导航:首页 > 源码编译 > java有实现雪花算法吗

java有实现雪花算法吗

发布时间:2023-03-16 01:48:29

A. 详解如何用java实现Koch雪花的绘制

Koch雪花其实就是一种Koch曲线。

Koch曲线是一个数学曲线,同时也是早期被描述的一种分形曲线。它由瑞典数学家Helge von Koch在1904年发表的一篇题为“从初等几何构造的一条没有切线的连续曲线”的论文中提出。有一种Koch曲线是象雪花一样,被称为Koch雪花(或Koch星),它是由三条Koch曲线围成的等边三角形。至于更详细的请读者网络。

如图所示:


解决方案

设想从一个线段开始,根据下列规则构造一个Koch曲线:

1.三等分一条线段;

2.用一个等边三角形替代第春局一步划分三等分的中间部分;

3.在每一条直线上,重复第二步。

Koch曲线是以上步骤地无限重复的极限结果。

Koch曲线的长度为无穷大,因为以上的变换都是一条线段态带变四条线段,每一条线段的长度是上一级的1/3,扒闭让因此操作n步的总长度是(4/3)n:若n→∞,则总长度趋于无穷。Koch曲线的分形维数是log 4/log 3 ≈ 1.26,其维数大于线的维数(1),小于Peano填充曲线的维数(2)。

Koch曲线是连续的,但是处处不可导的。

Koch雪花的面积是 2* √3 * s²/5 ,这里的s是最初三角形的边长,Koch雪花的面积是原三角形面积的8/5,它成为一条无限长的边界围绕着一个有限的面积的几何对象。

B. 数据库分库分表(二)Twitter-Snowflake(64位分布式ID算法)分析与JAVA实现

Twitter-Snowflake算法产生的背景相当简单,为了满足Twitter每秒上万条消息的请求,每条消息都必须分配一条唯一的id,这些id还需要一些大致的顺序(方便客户端排序),并灶核且在掘顷分布式系统中不同机器产生的id必须不同。各种主键ID生成策略对比,见 常见分布式主键ID生成策略

41位的时间前缀 10位的节点标识 12位的sequence 组合在一起。
除了最高位bit标记为不可用以外,其余三组bit占位均可浮动,看具体的业务需求而定。 默认情况下41bit的时间戳,1970年算起可以支持该算法使用到2038年,10bit的工作机器id可以支持1024台机器,序列号支持1毫秒产生4096个自增序列id

Snowflake是Twitter在2010年用Scala语言写的一套主键生成策略,用Thrift对外发布主键生成服务,其中依赖了Twitter内部的Infrastructure,后来Twitter用 Twitter-server 代替了Snowflake,自2012年起就未更新。见 Twitter-Snowflake项目地址(Tags:snowflake-2010)
之前写了一个Java的实现,改自网上一个版本: Twitter的分布式自增ID算法Snowflake实现分析及其Java、Php和Python版 。后来看到当当网的 Sharding-JDBC 分库分表中间件已实现了此算法。就直接在其中添隐散掘加了一些新特性,已merge。( 具体实现 , 说明文档 )
添加3种IdGenerator实现。

用笔记本(i7-3632QM 2.2GHz 四核八线程)测试了下,每秒生成409万(理论上的峰值),CPU占用率18.5%。

C. 雪花算法(SnowFlake)

解决方法:

首先,SnowFlake的末尾12位是序列号,用来记录同一毫秒内产生的不同id,同一毫秒总共可以产生4096个id,每一毫秒的序列号都是从0这个基础序列号开始递增。假设我们的业务系统在单机上的QPS为3w/s,那么其实平均每毫秒只需要产生30个id即可,远没有达到设计的4096,也就是说通常情况下序列号的使用都是处在一个低水位,当发生时钟回拨的时候,这些尚未被使用的序号就可以派上用场了。
因此,可以对给定的基础序列号稍加修改,后面每发生一次时钟回拨就将基础序列号加上指定的步长,例如开始时是从0递增,发生一次时钟世丛判回拨后从1024开始递增,再发生一次时钟回拨则从2048递增,这样还能够满足3次的时钟回拨到同一时间点。

