结果与最初的64位分组的左半部分异或,然后,左、右半部分交换,开始下一轮计算。
4、密文输出:经过16次迭代运算后,得到L16、R16,将此作为输入,进行逆置换,即得到密文输出。逆置换正好是初始置的逆运算。例如,第1位经过初始置换后,处于第40位,而通过逆置换,又将第40位换回到第1位,其逆置换规则如表8所示:
图4为DES算法加密原理图:
DES算法加密和解密过程采用相同的算法,并采用相同的加密密钥和解密密钥,两者的区别是:(1)、DES加密是从L0、R0到L15、R15进行变换,而解密时是从L15、R15到L0、R0进行变换的;(2)、加密时各轮的加密密钥为K0K1…K15,而解密时各轮的解密密钥为K15K14…K0;(3)、加密时密钥循环左移,解密时密钥循环右移。
DES加密过程分析:
(1)、首先要生成64位密钥,这64位的密钥经过“子密钥算法”换转后,将得到总共16个子密钥。将这些子密钥标识为Kn(n=1,2,…,16)。这些子密钥主要用于总共十六次的加密迭代过程中的加密工具。
(2)、其次要将明文信息按64位数据格式为一组,对所有明文信息进行分组处理。每一段的64位明文都要经过初试置换IP,置换的目的是将数据信息全部打乱重排。然后将打乱的数据分为左右两块,左边一块共32位为一组,标识为L0;右边一块也是32位为一组,标识为R0.
(3)、置换后的数据块总共要进行总共十六次的加密迭代过程。加密迭代主要由加密函数f来实现。首先使用子密钥K1对右边32位的R0进行加密处理,得到的结果也是32位的;然后再将这个32位的结果数据与左边32位的L0进行模2处理,从而再次得到一个32位的数据组。我们将最终得到的这个32位组数据,作为第二次加密迭代的L1,往后的每一次迭代过程都与上述过程相同。
(4)、在结束了最后一轮加密迭代之后,会产生一个64位的数据信息组,然后我们将这个64位数据信息组按原有的数据排列顺序平均分为左右两等分,然后将左右两等分的部分进行位置调换,即原来左等分的数据整体位移至右侧,而原来右等分的数据则整体位移至左侧,这样经过合并后的数据将再次经过逆初始置换IP^-1的计算,我们最终将得到一组64位的密文。
DES解密过程分析:DES的解密过程与它的加密过程是一样的,这是由于DES算法本身属于对称密码体制算法,其加密和解密的过程可以共用同一个过程和运算。
DES加密函数f:在DES算法中,要将64位的明文顺利加密输出成64位的密文,而完成这项任务的核心部分就是加密函数f。加密函数f的主要作用是在第m次的加密迭代中使用子密钥Km对Km-1进行加密操作。加密函数f在加密过程中总共需要运行16轮。
十六轮迭代算法:它先将经过置换后的明文分成两组,每组32位;同时密钥也被分成了两组,每组28位,两组密钥经过运算,再联合成一个48位的密钥,参与到明文加密的运算当中。S盒子,它由8个4*16的矩阵构成,每一行放着0到15的数据,顺序各个不同,是由IBM公司设计好的。经过异或运算的明文,是一个48位的数据,在送入到S盒子的时候,被分成了8份,每份6位,每一份经过一个S盒子,经过运算后输出为4位,即是一个0到15的数字的二进制表示形式。具体运算过程为,将输入的6位中的第1位为第6位合并成一个二进制数,表示行号,其余4位也合并成一个二进制数,表示列号。在当前S盒子中,以这个行号和列号为准,取出相应的数,并以二进制的形式表示,输出,即得到4位的输出,8个S盒子共计32位。
DES算法优缺点:
(1)、产生密钥简单,但密钥必须高度保密,因而难以做到一次一密;
(2)、DES的安全性依赖于密钥的保密。攻击破解DES算法的一个主要方法是通过密钥搜索,使用运算速度非常高的计算机通过排列组合枚举的方式不断尝试各种可能的密钥,直到破解为止。一般,DES算法使用56位长的密钥,通过简单计算可知所有可能的密钥数量最多是2^56个。随着巨型计算机运算速度的不断提高,DES算法的安全性也将随之下降,然而在一般的民用商业场合,DES的安全性仍是足够可信赖的。
(3)、DES算法加密解密速度比较快,密钥比较短,加密效率很高但通信双方都要保持密钥的秘密性,为了安全还需要经常更换DES密钥。
参考链接 : https://blog.csdn.net/fengbingchun/article/details/42273257
㈢ DES算法实现
完成一个DES 算法的 详细设计 ,内容包括:
DES(Data Encryption Standard)是一种用于电子数据加密的对称密钥块加密算法 .它以64位为分组长度,64位一组的明文作为算法的输入,通过一系列复杂的操作,输出同样64位长度的密文。DES 同样采用64位密钥,但由于每8位中的最后1位用于奇偶校验,实际有效密钥长度为56位。密钥可以是任意的56位的数,且可随时改变。
