导航:首页 > 源码编译 > 堆栈计算器算法

堆栈计算器算法

发布时间:2023-03-19 15:56:28

‘壹’ c++堆栈实现计算器,一位整数的我会,主要是双精度数和多位整数咋实现啊最好给一下思想,谢谢!

你问的不太明确啊, 是说把数学表达式中的数和运算埋行符转换为前序表达式,然后存进堆栈吗?
回答1:这和几位整数没啥关系吧,一位、两位、三位都是整数……

回答2:难道你的庆则堆栈不能存多位整数和浮点数吗?如果不能,改写堆栈让它能存double。入栈的时候将整数强制转换为double。
整弯差哗数都会了,双精度还远吗?祝你早日成功

‘贰’ 帮我讲解一下基于堆栈的计算器怎么工作。谢谢

堆,主要是把东西保存里面然后去做另一件敏碧事情。当事情做完以后出缺晌堆栈。。然后再完成他本来的工作桥扮举。就是这样的。

‘叁’ 用栈来实现表达式求值

include <malloc.h>
#include <stdio.h>
#include <ctype.h>//判断是否为字符的函数的头文件
#define maxsize 100

typedef int elemtype;
typedef struct sqstack sqstack;//由于sqstack不是一个类型 而struct sqstack才是

char ch[7]=;//把符号转换成一个字正槐符数组
int f1[7]=;//栈内元素优举唯友先级
int f2[7]=;//栈外的元素优先级

struct sqstack
{
elemtype stack[maxsize];
int top;
};

void Initstack(sqstack *s)
{
s->top=0;
}

void Push(sqstack *s,elemtype x)
{
if(s->top==maxsize-1)
printf("Overflow\n");
else
{
s->top++;
s->stack[s->top]=x;
}
}

void Pop(sqstack *s,elemtype *x)
{
if(s->top==0)
printf("underflow\n");
else
{
*x=s->stack[s->top];
s->top--;
}
}

elemtype Gettop(sqstack s)
{
if(s.top==0)
{
printf("underflow\n");
return 0;
}
else
return s.stack[s.top];
}

elemtype f(char c)
{
switch(c)
{
case '+':
return 0;
case '-':
return 1;
case '*':
return 2;
case '/':
return 3;
case '(':
return 4;
case ')':
return 5;
default:
return 6;
}
}

char precede(char c1,char c2)
{
int i1=f(c1);
int i2=f(c2);//把字符变成数字
if(f1[i1]>f2[i2])//通过原来设定找到优先级
return '>';
else if(f1[i1]<f2[i2])
return '<';
else
return '=';
}

int Operate(elemtype a,elemtype theta,elemtype b)
{
int sum;
switch(theta)
{
case 0:
sum=a+b;
break;
case 1:
sum=a-b;
break;
case 2:
sum=a*b;
break;
default:
sum=a/b;
}
return sum;
}

EvaluateExpression()
{
char c;
int i=0,sum=0;
int k=1,j=1;//设置了开关变量
elemtype x,theta,a,b;
sqstack OPTR,OPND;
Initstack(&OPTR);
Push(&OPTR,f('#'));//0压入栈
Initstack(&OPND);
c=getchar();
if(c==ch[2]||c==ch[3]||c==ch[5]||c==ch[6])//先对+和-的情况忽略和左括号的情况
{
printf("错误1 \n");
k=0;
return 0;
}

if(c==ch[0])
c=getchar();//如果是+,把它覆盖
if(c==ch[1])
{
j=0;
c=getchar();//也把-号覆盖
}
while(c!='#'||ch[Gettop(OPTR)]!='#')
{
if(isdigit(c))
{
sum=0;
while(isdigit(c))
{
if(!j)
{
sum=sum*10-(c-'0');//实现山闷了数字串前面有负号(之前是:sum=-(sum*10)-(c-'0')结果是-12+13=21)
}
else
sum=sum*10+(c-'0');
c=getchar();
}
Push(&OPND,sum);//如果还是数字先不压栈,把数字串转化成十进制数字再压栈
j=1;
}
else
if(k)
{
switch(precede(ch[Gettop(OPTR)],c))
{
case'<': Push(&OPTR,f(c));//把它们整型化
c=getchar();
if(c==ch[0]||c==ch[1]||c==ch[2]||c==ch[3]||c==ch[5]||c=='\n')//要除去下个是‘(’的情况 也把以运算符归到这里来
{
printf("出错2\n");
k=0;
return 0;//加了开关变量和返回0的值使程序更以操作
}