改变原来的末尾sequence生成方法:

snowflake算法给workerId预留了10位,即workId的取值范围为[0, 1023],事实上实际生搜改产环境不大可能需要部署1024个分布式ID服务,所以:将workerId取值范围缩小为郑备[0, 511],[512, 1023]这个范围的workerId当做备用workerId。workId为0的备用workerId是512,workId为1的备用workerId是513,以此类推……

D. 雪花算法源码

(1)开源ID:Twitter开源开源的分布式ID生成算法
(2)64 bit自增:使用一个64位的long型数字作为一个全局ID,且引入了时间戳概念,基本上保证自增的
(3)64位中,第一位是不用的,其中的41位作为毫秒数,10位(5+5)作为机房机器id,剩下的12位作为序列号

第一个部分,是 1 个 bit: 如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。
第二个部分是 41 个 bit: 表示的是时间戳。41 bit 可以标识 2 ^ 41 - 1 个毫秒值,换算成年就是表示 69 年的时间。
第三个部分是 5 个 bit: 表示的是机房 id,10001。
第四个部分是 5 个 bit: 表示的是机器 id,11001。部署在 2^10 台机器上,也就是 1024 台机器。
第五个部分是 12 个 bit: 表示的序号,就是某个机房某台机器上这一毫秒内同时生成的 id 的序号,0000 0000 0000。记录同一个毫秒内产生的不同 id

(1)请求:某个微服务service需要生成一个全局唯一Id,那就可以给部署了snokeFlake算法的系统发送一个请求来生成唯一Id
(2)二进制生成:接着会用"二进制位运算"来生成一个64位的long型id,并且64位第一个bit无意义,算法系统当然知道当前的时间戳,自己的机房和机器
(3)毫秒内累加序号:最后在判断下这是这个毫秒下的第几个请求,给这次生成的Id的请求累加一个序号,作为最后的12个bit
(4)算法保证唯一:在同一毫秒下,同一个机房下的一台机器,生成一个唯一的id(12位=4096个), 如果一毫秒生成的Id数量超过了4095,就知会等待下一个毫秒在生成!但是估计没有请求能有这么频繁!

E. 为什么有的URL长,有的短

一、前言
前几天整理面试题的时候,有一道试题是《如何将一个很长的URL转换为一个短的URL,并实现他们之间的相互转换?》,现在想起来这是一个绝对不简单的问题,需要考虑很多方面,今天和大家一起学习研究一下!

短网址:顾名思义,就是将长网址缩短到一个很短的网址,用户访问这个短网址可以重定向到原本的长网址(也就是还原的过程)。这样可以达到易于记忆、转换的目的,常用于有字数限制的微博、二维码等等场景。

关于短URL的使用场景,举个简单的例子来说明一下,看一下业务中使用短URL的重要性!

二、短地址使用场景
1、新浪微博

我们在新浪微博上发布网址的时候,微博会自动判别网址,并将其转换,例如:https://t.cn/RuPKzRW。为什么要这样做的?

这是因为微博限制字数为140字一条,那么如果我们需要发一些链接上去,但是这个链接非常的长,以至于将近要占用迹简我们内容的一半篇幅,这肯定是不能被允许的或者说用户体验很差的,所以短网址应运而生了,短网址这种服务可以说是在微博出现之后才流行开来的!往下看:

(1)首先,我先发一条微博带有一个URL地址:

(2)然后,看他转换之后显示的效果是什么样子的哪?

