⑴ 985硕士算法工程师年薪
算法工程师硕士平均工资¥23.3K,对比硕士平均工资13.0K,高 79.2% 。
算法工程师应届生毕业起薪3.2万,近九成算法工程师为硕博学历。而人工智能人才大多来自985高校,清华第1,北大第3。
网传毕业生百万年薪只是凤毛菱角,算法工程师起薪30w,至少需要985相关专业硕士毕业,而博士想要达到50w以上年薪。
⑵ 算法岗面试都会考代码吗
会。
算法岗面试的第一关,手撕代码环节,主要考察你对数据结构和一般算法的掌握,以及作为码农最基本的编程能力。二至三道编程题写完之后,就进入到了面试的第二关,算法基础知识考察环节,这里的算法指的是机器学习、深度学习以及细分方向上,比如CV、NLP相关的算法知识。
⑶ 定向算法研究生就业前景
定向算法研究生就业前景非常乐观,它可以应用在AI、大数据、机器学习领域,助力社会进步。因此,它的就业前景很可观,大学生依然有很多机会准备自己的未来。
⑷ 算法和开发岗相比,哪个前景更好呢
这两个岗位的工作内容我都接触过,目前我带的大数据团队中既有算法工程师也有开发工程师,所以我说一说这两个岗位的区别,以及未来的发展方向。
算法设计与算法实现
通常涉及到算法的岗位有两个,分别是算法设计和算法实现,现在有不少团队把这两个岗位进行合并,做算法设计的同时也要负责实现。但是也有一些团队是分开的,做算法设计的不管实现过程。
算法岗位门槛是很高的,人才也是稀缺的,总体发展空间很好。还有一点算法岗位的不可替代性强,如果有机会去算法岗建议是去的,一般学历要求在硕士,Java本科大专都是可以的哈。从工作的复杂性上来说,算法工程师的工作强度还是比较大的,但是算法工程师的职业周期也比较长。
算法岗主要是在于如何量化我们的产出,写代码做开发非常简单。你完成了一个任务或者是项目,有了经验之后,这是在简历上实打实的东西。很多算法工程师最终成长为企业的首席科学家,或者是首席技术官等岗位,可以说算法工程师的发展前景还是非常不错的。
开发岗位
软件团队的大部分岗位都是开发岗位,有前端开发、后端开发、移动端开发等,可以说大部分程序员做的都是开发岗的工作。
与算法岗位不同的是,开发岗位人数多,占比大,而且大部分开发岗位的职业周期都比较短,一般开发岗位在做到一定年龄(比如35岁)之后都会转型。一部分会转向项目经理等管理岗位,一部分会转型做架构师,还有一部分转型为行业咨询专家等,当然,也有一部分开发人员转型为算法工程师。
一个优秀的开发者不是网上说的那样吃青春烦的,每一个岗位都会有自己的未来职业发展。开始确实是青春饭,因为大多数人不懂如何提升自己在公司当中的潜在价值,或者不知道如何更加聪明的完成任务。
其实两个岗位没有什么可比性。聊聊这两个岗位的突出项,开发门槛不很高的,算法就相对高一些,因为涉及大数据人工智能等等。现在做算法的话,5年左右基本会成为专家,给别人讲,因为大多数的人是不太懂算法的,所以会觉得你很牛。收入上来说,算法的收入是高于开发的。创业的话,大白话就是算法其实是更容易给别人讲故事的,而且相对产品来说,算法是更容易形成产品的。
⑸ 你觉得算法工程师的就业前景如何
随着大数据和人工智能领域的不断深入发展,自然语言处理、机器学习等方向成为求职的大热门,算法工程师也自然而然成为目前最炙手可热的岗位。虽然算法工程师一直被频频提及,但是许多人对这个岗位的了解还知之甚少。那么算法工程师究竟是做什么的?发展前景怎么样呢?
