1. 谁能给我讲一下C语言中程序以及各类型数据存储位置
我想很多人也是糊涂,以下文章写得很好,故全文转来,慢慢体会。
程序的内存分配(堆和栈区别)
一、预备知识 程序的内存分配
一个由c/C++编译的程序占用的内存分为以下几个部分
1、栈区(stack) 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。
2、堆区(heap) 一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。
3、全局区(静态区)(static),全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域, 未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。 - 程序结束后有系统释放
4、文字常量区 ?常量字符串就是放在这里的。 程序结束后由系统释放
5、程序代码区?存放函数体的二进制代码。
二、例子程序
这是一个前辈写的,非常详细
//main.cpp
int a = 0; 全局初始化区
char *p1; 全局未初始化区
main()
{
int b; 栈
char s[] = "abc"; 栈
char *p2; 栈
char *p3 = "123456"; 123456\0在常量区,p3在栈上。
static int c =0; 全局(静态)初始化区
p1 = (char *)malloc(10);
p2 = (char *)malloc(20);
分配得来得10和20字节的区域就在堆区。
strcpy(p1, "123456"); 123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。
}
二、堆和栈的理论知识
2.1申请方式
stack:
由系统自动分配。 例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间
heap:
需要程序员自己申请,并指明大小,在c中malloc函数
如p1 = (char *)malloc(10);
在C++中用new运算符
如p2 = (char *)malloc(10);
但是注意p1、p2本身是在栈中的。
2.2
申请后系统的响应
栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。
堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,
会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。
2.3申请大小的限制
栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。
堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。
2.4申请效率的比较:
栈由系统自动分配,速度较快。但程序员是无法控制的。
堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.
另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度快,也最灵活。
2.5堆和栈中的存储内容
栈: 在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。
当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。
堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。
2.6存取效率的比较
char s1[] = "aaaaaaaaaaaaaaa";
char *s2 = "bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa是在运行时刻赋值的;
而bbbbbbbbbbb是在编译时就确定的;
但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。
比如:
#include
void main()
{
char a = 1;
char c[] = "1234567890";
char *p ="1234567890";
a = c[1];
a = p[1];
return;
}
对应的汇编代码
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al
第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到edx中,在根据edx读取字符,显然慢了。
2.7小结:
堆和栈的区别可以用如下的比喻来看出:
使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。
