1. 数学建模建模分为几种类型,分别用什么法求解
数学建模应当掌握的十类算法
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算
法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要
处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题
属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、
Lingo软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉
及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计
中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是
用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实
现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛
题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好
使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只
认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非
常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常
用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调
用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该
要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab
进行处理)
2. 流失预警建模时需要输出模型的规则,则选用哪一种分类算法
遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程和链陵的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(indivial)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,唤桥如黑头发的特征是由染色体中控制这一特征的某种唤戚基因组合决定的。
3. 推荐算法之模型协同过滤(1)-关联规则
关联规则是数据挖掘中的典型问题之一,又被称为购物篮分析,这是因为传统的关联规则案例大多发生在超市中,例如所谓的啤酒与尿布传说。事实上,“购物篮”这个词也揭示了关联规则挖掘的一个重要特点:以交易记录为研究对象,每一个购物篮(transaction)就是一条记录。关联规则希望挖掘的规则就是:哪些商品会经常在同一个购物篮中出现,其中有没有因果关系。为了描述这种“经常性”及“因果关系”,分析者定义了几个指标,基于这些指标来筛选关联规则,从而得到那些不平凡的规律。
(1)计算支持度
支持度计数:一个项集出现在几个事务当中,它的支持度计数就是几。例如{Diaper, Beer}出现在事务 002、003和004中,所以它的支持度计数是3
支持度:支持度计数除于总的事务数。例如上例中总的事务数为4,{Diaper, Beer}的支持度计数为3,所以它的支持度是3÷4=75%,说明有75%的人同时买了Diaper和Beer。
(2)计算置信度
置信度:对于规则{Diaper}→{Beer},{Diaper, Beer}的支持度计数除于{Diaper}的支持度计数,为这个规则的置信度。例如规则{Diaper}→{Beer}的置信度为3÷3=100%。说明买了Diaper的人100%也买了Beer。
一般地,关联规则被划分为动态推荐,而协同过滤则更多地被视为静态推荐。
所谓动态推荐,就是推荐的基础是且只是当前一次(最近一次)的购买或者点击。譬如用户在网站上看了一个啤酒,系统就找到与这个啤酒相关的关联规则,然后根据这个规则向用户进行推荐。而静态推荐则是在对用户进行了一定分析的基础上,建立了这个用户在一定时期内的偏好排序,然后在这段时期内持续地按照这个排序来进行推荐。由此可见,关联规则与协同过滤的策略思路是完全不同的类型。
事实上,即便在当下很多能够拿到用户ID的场景,使用动态的关联规则推荐仍然是值得考虑的一种方法(尤其是我们经常把很多推荐方法的结果综合起来做一个混合的推荐),因为这种方法的逻辑思路跟协同过滤有着本质的不同,问题似乎仅仅在于:个人的偏好到底有多稳定,推荐到底是要迎合用户的长期偏好还是用户的当下需求。
挖掘关联规则主要有Apriori算法和FP-Growth算法。后者解决了前者由于频繁的扫描数据集造成的效率低下缺点。以下按照Apriori算法来讲解。
step 1: 扫描数据集生成满足最小支持度的频繁项集。
step 2: 计算规则的置信度,返回满足最小置信度的规则。
如下所示,当用户购买1商品时推荐2、3商品
4. 大数据挖掘的算法有哪些
大数据挖掘的算法:
1.朴素贝叶斯,超级简单,就像做一些数数的工作。如果条件独立假设成立的话,NB将比鉴别模型收敛的更快,所以你只需要少量的训练数据。即使条件独立假设不成立,NB在实际中仍然表现出惊人的好。
2. Logistic回归,LR有很多方法来对模型正则化。比起NB的条件独立性假设,LR不需要考虑样本是否是相关的。与决策树与支持向量机不同,NB有很好的概率解释,且很容易利用新的训练数据来更新模型。如果你想要一些概率信息或者希望将来有更多数据时能方便的更新改进模型,LR是值得使用的。
3.决策树,DT容易理解与解释。DT是非参数的,所以你不需要担心野点(或离群点)和数据是否线性可分的问题,DT的主要缺点是容易过拟合,这也正是随机森林等集成学习算法被提出来的原因。
4.支持向量机,很高的分类正确率,对过拟合有很好的理论保证,选取合适的核函数,面对特征线性不可分的问题也可以表现得很好。SVM在维数通常很高的文本分类中非常的流行。
如果想要或许更多更详细的讯息,建议您去参加CDA数据分析课程。大数据分析师现在有专业的国际认证证书了,CDA,即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证, 旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。 “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。点击预约免费试听课。
5. 什么是算法,都什么,举个例子,谢谢
根据我个人的理解:
算法就是解决问题的具体的方法和步骤,所以具有以下性质:
1、有穷性: 一个算法必须保证执行有限步之后结束(如果步骤无限,问题就无法解决)
2、确切性:步骤必须明确,说清楚做什么。
3、输入:即解决问题前我们所掌握的条件。
4、输出:输出即我们需要得到的答案。
5、可行性:逻辑不能错误,步骤必须有限,必须得到结果。
算法通俗的讲:就是解决问题的方法和步骤。在计算机发明之前便已经存在。只不过在计算机发明后,其应用变得更为广泛。通过简单的算法,利用电脑的计算速度,可以让问题变得简单。
譬如:计算 1×2×3×4。。。。×999999999×1000000000
如果人为计算,可想而知,即使你用N卡车的纸张都很难计算出来,即使算出来了,也很难保证其准确性。
如果用VB算法:
dim a as integer
a=1
For i =1 to 1000000000
a=a*i
next i
input a
就这样,简单的算法,通过计算机强大的计算能力,问题就解决了。
关于这段算法的解释:i每乘一次,其数值都会增大1,一直乘到1000000000,这样,就将从1到1000000000的每个数都乘了。而且每乘一次,就将结束赋给a,这样,a就代表了前面的相乘的所有结果,一直乘到1000000000。最后得到的a,就是我们想要的。
〓以下是网络复制过来的,如果你有足够耐心,可以参考一下。
算法(Algorithm)是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。
一个算法应该具有以下五个重要的特征:
1、有穷性: 一个算法必须保证执行有限步之后结束;
2、确切性: 算法的每一步骤必须有确切的定义;
3、输入:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件;
4、输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
5、可行性: 算法原则上能够精确地运行,而且人们用笔和纸做有限次运算后即可完成。
计算机科学家尼克劳斯-沃思曾着过一本着名的书《数据结构十算法= 程序》,可见算法在计算机科学界与计算机应用界的地位。
[编辑本段]算法的复杂度
同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。
时间复杂度
算法的时间复杂度是指算法需要消耗的时间资源。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做
T(n)=Ο(f(n))
因此,问题的规模n 越大,算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。
空间复杂度
算法的空间复杂度是指算法需要消耗的空间资源。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。
详见网络词条"算法复杂度"
[编辑本段]算法设计与分析的基本方法
1.递推法
递推法是利用问题本身所具有的一种递推关系求问题解的一种方法。它把问题分成若干步,找出相邻几步的关系,从而达到目的,此方法称为递推法。
2.递归
递归指的是一个过程:函数不断引用自身,直到引用的对象已知
3.穷举搜索法
穷举搜索法是对可能是解的众多候选解按某种顺序进行逐一枚举和检验,并从众找出那些符合要求的候选解作为问题的解。
4.贪婪法
贪婪法是一种不追求最优解,只希望得到较为满意解的方法。贪婪法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪婪法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯。
5.分治法
把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
6.动态规划法
动态规划是一种在数学和计算机科学中使用的,用于求解包含重叠子问题的最优化问题的方法。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。
7.迭代法
迭代是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的过程,为实现这一过程所使用的方法统称为迭代法。
[编辑本段]算法分类
算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法。
[编辑本段]举例
经典的算法有很多,如:"欧几里德算法"。
[编辑本段]算法经典专着
目前市面上有许多论述算法的书籍,其中最着名的便是《计算机程序设计艺术》(The Art Of Computer Programming) 以及《算法导论》(Introction To Algorithms)。
[编辑本段]算法的历史
“算法”即算法的大陆中文名称出自《周髀算经》;而英文名称Algorithm 来自于9世纪波斯数学家al-Khwarizmi,因为al-Khwarizmi在数学上提出了算法这个概念。“算法”原为"algorism",意思是阿拉伯数字的运算法则,在18世纪演变为"algorithm"。欧几里得算法被人们认为是史上第一个算法。 第一次编写程序是Ada Byron于1842年为巴贝奇分析机编写求解解伯努利方程的程序,因此Ada Byron被大多数人认为是世界上第一位程序员。因为查尔斯·巴贝奇(Charles Babbage)未能完成他的巴贝奇分析机,这个算法未能在巴贝奇分析机上执行。 因为"well-defined procere"缺少数学上精确的定义,19世纪和20世纪早期的数学家、逻辑学家在定义算法上出现了困难。20世纪的英国数学家图灵提出了着名的图灵论题,并提出一种假想的计算机的抽象模型,这个模型被称为图灵机。图灵机的出现解决了算法定义的难题,图灵的思想对算法的发展起到了重要作用的。
6. 算法是什么意思
算法,从字面意义上解释,就是用于计算的方法,通过该这种方法可以达到预期的计算结果。目前,被广泛认可的算法专业咐渣敏定义是:算法是模型分析的一组可行的,确定的,有穷的规则。通俗的说,算法也可以理解为一个解题梁陆步骤,有一些基本运算和规定的顺序构成。但是从计算机程序设计的角度看,算法由一系列求解问题的指令构成,能根据规范的输入,在有限的时间内获得有效的输出衡枝结果。算法代表了用系统的方法来描述解决问题的一种策略机制。
完成同一件事的不同的算法完成的时间和占用的资源可能并不相同,这就牵扯到效率的问题。算法的基本任务是针对一个具体的问题,找到一个高效的处理方法,从而完成任务。而这就是我们的责任了。
算法的五个特征:
一个典型的算法一般都可以抽象出5个特征:
有穷性:算法的指令或者步骤的执行次数和时间都是有限的。
确切性:算法的指令或步骤都有明确的定义。
输入:有相应的输入条件来刻画运算对象的初始情况。
输出:一个算应有明确的结果输出。
可行性:算法的执行步骤必须是可行的。