由于算法工程师对于知识结构的要求比较丰富,同时算法工程师岗位主要以研发为主,需要从业者具备一定的创新能力,所以要想从事算法工程师岗位往往需要读一下研究生,目前不少大型科技企业对于算法工程师的相关岗位也有一定的学历要求。
⑹ 计算机开发岗和算法岗都有些什么区别
其实只有在大厂这两个岗位才会被分的很清楚,小公司的话一般都是混着用,毕竟算法工程师都很贵,得保证利益最大化才行。
算法岗
这种岗位负责新算法的研发工作和论文的解读、编写,一般存在于一些大厂的实验室,比如国内的阿里、网络、腾讯、华为,国外的openAI、脸书、deepmind等。而且学历和专业要求极高,基本都是科班的名校硕士或者博士,这也是网传的算法门槛高的真正岗位,高学历保证了技术水准的同时也保证了技术员的学习接收能力,保证了国外如果有新的技术论文可以第一时间解读和实践。
算法工程师岗
目前我就是这个岗位,主要是负责将已经成熟的技术结合到商业项目中偏向业务一些,这个这个岗位就没有算法岗那么夸张,基本上只要是好一点的本科计算机专业就够满足面试要求了,目前商汤、旷视、寒武纪这些都偏向这个方向。
其实还有第三档的公司主要做的是产品,基本上就是调用模型然后应用到一些软件中去,来优化产品功能,基本上懂一些算法的开发就能做到这项工作。
⑺ 海康算法岗可以跳槽去大厂吗
可以。只要专业技能有大幅度提高就可以跳槽去大厂。算法岗是大中型企业在已经有完整的盈利闭环系统的基础上,需要对其盈利模式进行深度的优化,使得系统可以更加具有针对性的服务用户目的的工程人员。
⑻ 为什么一线互联网公司的校招高薪都是算法类
高端工程类岗位所需要的能力,高校很难培养出来。中低端工程类岗位,可能确实不太值钱。
。算法类因为一些历史遗留问题,大公司之前懂得人不多,而学校确实有些老师是行家里手,学生也可以在某一个小领域,做到精通。
这推高了前两年算法领域的校招价。然而,随着公司相关人才越来越多,算法类的稀缺性也在下降。另外,现在很多技术比较好的组也比较认清了,高端算法类毕业生已经不能靠论文数量,甚至已经不能靠发的会议质量了。
⑼ cv算法劝退吗
作者丨记忆的迷谷@知乎(已授权)
来源丨https://zhuanlan.hu.com/p/576729164
编辑丨极市平台
写在前面
是的,今年的秋招确实是肉眼可见的难度增加:缩招、裁员、毕业生人数爆炸,这些关键字已然成为2023届秋招的代名词。竞争激烈,算法岗入坑的难度更是直线上升。卡第一学历、卡名校、卡重点实验室......这些“基本操作”早已司空见惯。
在卷成麻花的2022年,一个没有上述背景、没有名校撑腰的普通科班小硕能入坑中大厂的CV算法岗吗?