(3)查看对应页面元素的HTML源码如下:

(4)可以看出:https://blog.csdn.net/xlgen157387/article/details/79863301 被转换为:http://t.cn/RuPKzRW,此时你访问http://t.cn/RuPKzRW是可以定位到https://blog.csdn.net/xlgen157387/article/details/79863301,也就是实现了转换。

2、短网址二维码

网址在转换成短网址时,也可以生成相应的短网址二维码,短网址二维码的应用,二维码核心解决的是跨平台、跨现实的数据传输问题;而且二维码跟应用场景结合之后,所能解决的问题会越来越多。

(1)短网址二维码相比短链接更方便,能少输入,尽量少输入,哪怕只是少点一下键盘,都是有意义的。

(2)二维码只是扫描一个简单的链接,打开的却是一个世界。想象一下,用手机购买售货机里商品,二维码扫描是略快于从用手机找到该售货机并找到该商品的,而且这种操作相对于搜索/查找而言不是更优雅吗?

(3)所有商超里面的商品,都是使用条码来确定商品的唯一性的,去买单的时候都是扫描条码。试想,如果里面加入了更多产品的生产日期、厂家、流转途径、原材料等等信息,是不是厉害了呢?特别是针对食品信息的可追溯上,二维码应用场景更广泛。

三、短地址的好处
除了上述场景中,我们将长地址转换为短地址的使用场景的优点(压缩URL长度)之外,短地址还具有很多实际场景中的优点,例如:

(1)节省网址长度,便于社交化传播,一个是让URL更短小,传播更方便,尤其是URL中有中文和特殊字符,短网址解决很长的URL难以记忆不利于传播的问题;

(2)短网址在我们项目里启岩可以很好的对开放以及对URL进行管理。有一部分网址可以会涵盖性、暴力、广告等信息,这样我们可以通过用户的举报,完全管理这个连接将不出现在我们的应用中,对同样的URL通过加密算法之后,得到的地址是一样的;

(3)悄州御方便后台跟踪点击量、地域分布等用户统计。我们可以对一系列的网址进行流量,点击等统计,挖掘出大多数用户的关注点,这样有利于我们对项目的后续工作更好的作出决策;

(4)规避关键词、域名屏蔽手段、隐藏真实地址,适合做付费推广链接;

(5)当你看到一个淘宝的宝贝连接后面是200个“e7x8bv7c8bisdj”这样的字符的时候,你还会觉得舒服吗。更何况微博字数只有140字,微博或短信里,字数不够,你用条短网址就能帮你腾出很多空间来;

四、短网址服务提供平台
目前,国内网又很多提供短地址服务的平台,例如:

新浪:http://sina.lt/
网络:http://dwz.cn/
0x3:http://0x3.me/
MRW:http://mrw.so/
等等还有很多,这个可以搜索一下就会有很多!但是一个注意的是,如果使用某一个平台的短地址服务,一定要保证长期可靠的服务,不然一段时间失效了,我们以前已经转换的URL就完了!

这里以网络例,将我们上述博客的地址转换为短地址如下所示:

当然,对于我们的业务来说,如果自己可以提供自己的短URL服务那才是更好的,不需要受制于人!(中国芯片需要崛起!!!)

五、关于如何生成短地址URL的讨论
关于短地址URL如何生成方式的,网上有很多方式,有基于映射的,有基于Hash的,有基于签名的,但是总的来说并不能满足绝大部分场景的使用,或者说是一种错误的设计方式。这里不再重复造轮子!以下是知乎用户iammutex关于该问题的探讨,截图过来和大家一起学习一下:

作者:iammutex
链接:https://www.hu.com/question/29270034/answer/46446911
来源:知乎
着作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
六、生成短地址URL需要注意的
看到上述知乎用户iammutex关于如何正确生成短地址URL的探讨,我们知道了,可以通过发号器的方式正确的生成短地址,生成算法设计要点如下:

(1)利用放号器,初始值为0,对于每一个短链接生成请求,都递增放号器的值,再将此值转换为62进制(a-zA-Z0-9),比如第一次请求时放号器的值为0,对应62进制为a,第二次请求时放号器的值为1,对应62进制为b,第10001次请求时放号器的值为10000,对应62进制为sBc。