使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大
一般认为在c中分为这几个存储区
1栈 - 有编译器自动分配释放
2堆 - 一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收
3全局区(静态区),全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。- 程序结束释放
4另外还有一个专门放常量的地方。 - 程序结束释放
在函数体中定义的变量通常是在栈上,用malloc, calloc, realloc等分配内存的函数分配得到的就是在堆上。在所有函数体外定义的是全局量,加了static修饰符后不管在哪里都存放在全局区(静态区),在所有函数体外定义的static变量表示在该文件中有效,不能extern到别的文件用,在函数体内定义的static表示只在该函数体内有效。另外,函数中的"adgfdf"这样的字符串存放在常量区。比如:
代码:
int a = 0; //全局初始化区
char *p1; //全局未初始化区
main()
{
int b; //栈
char s[] = "abc"; //栈
char *p2; //栈
char *p3 = "123456"; //123456\0在常量区,p3在栈上。
static int c = 0; //全局(静态)初始化区
p1 = (char *)malloc(10);
p2 = (char *)malloc(20); //分配得来得10和20字节的区域就在堆区。
strcpy(p1, "123456"); //123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一块。
}
还有就是函数调用时会在栈上有一系列的保留现场及传递参数的操作。栈的空间大小有限定,vc的缺省是2M。栈不够用的情况一般是程序中分配了大量数组和递归函数层次太深。有一点必须知道,当一个函数调用完返回后它会释放该函数中所有的栈空间。栈是由编译器自动管理的,不用你操心。
堆是动态分配内存的,并且你可以分配使用很大的内存。但是用不好会产生内存泄漏。并且频繁地malloc和free会产生内存碎片(有点类似磁盘碎片),因为c分配动态内存时是寻找匹配的内存的。而用栈则不会产生碎片。
在栈上存取数据比通过指针在堆上存取数据快些。一般大家说的堆栈和栈是一样的,就是栈(stack),而说堆时才是堆heap。栈是先入后出的,一般是由高地址向低地址生长。
2. 存储器层次结构中的缓存
《深入理解计算机系统》p422
6.1 存储器层次结构中的缓存
一般而言,高速缓存( cache ,读作“ cash ”)是一个小而快速的存储设备,它作为存储在更大、也更慢的设备中的数据对象的缓冲区域。使用高速缓存的过程称为缓存( caching ,读作“ cashing ”)。存储器层次结构的中心思想是,对于每个 k ,位于 k 层的更快更小的存储设备作为位于 k 十1层的更大更慢的存储设备的缓存。换句话说,层次结构中的每一层都缓存来自较低一层的数据对象。例如,本地磁盘作为通过网络从远程磁盘取出的文件(例如 Web 页面)的缓存,主存作为本地磁盘上数据的缓存,依此类推,直到最小的缓存—— CPU 寄存器组。图6-22展示了存储器层次结构中缓存的一般性概念。第 k 十1层的存储器被划分成连续的数据对象组块( chunk ),称为块( block )。每个块都有一个唯一的地址或名字,使之区别于其他的块。块可以是固定大小的(通常是这样的),也可以是可变大小的(例如存储在 Web 服务器上的远程 HTML 文件)。例如,图6-22中第 k 十1层存储器被划分成16个大小固定的块,编号为0~15。
类似地,第 k 层的存储器被划分成较少的块的集合,每个块的大小与 k 十1层的块的大小一样。在任何时刻,第 k 层的缓存包含第 k 十1层块的一个子集的副本。例如,在图6-22中,第 k 层的缓存有4个块的空间,当前包含块4、9、14和3的副本。
数据总是以块大小为传送单元( transfer unit )在第 k 层和第 k +1层之间来回复制的。虽然在层次结构中任何一对相邻的层次之间块大小是固定的,但是其他的层次对之间可以有不同的块大小。例如,在图6-21中,L1和 LO 之间的传送通常使用的是1个字大小的块。L2和L1之间(以及I3和I2之间、L4和I3之间)的传送通常使用的是几十个字节的
块。而L5和L4之间的传送用的是大小为几百或几千字节的块。一般而言,层次结构中较低层(离 CPU 较远)的设备的访问时间较长,因此为了补偿这些较长的访问时间,倾向于使用较大的块。
1. 缓存命中
当程序需要第 k 十1层的某个数据对象 d 时,它首先在当前存储在第 k 层的一个块中查找 d 。如果 d 刚好缓存在第 k 层中,那么就是我们所说的缓存命中( cache hit )。该程序直接从第 k 层读取 d ,根据存储器层次结构的性质,这要比从第 k +1层读取 d 更快。例如,一个有良好时间局部性的程序可以从块14中读出一个数据对象,得到一个对第 k 层的缓存命中。