我的回答是:能,但是很难、很卷,且容错率较低。因为CV算法岗的竞争对手基本都在985分段,且动不动就是某C9高校的重点实验室。
因为身边的人不走算法岗,所以全程基本靠自己摸索,期间遇到了各种困难、走了许多弯路。为了记录这段有意义的经历,同时给纯昌自己一样出身普通的师弟们(实验室没有师妹)提供CV算法岗的就业思路,将本人的整个秋招的真实历程分享给大家。【长文警告↓↓↓】
导读:
本篇文章主要分为以下几个章节:
【背景】,【历程】主要介绍了本人秋招前的状态,以及从研究生入学到秋招的过程。
【需要掌握的技能】从硬实力、软实力两个方面介绍秋招时可以增加自己竞争力的点。由于每个人的基础情况不同,CV算法岗也有较多细分方向,本章节仅供参考,大佬请直接略过。
【总结】秋招的一些小的建议。
补充说明: 1. 阅读文章之前,请务必了解“幸存者偏差”这一概念,CV算法岗的秋招形式严峻,请保持理智。 2. 本文的“普通”一词是指本科双非、硕士非985、非重点实验室、无顶会、投递岗位为CV算法岗的计算机科班应届研究生,并无冒犯之意。
背景概述:
本人本科双非软件工程专业,硕士普通211的计算机技术专业,目前研究方向是计算机视觉。
秋招拿到【虹软、vivo、OPPO三家offer,均为计算机视觉类(CV)算法岗,有SP也有大白菜】(除去国企银行),和大佬们的offer没得比,但感觉基本接近自己的预期。(虽然已于9月获得虹软转正意向书,为了给自己的秋招不留遗憾,同时可以通过不同的offer明确自己在秋招大军的整体定位,所以坚持完整参与了秋招)。
具体情况:
身边的环境
除了我的大大大师兄(高我三四届)拿了某中厂算法offer以外,我们实验室就再也没有人走过算法岗。包括同门在内的同届同学,弯塌也基本都是开发。师兄和同学也都劝退我走算法,改开发。
在我找到第一份算法实习之前,大部分人都认为我选择这条路是一个头铁且愚蠢的行为,且常听到阴阳怪气的言论。
每次刷知乎,总能看到“19年算法岗供大于求”、“20年算法岗诸神黄昏”、“21年算法岗灰飞烟灭”,今年又换了个四字词语 --“人间炼狱”。各路“过来人”也都是全方位劝退。
打开网易新闻 查看精彩图片
好在自己的家人比较支持我自己做决定,只不过最后选择offer的时候,家人们曾劝我躺平一个随手拿的国企,放弃自己的专业,我要真想躺平还用的着这么卷么,大无语。
总之,身边自始至终支持我走算法岗的,四舍五入就只剩自己了。没关系,意料之中罢了。
自己拥有的一些条件
导师不会push我们给他发论文,且只要完成规定的任务,就允许我们自己出去找实习。【秋招上岸的关键性因素】
实验室有免费使用的入门级计算资源,虽然只是1080Ti这种级别的显卡,且当时还要和师兄一起用。但是拿来学习跑跑实验还是绰绰有余的。同时家里赞助更新了一台2060GPU的笔记本,用来本地调试也挺好使。
学校的线下课程在研一期间全部上完,研一课程结束就可以做实习早鸟。
历程
本节按照时间线的顺序,叙述了本人历时两年的秋招战线。
【初识算法】2020年9月~2020年10月
结束摆烂、确定方向阶段。研究生入学,之前联系的导师莫名其妙把我鸽 了,不得不重新找导师。
我的选择标准有两个:一是教授,二是允许实习。在本科国奖托底和自己死皮赖脸的坚持下,我现在的导师给加了一个名额,顺利入组。
导师给我明确了CV的研究方向,同时分享了一些资料(因为才学疏浅,当时没能看懂,后面就跑去B站知乎学习了),每周组会汇报自己的学习进度。也是这个时候发现自己对CV挺感兴趣的,也是初生牛犊不怕虎,确定自己走算法岗的方向。
【走出迷茫】2020年11月~2021年2月