(2)将短链接服务器域名与放号器的62进制值进行字符串连接,即为短链接的URL,比如:http://t.cn/sBc。

(3)重定向过程:生成短链接之后,需要存储短链接到长链接的映射关系,即sBc -> URL,浏览器访问短链接服务器时,根据URL Path取到原始的链接,然后进行302重定向。映射关系可使用K-V存储,比如Redis或Memcache。

七、生成短地址之后如何跳转哪?
对于该部分的讨论,我们可以认为他是整个交互的流程,具体的流程细节如下:

(1)用户访问短链接:http://t.cn/RuPKzRW;

(2)短链接服务器http://t.cn收到请求,根据URL路径RuPKzRW获取到原始的长链接(KV缓存数据库中去查找):https://blog.csdn.net/xlgen157387/article/details/79863301;

(3)服务器返回302状态码,将响应头中的Location设置为:https://blog.csdn.net/xlgen157387/article/details/79863301;

(4)浏览器重新向https://blog.csdn.net/xlgen157387/article/details/79863301发送请求;

(5)返回响应;

八、短地址发号器优化方案
1、算法优化

采用以上算法,如果不加判断,那么即使对于同一个原始URL,每次生成的短链接也是不同的,这样就会浪费存储空间(因为需要存储多个短链接到同一个URL的映射),如果能将相同的URL映射成同一个短链接,这样就可以节省存储空间了。主要的思路有如下两个:

方案1:查表

每次生成短链接时,先在映射表中查找是否已有原始URL的映射关系,如果有,则直接返回结果。很明显,这种方式效率很低。

方案2:使用LRU本地缓存,空间换时间

使用固定大小的LRU缓存,存储最近N次的映射结果,这样,如果某一个链接生成的非常频繁,则可以在LRU缓存中找到结果直接返回,这是存储空间和性能方面的折中。

2、可伸缩和高可用

如果将短链接生成服务单机部署,缺点一是性能不足,不足以承受海量的并发访问,二是成为系统单点,如果这台机器宕机则整套服务不可 用,为了解决这个问题,可以将系统集群化,进行“分片”。

在以上描述的系统架构中,如果发号器用Redis实现,则Redis是系统的瓶颈与单点,因此,利用数据库分片的设计思想,可部署多个发号器实例,每个实例负责特定号段的发号,比如部署10台Redis,每台分别负责号段尾号为0-9的发号,注意此时发号器的步长则应该设置为10(实例个数)。

另外,也可将长链接与短链接映射关系的存储进行分片,由于没有一个中心化的存储位置,因此需要开发额外的服务,用于查找短链接对应的原始链接的存储节点,这样才能去正确的节点上找到映射关系。

九、如何用代码实现短地址
1、使用随机序列生成短地址

说到这里终于说到重点了,很多小伙伴已经按捺不住了,不好意思让大家失望了,这只是一片简单的文章,并不能把这么繁杂的一个系统演示清楚!秉着不要重复造轮子的原则,这里给出一个为数不多还算可以的实现短地址的开源项目:urlshorter

注意:urlshorter本身还是基于随机的方式生成短地址的,并不算是一个短地址发号器,因此会有性能问题和冲突的出现,和知乎用户iammutex 描述的实现方式还是有区别的!而关于短地址发号器的方式目前还没有找到更好的开源项目可供参考!

项目地址:https://gitee.com/tinyframework/urlshorter

2、使用SnowFlake发号器生成短地址

实现参考: https://github.com/beyondfengyu/SnowFlake http://www.wolfbe.com/detail/201611/381.html

Twitter的雪花算法SnowFlake,使用Java语言实现。

SnowFlake算法用来生成64位的ID,刚好可以用long整型存储,能够用于分布式系统中生产唯一的ID, 并且生成的ID有大致的顺序。 在这次实现中,生成的64位ID可以分成5个部分:

0 - 41位时间戳 - 5位数据中心标识 - 5位机器标识 - 12位序列号
5位数据中心标识、5位机器标识这样的分配仅仅是当前实现中分配的,如果业务有其实的需要,可以按其它的分配比例分配,如10位机器标识,不需要数据中心标识。

Java代码实现如下:

/**
* 进制转换工具,最大支持十进制和62进制的转换
* 1、将十进制的数字转换为指定进制的字符串;
* 2、将其它进制的数字(字符串形式)转换为十进制的数字
* @author xuliugen
* @date 2018/04/23
*/
public class NumericConvertUtils {

/**
* 在进制表示中的字符集合,0-Z分别用于表示最大为62进制的符号表示
*/
private static final char[] digits = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z',
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'};

/**
* 将十进制的数字转换为指定进制的字符串
* @param number 十进制的数字
* @param seed 指定的进制
* @return 指定进制的字符串
*/
public static String toOtherNumberSystem(long number, int seed) {
if (number < 0) {
number = ((long) 2 * 0x7fffffff) + number + 2;
}
char[] buf = new char[32];
int charPos = 32;
while ((number / seed) > 0) {
buf[--charPos] = digits[(int) (number % seed)];
number /= seed;
}
buf[--charPos] = digits[(int) (number % seed)];
return new String(buf, charPos, (32 - charPos));
}

/**
* 将其它进制的数字(字符串形式)转换为十进制的数字
* @param number 其它进制的数字(字符串形式)
* @param seed 指定的进制,也就是参数str的原始进制
* @return 十进制的数字
*/
public static long toDecimalNumber(String number, int seed) {
char[] charBuf = number.toCharArray();
if (seed == 10) {
return Long.parseLong(number);
}

long result = 0, base = 1;

for (int i = charBuf.length - 1; i >= 0; i--) {
int index = 0;
for (int j = 0, length = digits.length; j < length; j++) {
//找到对应字符的下标,对应的下标才是具体的数值
if (digits[j] == charBuf[i]) {
index = j;
}
}
result += index * base;
base *= seed;
}
return result;
}
}
/**
* Twitter的SnowFlake算法,使用SnowFlake算法生成一个整数,然后转化为62进制变成一个短地址URL
* @author beyond
* @author xuliugen
* @date 2018/04/23
*/
public class SnowFlakeShortUrl {

/**
* 起始的时间戳
*/
private final static long START_TIMESTAMP = 1480166465631L;

/**
* 每一部分占用的位数
*/
private final static long SEQUENCE_BIT = 12; //序列号占用的位数
private final static long MACHINE_BIT = 5; //机器标识占用的位数
private final static long DATA_CENTER_BIT = 5; //数据中心占用的位数

/**
* 每一部分的最大值
*/
private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);
private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
private final static long MAX_DATA_CENTER_NUM = -1L ^ (-1L << DATA_CENTER_BIT);

/**
* 每一部分向左的位移
*/
private final static long MACHINE_LEFT = SEQUENCE_BIT;
private final static long DATA_CENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
private final static long TIMESTAMP_LEFT = DATA_CENTER_LEFT + DATA_CENTER_BIT;

private long dataCenterId; //数据中心
private long machineId; //机器标识
private long sequence = 0L; //序列号
private long lastTimeStamp = -1L; //上一次时间戳

/**
* 根据指定的数据中心ID和机器标志ID生成指定的序列号
* @param dataCenterId 数据中心ID
* @param machineId 机器标志ID
*/
public SnowFlake(long dataCenterId, long machineId) {
if (dataCenterId > MAX_DATA_CENTER_NUM || dataCenterId < 0) {
throw new IllegalArgumentException("DtaCenterId can't be greater than MAX_DATA_CENTER_NUM or less than 0!");
}
if (machineId > MAX_MACHINE_NUM || machineId < 0) {
throw new IllegalArgumentException("MachineId can't be greater than MAX_MACHINE_NUM or less than 0!");
}
this.dataCenterId = dataCenterId;
this.machineId = machineId;
}