DES 使用加密密钥定义变换过程,因此算法认为只有持有加密所用的密钥的用户才能解密密文。DES的两个重要的安全特性是混淆和扩散。其中 混淆 是指通过密码算法使明文和密文以及密钥的关系非常复杂,无法从数学上描述或者统计。 扩散 是指明文和密钥中的每一位信息的变动,都会影响到密文中许多位信息的变动,从而隐藏统计上的特性,增加密码的安全。
DES算法的基本过程是换位和置换。如图,有16个相同的处理阶段,称为轮。还有一个初始和最终的排列,称为 IP 和 FP,它们是反向的 (IP 取消 FP 的作用,反之亦然)。
在主轮之前,块被分成两个32位的一半和交替处理;这种纵横交错的方案被称为Feistel 方法。Feistel 结构确保了解密和加密是非常相似的过程——唯一的区别是在解密时子键的应用顺序是相反的。其余的算法是相同的。这大大简化了实现,特别是在硬件中,因为不需要单独的加密和解密算法。
符号表示异或(XOR)操作。Feistel 函数将半块和一些键合在一起。然后,将Feistel 函数的输出与块的另一半组合在一起,在下一轮之前交换这一半。在最后一轮之后,两队交换了位置;这是 Feistel 结构的一个特性,使加密和解密过程类似。
IP 置换表指定64位块上的输入排列。其含义如下:输出的第一个比特来自输入的第58位;第二个位来自第50位,以此类推,最后一个位来自第7位输入。
最后的排列是初始排列的倒数。
展开函数被解释为初始排列和最终排列。注意,输入的一些位在输出时是重复的;输入的第5位在输出的第6位和第8位中都是重复的。因此,32位半块被扩展到48位。
P排列打乱了32位半块的位元。
表的“左”和“右”部分显示了来自输入键的哪些位构成了键调度状态的左和右部分。输入的64位中只有56位被选中;剩下的8(8、16、24、32、40、48、56、64)被指定作为奇偶校验位使用。
这个排列从56位键调度状态为每轮选择48位的子键。
这个表列出了DES中使用的8个S-box,每个S-box用4位的输出替换6位的输入。给定一个6位输入,通过使用外部的两个位选择行,以及使用内部的四个位选择列,就可以找到4位输出。例如,一个输入“011011”有外部位“01”和内部位“1101”。第一行为“00”,第一列为“0000”,S-box S5对应的输出为“1001”(=9),即第二行第14列的值。
DES算法的基本流程图如下:
DES算法是典型的对称加密算法,在输入64比特明文数据后,通过输入64比特密钥和算法的一系列加密步骤后,可以得到同样为64比特的密文数据。反之,我们通过已知的密钥,可以将密文数据转换回明文。 我们将算法分为了三大块:IP置换、16次T迭代和IP逆置换 ,加密和解密过程分别如下:
实验的设计模式是自顶向下的结构,用C语言去分别是先各个函数的功能,最后通过主函数将所有函数进行整合,让算法更加清晰客观。
通过IP置换表,根据表中所示下标,找到相应位置进行置换。
对于16次 迭代,我们先将传入的经过 IP 混淆过的64位明文的左右两部分,分别为32位的 和32位的 。之后我们将 和 进行交换,得到作为IP逆置换的输入:
,
子密钥的生成,经历下面一系列步骤:首先对于64位密钥,进行置换选择,因为将用户输入的64 位经历压缩变成了56位,所以我们将左面和右面的各28位进行循环位移。左右两部分分别按下列规则做循环移位:当 ,循环左移1位;其余情况循环左移2位。最后将得到的新的左右两部分进行连接得到56位密钥。
对半块的 Feistel 操作分为以下五步:
如上二图表明,在给出正确的密码后,可以得到对应的明文。
若密码错误,将解码出错误答案。
【1】 Data Encryption Standard
【2】 DES算法的详细设计(简单实现)
【3】 深入理解并实现DES算法
【4】 DES算法原理完整版
【5】 安全体系(一)—— DES算法详解
㈣ des加密算法
des加密算法如下:
一、DES加密算法简介
DES(Data Encryption Standard)是目前最为流行的加密算法之一。DES是对称的,也就是说它使用同一个密钥来加密和解密数据。
DES还是一种分组加密算法,该算法每次处理固定长度的数据段,称之为分组。DES分组的大小是64位,如果加密的数据长度不是64位的倍数,可以按照某种具体的规则来填充位。