break;
case'=': Pop(&OPTR,&x);
c=getchar();
if(c==ch[0]||c==ch[1]||c==ch[2]||c==ch[3]||c==ch[5]||c=='\n')//把ch[6]的情况也忽略了但此时并没有注意到右括号后面右运算符的情况
{
printf("出错2\n");
k=0;
return 0;
}

break;
case'>': Pop(&OPTR,&theta);
Pop(&OPND,&b);
Pop(&OPND,&a);//注意这里是谁先出栈
Push(&OPND,Operate(a,theta,b));
break;
}
}
}//在这里判断是否以运算符结束是不对的

return(Gettop(OPND));
}

main()
{
int result;
printf("输入你的算术表达式:\n");
result=EvaluateExpression();
printf("结果是 :%d\n",result);
return 0;
}

:
本计算器利用堆栈来实现。
1、定义后缀式计算器的堆栈结构
因为需要存储的单元不多,这里使用顺序栈,即用一维数组来模拟堆栈:
#define MAX 100
int stack[MAX];
int top=0;
因此程序中定义了长度为MAX的一维数组,这里MAX用宏定义为常数100,我们可以修改宏定义而重新定义堆栈的大小。
整型数据top为栈顶指示,由于程序开始时堆栈中并无任何数据元素,因此top被初始化为0。
2、存储后缀式计算器的运算数
我们定义了堆栈stack[MAX]后,就可以利用入栈操作存储先后输入的两个运算数。
下面看一下是如何实现的:
int push(int i) /*存储运算数,入栈操作*/
{
if(top<MAX)
{
stack[++top]=i; /*堆栈仍有空间,栈顶指示上移一个位置*/
return 0;
}
else /*堆栈已满,给出错误信息,返回出错指示*/
{
printf("The stack is full");
return ERR;
}
}
我们在调用函数push时,如果它的返回值为0,说明入栈操作成功;否则,若返回值为ERR(在程序中说明为-1),说明入栈操作失败。
3、从堆栈中取出运算数
当程序中读完了四则运算符后,我们就可以从堆栈中取出已经存入的两个运算数,构成表达式,计算出结果。取出运算数的函数采用的正是出栈算法。在本例中,实现该算法的函数 为pop():
int pop(); /*取出运算数,出栈操作*/
{
int var; /*定义待返回的栈顶元素*/
if(top!=NULL) /*堆栈中仍有数据元素*/
{
var=stack[top--]; /*堆栈指示下移一个位置*/
return var;
}
else /*堆栈为空,给出错误信息,并返回出错返回值*/
printf("The stack is cmpty!\n");
return ERR;
}
同样,如果堆栈不为空,pop()函数返回堆栈顶端的数据元素,否则,给出栈空提示,并返回错误返回值ERR。
4、设计完整的后缀式计算器
有了堆栈存储运算数,后缀式计算器的设计就很简单了。程序首先提示用户输入第一个运算数,调用push()函数存入堆栈中;而后提示用户输入第二个运算数,同样调用push()函数存入堆栈中。接下来,程序提示用户输入+,-,*,/四种运算符的一种,程序通过switch_case结构判断输入运算符的种类,转而执行不同的处理代码。以除法为例,说明程序的执行流程:
case '/':
b=pop();
a=pop();
c=a/b;
printf("\n\nThe result is %d\n",c);
printf("\n");
break;
程序判断用户输入的是除号后,就执行上述代码。首先接连两次调用pop()函数从堆栈中读出先前输入的运算数,存入整型数a和b中;然后执行除法运算,结果存入单元c中。这时需要考虑究竟谁是被除数,谁是除数。由于开始我们先将被除数入栈,根据堆栈“先进后出”的原则,被除数应该是第二次调用pop()函数得到的返回值。而除数则是第一次调用pop()函数得到的返回值。
最后程序打印出运算结果,并示提示用户是否继续运行程序:
printf("\t Continue?(y/n):");
l=getche();
if(l=='n')
exit(0);
如果用户回答是"n",那么结束程序,否则继续循环。