夯实基础阶段。因为导师安排的任务主要偏学术,我也意识到:如果仅仅靠导师的指导、按部就班的学习就去找算法岗工作,是远远不够的。埋裤圆于是,自己找到了一位前辈指点自己系统地入门深度学习。之后制定学习计划、学习基础铺垫知识、筛选和阅读paper、debug源码、参照已开源的工作来复现未开源的论文......在完成导师布置的任务之余,花了大量时间,算是搞明白深度学习的路子了。在此期间,完成导师安排的项目、自己找一些开源的项目补充学习,可以加深自己的理解同时还能润色简历。
打开网易新闻 查看精彩图片
当时的部分学习计划(分类&检测篇)
因为搞算法除了python的基本要求外,C++多少也要会一些。也是从这个时候,制定了刷力扣的长期计划,强迫自己学习C++,编程题也全部用C++写。刷题不求多,但重在把思维和语法熟练度锻炼好。
【稳扎稳打】2021年3月~2021年5月
备战实习阶段。过年给自己放了半个月假,开始着手找第一段实习。听了师兄的建议(当时师兄在鹅厂实习搞开发,respect),开始刷牛客面经,查漏补缺,力扣保证一周刷七题。
同时系统地整理之前学习的笔记,也是这个时候我写了知乎的第一篇博客,并立下了一年写完50篇技术博客的flag(已于2022年4月达成)。
【初露锋芒】2021年5月~2021年6月
第一段实习的投递、面试阶段。第一次投实习没有经验,先投了一些难度拉满的大厂:商汤、字节都给了面试,但是面得稀烂,商汤的面试官更是在无coding题的情况下问了我两个小时的问题,面试结束后当场自闭。
后来总结了面试失败的经验,也补上了自己面试中没有答出来的知识点。现在想想,当时的我真的是愚蠢至极,就应该先面小厂,积累面试经验,起码不至于面试过后脏了自己的大厂面评(因为秋招的时候,这两家秒挂我的简历,应该是自己作没的 )。
经历了十多场面试,也积累了足够的经验,最终自己如愿拿到了vivo AI研究院的算法岗实习offer。
打开网易新闻 查看精彩图片
【渐入佳境】2021年7月~2022年1月
第一段实习。在我的软磨硬泡下,导师先是同意我出去实习半年(美滋滋)。
入职以后,令人窒息的压力接憧而至:老大给我的研究方向是神经网络结构搜索(NAS)方向 -- 一个自己从来没听说过的预研方向,与此同时,同组的实习生来自武大,还比我早来一个月,需要尽快跟进她的进度。于是,自己白天调研相关工作、复现一些论文、慢慢接手项目,晚上加班读源码、刷博客(卷到了旁边的实习生,实在抱歉)。第一个月顶着压力,总算把进度拉上来,项目步入正轨。
9月,恰好看到Kaggle有个CV新赛,恰好这时候蓝厂取消大小周,于是就报名参加了。之后差不多两个月的时间,白天赶项目,晚上和周末搞比赛。
11月,项目需要优化的模型计算量首次降低到100M以下,同时比赛也拿到了铜牌(第一次参赛,拉胯的成绩,但尽力了)。
后面的时间就是边实习边准备开题,顺利完成了实习阶段的任务,拿到了口头转正(可惜AI研究院今年不招人,靠自己重新走流程拿的影像算法部,权衡了一下,还是想待在自己熟悉且喜欢的组),与nice的同事们告别。
【一波三折】2022年2月~2022年5月
向导师争取了第二次实习的机会,开始着手准备暑期实习,同时和之前实习的武大同学合作一篇论文。但没高兴多久,上海的疫情就爆发了,几乎整个上海的实习HC都没了,与此同时学校疫情封楼,天天牢饭吃到心态爆炸,差点想转开发(庆幸自己没转)。
虽然有了一段大厂实习经历,但找第二段实习甚至更艰难:收到一堆海笔,只收到了三家面试(某周的周一面了美团,面试官很nice,面试也顺利,他还表达了希望我面试通过后早点过去实习,结果周五反手收到个感谢信☺)。磕磕绊绊拿到了第二份offer -- 虹软的计算机视觉算法岗实习。
打开网易新闻 查看精彩图片