从本质上来说,DES的安全性依赖于虚假表象,从密码学的术语来讲就是依赖于“混乱和扩散”的原则。混乱的目的是为隐藏任何明文同密文、或者密钥之间的关系,而扩散的目的是使明文中的有效位和密钥一起组成尽可能多的密文。两者结合到一起就使得安全性变得相对较高。
DES算法具体通过对明文进行一系列的排列和替换操作来将其加密。过程的关键就是从给定的初始密钥中得到16个子密钥的函数。要加密一组明文,每个子密钥按照顺序(1-16)以一系列的位操作施加于数据上,每个子密钥一次,一共重复16次。每一次迭代称之为一轮。要对密文进行解密可以采用同样的步骤,只是子密钥是按照逆向的顺序(16-1)对密文进行处理。
㈤ des算法是什么
DES算法为密码体制中的对称密码体制。
DES算法为密码体制中的对称密码体制,又被称为美国数据加密标准,是1972年美国IBM公司研制的对称密码体制加密算法。明文按64位进行分组,密钥长64位,密钥事实上是56位参与DES运算,分组后的明文组和56位的密钥按位替代或交换的方法形成密文组的加密方法。
des的应用领域
计算机网络通信:对计算机网络通信中的数据提供保护是DES的一项重要应用。但这些被保护的数据一般只限于民用敏感信息,即不在政府确定的保密范围之内的信息。
电子资金传送系统:采用DES的方法加密电子资金传送系统中的信息,可准确、快速地传送数据,并可较好地解决信息安全的问题。
保护用户文件:用户可自选密钥对重要文件加密,防止未授权用户窃密。
用户识别:DES还可用于计算机用户识别系统中。
㈥ des算法与rsa算法区别
DES算法与RSA算法区别:
1、DES算法:
优点:密钥短,加密处理简单,加密解密速度快,适用于加密大量数据的场合。
缺点:单键,不能从一个键推导出另一个键。
2、RSA算法:
优点:应用广泛,加密密钥与解密密钥不一样,一般的加密密钥称为私钥。解密密钥称为公钥,私钥加密后只能用公钥解密,当然也可以用公钥加密,用私钥解密。
缺点:密钥大小大,加密解密速度慢,一般用于加密少量数据,如DES密钥。
(6)sdes算法扩展阅读:
一、安全性:
RSA的安全性依赖于大数分解,但它是否等同于大数分解还没有从理论上得到证明,因为没有证据证明破解RSA一定是大数分解。
如果有一种算法不需要分解大数,则必须将其修改为分解大数的算法。RSA算法的一些变体已被证明等价于大数分解。
不管怎样,分解n是最明显的攻击方式。把大素数分解到多个小数点后是可能的。因此,模n必须更大,这取决于具体的应用。
二、算法定义:
1、DES算法定义:是对称算法,加密密钥和解密密钥是相同的。
2、RSA算法定义:非对称算法,加密密钥与解密密钥是不同的,一般的加密密钥称为私钥,解密密钥称为公钥,私钥加密只能用于解密,当然也可以用于加密,解密用私钥。
㈦ DES加密算法中S作用S盒的输入几位输出几位说明其计算机过程
S盒是DES算法的核心,用在分组密码算法中,是唯一的非线性结构,其S盒的指标的好坏直接决定了密码算法的好坏。
每个S盒是将6位输入转化为4位输出。
根据6位输入来查找对应S盒的表,由第一和最后一位得到行号,由中间的四位得到列号。如:对S盒1,输入为110011,就是查找第3行、第9列,结果为11,于是输出就是二进制的1011。
(7)sdes算法扩展阅读
DES于1976年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),随后在国际上广泛流传开来。
目前DES现在已经不是一种安全的加密方法,主要因为它使用的56位密钥过短。1999年1月,distributed.net与电子前哨基金会合作,在22小时15分钟内即公开破解了一个DES密钥。在2001年,DES作为一个标准已经被高级加密标准(AES)所取代。
DES是一种分组密码,它使用使用56位秘钥对64位(8字节)分组进行加密。同时是一种对称密码,即其加密和解密使用相同的秘钥。每个分组的加密分为16轮迭代,每轮是用不同的自秘钥,而子秘钥是根据主密钥k编排得出。
㈧ 求教des算法的详细过程
des算法的详细过程:
1-1、变换密钥
取得64位的密钥,每个第8位作为奇偶校验位。
1-2、变换密钥。
1-2-1、舍弃64位密钥中的奇偶校验位,根据下表(PC-1)进行密钥变换得到56位的密钥,在变换中,奇偶校验位以被舍弃。
Permuted Choice 1 (PC-1)
57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4
1-2-2、将变换后的密钥分为两个部分,开始的28位称为C[0],最后的28位称为D[0]。
1-2-3、生成16个子密钥,初始I=1。