完整的程序代码如下:
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#define ERR -1
#define MAX 100 /*定义堆栈的大小*/
int stack[MAX]; /*用一维数组定义堆栈*/
int top=0; /*定义堆栈指示*/

int push(int i) /*存储运算数,入栈操作*/
{
if(top<MAX)
{
stack[++top]=i; /*堆栈仍有空间,栈顶指示上移一个位置*/
return 0;
}
else
{
printf("The stack is full");
return ERR;
}
}
int pop() /*取出运算数,出栈操作*/
{
int var; /*定义待返回的栈顶元素*/
if(top!=NULL) /*堆栈中仍有元素*/
{
var=stack[top--]; /*堆栈指示下移一个位置*/
return var; /*返回栈顶元素*/
}
else
printf("The stack is empty!\n");
return ERR;
}
void main()
{
int m,n;
char l;
int a,b,c;
int k;
do{
printf("\tAriothmatic Operate simulator\n"); /*给出提示信息*/
printf("\n\tPlease input first number:"); /*输入第一个运算数*/
scanf("%d",&m);
push(m); /*第一个运算数入栈*/
printf("\n\tPlease input second number:"); /*输入第二个运算数*/
scanf("%d",&n);
push(n); /*第二个运算数入栈*/
printf("\n\tChoose operator(+/-/*//):");
l=getche(); /*输入运算符*/
switch(l) /*判断运算符,转而执行相应代码*/
{
case '+':
b=pop();
a=pop();
c=a+b;
printf("\n\n\tThe result is %d\n",c);
printf("\n");
break;
case '-':
b=pop();
a=pop();
c=a-b;
printf("\n\n\tThe result is %d\n",c);
printf("\n");
break;
case '*':
b=pop();
a=pop();
c=a*b;
printf("\n\n\tThe result is %d\n",c);
printf("\n");
break;
case '/':
b=pop();
a=pop();
c=a/b;
printf("\n\n\tThe result is %d\n",c);
printf("\n");
break;
}
printf("\tContinue?(y/n):"); /*提示用户是否结束程序*/
l=getche();
if(l=='n')
exit(0);
}while(1);
}

:
#include <stdio.h>
#include <conio.h>
#include <malloc.h>
#include <stdlib.h>

#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
#define OVERFLOW -2
typedef int Status;

#define STACK_INIT_SIZE 100 //初始分配量
#define STACKINCREMENT 10 //存储空间的分配增量

typedef char ElemType;
typedef ElemType OperandType; //操作数
typedef char OperatorType;

typedef struct
{
ElemType *base;
ElemType *top;
int stacksize;
}SqStack;

Status InitStack(SqStack &S)
{
//构造一个空栈S
S.base = (ElemType *)malloc(STACK_INIT_SIZE * sizeof(ElemType));
if(!S.base) exit (OVERFLOW);
S.top = S.base;
S.stacksize = STACK_INIT_SIZE;
return OK;
}

Status GetTop(SqStack S){
ElemType e;
if (S.top == S.base) return ERROR;
e = *(S.top-1);
return e;
}

Status Push (SqStack &S,ElemType e)
{
//插入元素e为新的栈顶元素
if (S.top - S.base >= S.stacksize){
S.base = (ElemType *) realloc ( S.base,
(S.stacksize + STACKINCREMENT) * sizeof(ElemType));
if(!S.base) exit (OVERFLOW);
S.top = S.base + S.stacksize;
S.stacksize += STACKINCREMENT;
}
*S.top++ = e;
return OK;
}