/**
* 产生下一个ID
* @return
*/
public synchronized long nextId() {
long currTimeStamp = getNewTimeStamp();
if (currTimeStamp < lastTimeStamp) {
throw new RuntimeException("Clock moved backwards. Refusing to generate id");
}

if (currTimeStamp == lastTimeStamp) {
//相同毫秒内,序列号自增
sequence = (sequence + 1) & MAX_SEQUENCE;
//同一毫秒的序列数已经达到最大
if (sequence == 0L) {
currTimeStamp = getNextMill();
}
} else {
//不同毫秒内,序列号置为0
sequence = 0L;
}

lastTimeStamp = currTimeStamp;

return (currTimeStamp - START_TIMESTAMP) << TIMESTAMP_LEFT //时间戳部分
| dataCenterId << DATA_CENTER_LEFT //数据中心部分
| machineId << MACHINE_LEFT //机器标识部分
| sequence; //序列号部分
}

private long getNextMill() {
long mill = getNewTimeStamp();
while (mill <= lastTimeStamp) {
mill = getNewTimeStamp();
}
return mill;
}

private long getNewTimeStamp() {
return System.currentTimeMillis();
}

public static void main(String[] args) {
SnowFlake snowFlake = new SnowFlake(2, 3);

for (int i = 0; i < (1 << 4); i++) {
//10进制
Long id = snowFlake.nextId();
//62进制
String convertedNumStr = NumericConvertUtils.toOtherNumberSystem(id, 62);

//10进制转化为62进制
System.out.println("10进制:" + id + " 62进制:" + convertedNumStr);

//TODO 执行具体的存储操作,可以存放在Redis等中

//62进制转化为10进制
System.out.println("62进制:" + convertedNumStr + " 10进制:" + NumericConvertUtils.toDecimalNumber(convertedNumStr, 62));
System.out.println();
}
}
}
//生成结果:
10进制:185784275776581632 62进制:dITqmhW2

F. java 能否实现桌面下雪花的效果使用swing

/*
*实现在窗体上随机布满300个雪花("*"),滚动明谨衡
*在上次的课基础上增加了for循环(一次要产生300个变量),随机数,数组 ;
*下面的序号为步骤
*/ import java.awt.* ; //(3)导入awt包
public class Star {
public static void main(String args[]) {
Frame w = new Frame() ; //(1)绘晌悉制窗体
w.setSize(1024,768) ; //(4)把窗体布满全屏
w.setBackground(Color.BLACK) ; //(5)背景为黑颜色

MyPanel mp = new MyPanel() ; //(7)把MyPanel对象mp,添加到窗体w上
w.add(mp) ;

Thread t = new Thread(mp) ;
t.start() ; //(12)启动线程

w.show(); //(2)显示窗体
}
}
//(6)继承Panel类
class MyPanel extends Panel implements Runnable { //(11)实现Runnable接口
int x[] = new int[300] ;
int y[] = new int[300] ; //(8)定义300个数组变量 MyPanel(){
for(int i = 0;i < 300; i++) {
x[i] = (int)(Math.random()*1024) ;
y[i] = (int)(Math.random()*768) ; //(9)当程序走到第6步的时候程序就会调用构成函数
} //由于随机数是从0-1之间的数任意产出所以x乘以1024,y乘以768再转换为int类型
}
public void paint(Graphics g) {

for(int i = 0;i < 300; i++) {
g.setColor(Color.WHITE) ;
g.drawString("*",x[i],y[i]) ;
//g.drawString("*",30,30) ;(7)绘制一个星星在屏幕的x=30,y=30的位置上
} //(10)绘制300个雪花,把坐标30,30,改成x[i],y[i] ;
} //做到这步可以实现在黑色的天空布满300个星星

public void run() {
while(true) { //(13)实现产生300个雪花往下落死循环

for(int i = 0 ; i < 300; i++) {
y[i]++ ; //(14)y坐标不断的+1
if(y[i] > 768){ //(18)如果y轴坐标大于768时,则y = 0,回到窗体的顶部
y[i] = 0 ;
}
}
try{ //(16)用try,catch解决线程休眠的异常