1-2-3-1、同时将C[I]、D[I]左移1位或2位,根据I值决定左移的位数。见下表
I: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
左移位数: 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
1-2-3-2、将C[I]D[I]作为一个整体按下表(PC-2)变换,得到48位的K[I]
Permuted Choice 2 (PC-2)
14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32
1-2-3-3、从1-2-3-1处循环执行,直到K[16]被计算完成。
2、处理64位的数据
2-1、取得64位的数据,如果数据长度不足64位,应该将其扩展为64位(例如补零)
2-2、将64位数据按下表变换(IP)
Initial Permutation (IP)
58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7
2-3、将变换后的数据分为两部分,开始的32位称为L[0],最后的32位称为R[0]。
2-4、用16个子密钥加密数据,初始I=1。
2-4-1、将32位的R[I-1]按下表(E)扩展为48位的E[I-1]
Expansion (E)
32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1
2-4-2、异或E[I-1]和K[I],即E[I-1] XOR K[I]
2-4-3、将异或后的结果分为8个6位长的部分,第1位到第6位称为B[1],第7位到第12位称为B[2],依此类推,第43位到第48位称为B[8]。
2-4-4、按S表变换所有的B[J],初始J=1。所有在S表的值都被当作4位长度处理。
2-4-4-1、将B[J]的第1位和第6位组合为一个2位长度的变量M,M作为在S[J]中的行号。
2-4-4-2、将B[J]的第2位到第5位组合,作为一个4位长度的变量N,N作为在S[J]中的列号。
2-4-4-3、用S[J][M][N]来取代B[J]。
Substitution Box 1 (S[1])
14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13
S[2]
15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9
S[3]
10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12
S[4]
7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14
S[5]
2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3
S[6]
12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13
S[7]
4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12
S[8]
13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11
2-4-4-4、从2-4-4-1处循环执行,直到B[8]被替代完成。
2-4-4-5、将B[1]到B[8]组合,按下表(P)变换,得到P。
Permutation P
16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25
2-4-6、异或P和L[I-1]结果放在R[I],即R[I]=P XOR L[I-1]。
2-4-7、L[I]=R[I-1]
2-4-8、从2-4-1处开始循环执行,直到K[16]被变换完成。
2-4-5、组合变换后的R[16]L[16](注意:R作为开始的32位),按下表(IP-1)变换得到最后的结果。
Final Permutation (IP**-1)
40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25
以上就是DES算法的描述。
㈨ “DES”和“AES”算法的比较,各自优缺点有哪些
DES算法优点:DES算法具有极高安全性,到目前为止,除了用穷举搜索法对DES算法进行攻击外,还没有发现更有效的办法。
DES算法缺点:
1、分组比较短。
2、密钥太短。
3、密码生命周期短。