Status Pop (SqStack &S,ElemType &e){
//若栈不空,则删除S的栈顶元素,用e返回其值,并返回OK;否则返回ERROR
if(S.top == S.base) return ERROR;
e = * --S.top;
return OK;
}

char In(char c,char OP[])
{
if(c>=35 && c<=47)
return 1;
else return 0;
}

char OP[8]=;
int m[7][7]={1,1,2,2,2,1,1,

1,1,2,2,2,1,1,

1,1,1,1,2,1,1,
1,1,1,1,2,1,1,
2,2,2,2,2,0,-1,
1,1,1,1,-1,1,1,
2,2,2,2,2,-1,0};//1 > 2 < 0 = -1 不存在

char Precede(char i,char j)
{
int a,b; char *p;
for(p=OP,a=0;*p!='\0';p++,a++)
if(*p==i) break;
for(p=OP,b=0;*p!='\0';p++,b++)
if(*p==j) break;
if(m[a][b]==1) return '>';
else if(m[a][b]==2) return '<';
else if(m[a][b]==0) return '=';
else return 'O';
}

char Operate(char a,char theta,char b)
{
if(a>47) a=atoi(&a);
if(b>47) b=atoi(&b);
switch(theta)
{
case '+': return a+b;
break;
case '-': return a-b;
break;
case '*': return a*b;
break;
case '/': return a/b;
break;
}
}

OperandType EvaluateExpression()
{
SqStack OPTR,OPND;
OperandType a,b,c; OperatorType theta;
InitStack(OPTR); Push(OPTR,'#');
InitStack(OPND); c=getchar();
while (c!='#' || GetTop(OPTR)!='#')
{
if (!In(c,OP))
else
switch(Precede(GetTop(OPTR),c))
{
case '<' :
Push(OPTR,c); c = getchar();
break;
case '=' :
Pop(OPTR,c); c = getchar();
break;
case '>' :
Pop(OPTR,theta);
Pop(OPND,b); Pop(OPND,a);
Push(OPND,Operate(a,theta,b));
break;
}
}
return GetTop(OPND);
}

void main()
{
printf("(以#为结束符)\n");
printf("请输入:\n");
int a;
a=(int)EvaluateExpression();
printf("%d",a);
getch();
}

:
ls都正确

:
C++ In Action这本书里面有表达式求值的详细项目分析.

:
数据结构的书里面都有的,仔细看一下

:
studyall123的只能对0到9的数字运算才有效,对于10以上的数字就不行!不知道有没有更好的方法!

:
现在的人,连google一下都懒啊

:
实际上是按照逆波兰式的顺序让输入的表达式入栈,再根据运算符优先级来计算。

:
lenrning!

‘肆’ 财务计算器 为什么RPN

RPN是什么?为什么使用RPN?

RPN计算器使用一个堆栈,在这个堆栈的表层上对所有的数学运算进行立即计算。这个堆栈被用作是记录在以后的运算中要用到的中间结果的存储器。因此,使用RPN计算器,你不再需要任何的括号了。首先,输入数字,压入堆栈,然后就可以对这些数做你想做的操作了。比如说我们要计算:
((3+1)^2+1)*4要计算这个,你应该这么做:

3 enter
1 + (你会立刻看到这个操作的结果: 4)

x^2 (你会立刻看到这个操作的结果: 16)
1+ (你会立启颂刻看到这个操作的结果: 17)
4* (最终结果: 68)

可以看到,输入这个算式只需要9次击键,而且你能看到所有的中间结果。这其实基本上就是如果你不是用计算器,而是进行口算时,在头脑中演算的过程。换句话说,RPN计算器更加“自然”。它和你的大脑的工作方式是相同的。

如果你把RPN计算和一个算术计算器相比较的话,输入相同的算式需要12次击键,而且你看不到中间结果。换句话说,RPN计算器的优点在于:

阅读全文

与堆栈计算器算法相关的资料

热点内容
安卓怎么弄成苹果在线 浏览:427
谷歌web服务器地址 浏览:896
安卓锁屏图片如何删除 浏览:717
python3多进程编程 浏览:711
证明代码是程序员写的 浏览:392
算法错误发现办法 浏览:407
河南省医院挂号是哪个app 浏览:627
冬日恋歌哪个APP能看 浏览:671
委内瑞拉加密货 浏览:8
程序员写日记哪个软件好 浏览:106
加密机操作手册 浏览:860
dos命令自动关闭 浏览:328
心田花开app在哪里评价 浏览:449
求索记录频道哪个app可以看 浏览:730
金梅瓶pdf下载 浏览:985
机器软件用什么编程 浏览:845
java虚拟机指令 浏览:671
shell编程入门书籍 浏览:946
大连桶装水溯源码售价 浏览:302
php怎么跳转到电脑 浏览:414