Thread.sleep(20) ; //(15)在每次y轴坐标+1后线程休眠20毫秒
}catch(Exception e) {}
repaint() ; /激做/(17)雪花在新的位置重画
}
}
}

G. 想实现多个雪花,为什么只有一个雪花,怎么实现多线程,另外怎样实现无窗体的动画, 就跟q宠物那样的

没用Java写过,现这种效果最好是用DriectX或者OpenGL里实现,要不,用Java这类托管语言来做的话,所有的东西都是面向对象困空的,堆和托管堆交互很频繁,还有开N多线程,线程的数量是有限制的。如果你需要的效果是直接在屏幕上即没有容器的那种,可以直接操作显存试试,这个要用底层语言比如C嵌纯轮汇编操作显存的文件映射区域等等,其中雪花飘落的过程用一种计算表达式来实现,比如其中有一些速度因子,大小因子,轨迹因子,等等(看自己喜好)。记得以前写过一个DriectX里的粒子运动效果,和雪花飘落的功能很相似,只是它不能直接在桌做尺信面上显示,需要容器。

H. Springboot解决雪花算法ID到前端精度丢失

JS的数字类型目前支持老穗亏的最大值为:9007199254740992(16位),一旦数字超过这个值,JS将会丢失精度,导致侍神前后端的值出现不一致。

JAVA的Long类型的 最大值为:9223372036854775807(19位),snowflake的算法在实现上确实没问题的,但实际运用的时候一定要避免这个潜在的深族孝坑。

Jackson注解方式 选一个

Fastjson注解方式

I. SnowFlake(雪花算法)

首先雪清郑花算法就是生成一个64位的二进制数据,最终转换成长度为19的十进制正整数整型数据

解链棚释一下这64位分别代表什么意思,从左往右。

当然这个算法的强大并不仅仅如此而已,这个算法的时间位、机器位、序列号位都是可以根据不同场景来调整的,那么他们碰撞的几率也随着调整发生改棚正则变。

接下来上干货

总体来说算法并不难,思路清晰,其中的牵扯到的知识点就是各个数据间进行位运算,这块知识薄弱的可以去补一补。
一篇文档不仅get到了雪花算法的思想,还发现了就像当初发现随机函数 Random 一样,随机只是在一定范围内随机,唯一只是在某一个时间段唯一。场景是度量算法的尺度,致敬 Twitter 。

J. JAVA怎么实现一屏幕的雪花飘落,方向随机,有大有小

第一种。。你的雪花是图片,那么你自己多做几张旋转的图片,在每次飘落的时候,1秒后改早瞎换取另外一张图片。或者做成gif图片。
第二种:你的是自己画的雪花睁塌,那么你每秒要重新绘制你的雪花。

闪屏 是指面板刷新核空带来的负面的效果。。

阅读全文

与java有实现雪花算法吗相关的资料

热点内容
pdf打印底色去掉 浏览:443
java快递接口 浏览:387
哪个app可以教新爸爸 浏览:210
如何查看服务器系统版本信息 浏览:524
成都市土地出让金算法 浏览:702
钢筋加密标记 浏览:575
ps中扩展功能在文件夹的什么位置 浏览:903
双极压缩机为什么要先高压 浏览:527
苹果手机服务器填什么 浏览:832
android移动动画效果 浏览:691
电子和服务器是什么意思 浏览:691
phpurl中文乱码问题 浏览:893
程序员那么可爱大结局陆漓产子 浏览:538
java如何从云服务器读取本地文件 浏览:924
压缩空气软管制作方法 浏览:912
天河三号算法 浏览:924
php队列教程 浏览:632
洪水命令 浏览:530
安卓怎么弄成苹果在线 浏览:435
谷歌web服务器地址 浏览:900