4、运算速度较慢。
AES算法优点:
1、运算速度快。
2、对内存的需求非常低,适合于受限环境。
3、分组长度和密钥长度设计灵活。
4、 AES标准支持可变分组长度,分组长度可设定为32比特的任意倍数,最小值为128比特,最大值为256比特。
5、 AES的密钥长度比DES大,它也可设定为32比特的任意倍数,最小值为128比特,最大值为256比特,所以用穷举法是不可能破解的。
6、很好的抵抗差分密码分析及线性密码分析的能力。
AES算法缺点:目前尚未存在对AES 算法完整版的成功攻击,但已经提出对其简化算法的攻击。
(9)sdes算法扩展阅读:
高级加密标准(英语:Advanced Encryption Standard,缩写:AES),在密码学中又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。
这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。经过五年的甄选流程,高级加密标准由美国国家标准与技术研究院(NIST)于2001年11月26日发布于FIPS PUB 197,并在2002年5月26日成为有效的标准。2006年,高级加密标准已然成为对称密钥加密中最流行的算法之一。
㈩ 求DES加密算法详解拜托了各位 谢谢
DES加密算法是分组加密算法,明文以64位为单位分成块。64位数据在64位密钥的控制下,经过初始变换后,进行16轮加密迭代:64位数据被分成左右两半部分,每部分32位,密钥与右半部分相结合,然后再与左半部分相结合,结果作为新的右半部分;结合前的右半部分作为新的左半部分。这一系列步骤组成一轮。这种轮换要重复16次。最后一轮之后,再进行初始置换的逆置换,就得到了64位的密文。 DES的加密过程可分为加密处理,加密变换和子密钥生成几个部分组成。 1.加密处理过程 (1)初始变换。加密处理首先要对64位的明文按表1所示的初始换位表IP进行变换。表中的数值表示输入位被置换后的新位置。例如输入的第58位,在输出的时候被置换到第1位;输入的是第7位,在输出时被置换到第64位。 (2)加密处理。上述换位处理的输出,中间要经过16轮加密变换。初始换位的64位的输出作为下一次的输入,将64位分为左、右两个32位,分别记为L0和R0,从L0、R0到L16、R16,共进行16轮加密变换。其中,经过n轮处理后的点左右32位分别为Ln和Rn,则可做如下定义: Ln=Rn-1 Rn=Ln-1 其中,kn是向第n轮输入的48位的子密钥,Ln-1和Rn-1分别是第n-1轮的输出,f是Mangler函数。 (3)最后换位。进行16轮的加密变换之后,将L16和R16合成64位的数据,再按照表2所示的 最后换位表进行IP-1的换位,得到64位的密文,这就是DES算法加密的结果。 2.加密变换过程 通过重复某些位将32位的右半部分按照扩展表3扩展换位表扩展为48位,而56位的密钥先移位然后通过选择其中的某些位减少至48位,48位的右半部分通过异或操作和48位的密钥结合,并分成6位的8个分组,通过8个S-盒将这48位替代成新的32位数据,再将其置换一次。这些S-盒输入6位,输出4位。 一个S盒中具有4种替换表(行号用0、1、2、3表示),通过输入的6位的开头和末尾两位选定行,然后按选定的替换表将输入的6位的中间4位进行替代,例如:当向S1输入011011时,开头和结尾的组合是01,所以选中编号为1的替代表,根据中间4位1101,选定第13列,查找表中第1行第13列所示的值为5,即输出0101,这4位就是经过替代后的值。按此进行,输出32位,再按照表4 单纯换位表P进行变换,这样就完成了f(R,K)的变换 3.子密钥生成过程 钥通常表示为64位的自然数,首先通过压缩换位PC-1去掉每个字节的第8位,用作奇偶校验,因此,密钥去掉第8、16、24……64位减至56位,所以实际密钥长度为56位,而每轮要生成48位的子密钥。 输入的64位密钥,首先通过压缩换位得到56位的密钥,每层分成两部分,上部分28位为C0,下部分为D0。C0和D0依次进行循环左移操作生成了C1和D1,将C1和D1合成56位,再通过压缩换位PC-2输出48位的子密钥K1,再将C1和D1进行循环左移和PC-2压缩换位,得到子密钥K2......以此类推,得到16个子密钥。密钥压缩换位表如表6所示。在产生子密钥的过程中,L1、L2、L9、L16是循环左移1位,其余都是左移2位,左移次数如表7所示。 详细信息见 http://www.studa.net/yingyong/100126/11085967.html