【稳中求胜】2022年5月~2022年9月初
第二段实习。这次研究方向是视线检测,因为在蓝厂的实习积累了许多项目经验,所以无论是搭环境还是上手项目都很快。
我们组所有的实习生每周都会单独开个周会,可以了解大家的进展,同时还能偷学一些技巧,因此在这边自己成长的速度很快。和我搭档的实习生是天大的,我俩都做视线方向,经常一起讨论项目中遇到的难点,如我mentor所说,1+1 > 2,无论是实习还是秋招,找个伴共同进步总好过孤军奋战。
7月~9月初,工作时间肝项目,下班以后的空闲时间刷题、刷面经,准备转正答辩,投提前批(算法提前批卡学校,基本全泡池子),投秋招,基本每天搞到11点才休息(转正名额有限,不敢做赌狗)。
8月底顺利通过转正答辩,9月初拿到了虹软为数不多的转正意向书。
【冲刺终点】2022年9月~2022年10月
收获的季节。实习结束,导师召回返校,一边做导师安排的工作一边搞秋招。
总共笔试了二三十家公司,面了六七家(因为不是985、研究方向有差异,也被拒了蛮多)。最后到手虹绿蓝三家offer,于十月中旬尘埃落定。平时经常做RGB图像算法,没想到拿的offer也刚好涵盖RGB三种颜色 ,或许这就是缘分吧。
需要掌握的技能 硬实力篇
1.基础知识
入坑算法岗的基本功。推荐李航老师的《统计学习方法》以及周志华老师的西瓜书。入门深度学习推荐斯坦福《CS231N》课程(在B站上可以找到中文字幕版)。不太推荐一上来啃《深度学习》(花书),对小白不友好,但是后期可以当工具书使用。
确定了自己的研究 / 学习的方向后,可以在各类博客上找到对应方向大牛整理的paper list,选取一些经典必看的论文,并在Github中找到对应的源码阅读【一定要看源码,一定要看源码,一定要看源码】,面试的时候,资深的面试官经常会问一些细节问题,而只有你理解了源码是怎么实现的前提下,应对这些问题才能游刃有余。在学习时,要及时总结和整理,将论文里的知识精炼成自己笔记的过程,其实就相当于模拟回答面试官问题的过程。整理的东西多了,就变成的所谓的“八股文”,相较于开发,算法的面经更灵活,面试的问题也因人而异,一份属于自己的“八股”很重要,同时它也是实习和秋招面试前最有价值的复习资料。
2.实习
如果导师允许的话,【一定要尽早出去实习,一定要尽早出去实习,一定要尽早出去实习】。实习经历越丰富、实习公司的层次越高、实习的时间越久,你的竞争力越强。曾经有HR和我说过,CV算法岗的普通分段同学很少能进流程,如果没有实习经历,自己大概率会被淘汰。
PS:实验室不给实习的同学,也不要灰心,实习不是入职算法岗的必要条件,但是如果你但凡有机会实习,一定要好好把握。
3.项目
冷知识:在简历和面试中把自己的论文以项目的形式描述,面试官会更感兴趣。
“如果你发表的不是顶会,那么我更希望你用项目的形式叙述你的作品。”这是面试时一位面试官的原话。所以在这里,我把自己的论文归类为项目,且当我把论文以项目的形式更新到简历中,后面的面试会问到这部分工作的频率明显增加。
很多人觉得自己的项目可能不是那么出彩,觉得拿不出手。在这里完全可以打消这个顾虑,我们投的又不是天才少年计划,所以只要能把自己的项目讲明白,言之有理,都可以作为一个加分项。在面试前,一定要梳理好自己的项目,例如解决的问题、应用场景、创新点、难点、数据是怎么处理的、badcase是怎么优化的、后面还能改进的地方......讲项目的时候一定要自信、有条理,建议面试前可以多试讲几次录个音。
4.比赛
打比赛有两种策略:
第一种策略:运气好,碰到了自己熟悉方向的比赛,在比赛中尽可能刷高自己的名次。
第二种策略:只有自己感到陌生的方向(不过也是CV类比赛),用最快的时间上手该方向,然后尽可能深入,争