2. 缓存不命中
另一方面,如果第 k 层中没有缓存数据对象 d ,那么就是我们所说的缓存不命中( cache miss )。当发生缓存不命中时,第 k 层的缓存从第 k 十1层缓存中取出包含 d 的那个块,如果第 k 层的缓存已经满了,可能就会覆盖现存的一个块。
覆盖一个现存的块的过程称为替换( replacing )或驱逐( evicting )这个块。被驱逐的这个块有时也称为牺牲块( victim block )。决定该替换哪个块是由缓存的替换策略( replace — ment policy )来控制的。例如,一个具有随机替换策略的缓存会随机选择一个牺牲块。一个具有最近最少被使用 LRU )替换策略的缓存会选择那个最后被访问的时间距现在最远的块。
在第 k 层缓存从第 k 十1层取出那个块之后,程序就能像前面一样从第 k 层读出 d 了。例如,在图6-22中,在第 k 层中读块12中的一个数据对象,会导致一个缓存不命中,因为块12当前不在第 k 层缓存中。一旦把块12从第 k 十1层复制到第 k 层之后,它就会保持在那里,等待稍后的访问。
3. 缓存不命中的种类
区分不同种类的缓存不命中有时候是很有帮助的。如果第 k 层的缓存是空的,那么对
任何数据对象的访问都会不命中。一个空的缓存有时被称为冷缓存( cold cache ),此类不命中称为强制性不命中( compulsory miss )或冷不命中( cold miss )。冷不命中很重要,因为它们通常是短暂的事件,不会在反复访问存储器使得缓存暖身( warmed up )之后的稳定状态中出现。
只要发生了不命中,第 k 层的缓存就必须执行某个放置策略( placement policy ),确定把它从第 k 十1层中取出的块放在哪里。最灵活的替换策略是允许来自第 k +1层的任何块放在第 k 层的任何块中。对于存储器层次结构中高层的缓存(靠近 CPU ),它们是用硬件来实现的,而且速度是最优的,这个策略实现起来通常很昂贵,因为随机地放置块,定位起来代价很高。
因此,硬件缓存通常使用的是更严格的放置策略,这个策略将第 k 十1层的某个块限制放置在第 k 层块的一个小的子集中(有时只是一个块)。例如,在图6-22中,我们可以确定第 k 十1层的块 i 必须放置在第 k 层的块( i mod 4)中。例如,第 k 十1层的块0、4、8和12会映射到第 k 层的块0;块1、5、9和13会映射到块1;依此类推。注意,图6-22中的示例缓存使用的就是这个策略。
这种限制性的放置策略会引起一种不命中,称为冲突不命中( conflict miss ),在这种情况中,缓存足够大,能够保存被引用的数据对象,但是因为这些对象会映射到同一个缓存块,缓存会一直不命中。例如,在图6-22中,如果程序请求块0,然后块8,然后块0,然后块8,依此类推,在第 k 层的缓存中,对这两个块的每次引用都会不命中,即使这个缓存总共可以容纳4个块。
程序通常是按照一系列阶段(如循环)来运行的,每个阶段访问缓存块的某个相对稳定不变的集合。例如,一个嵌套循环可能会反复地访问同一个数组的元素。这个块的集合称为这个阶段的工作集( working set )。当工作集的大小超过缓存的大小时,缓存会经历容量不命中( capacity miss )。换句话说就是,缓存太小了,不能处理这个工作集。
4. 缓存管理
正如我们提到过的,存储器层次结构的本质是,每一层存储设备都是较低一层的缓存。在每一层上,某种形式的逻辑必须管理缓存。这里,我们的意思是指某个东西要将缓存划分成块,在不同的层之间传送块,判定是命中还是不命中,并处理它们。管理缓存的逻辑可以是硬件、软件,或是两者的结合。
例如,编译器管理寄存器文件,缓存层次结构的最高层。它决定当发生不命中时何时发射加载,以及确定哪个寄存器来存放数据。L1、L2和L3层的缓存完全是由内置在缓存中的硬件逻辑来管理的。在一个有虚拟内存的系统中, DRAM 主存作为存储在磁盘上的数据块的缓存,是由操作系统软件和 CPU 上的地址翻译硬件共同管理的。对于一个具有像 AFS 这样的分布式文件系统的机器来说,本地磁盘作为缓存,它是由运行在本地机器上的 AFS 客户端进程管理的。在大多数时候,缓存都是自动运行的,不需要程序采取特殊的或显式的行动。
6.3.2 存储器层次结构概念小结
概括来说,基于缓存的存储器层次结构行之有效,是因为较慢的存储设备比较快的存储设备更便宜,还因为程序倾向于展示局部性:
1)利用时间局部性: 由于时间局部性,同一数据对象可能会被多次使用。一旦一个数据对象在第一次不命中时被复制到缓存中,我们就会期望后面对该目标有一系列的访问命中。因为缓存比低一层的存储设备更快,对后面的命中的服务会比最开始的不命中快很多。
2)利用空间局部性: 块通常包含有多个数据对象。由于空间局部性,我们会期望后面对该块中其他对象的访问能够补偿不命中后复制该块的花费。现代系统中到处都使用了缓存。正如从图6-23中能够看到的那样, CPU 芯片、操作系统、分布式文件系统中和万维网上都使用了缓存。各种各样硬件和软件的组合构成和管理着缓存。注意,图6-23中有大量我们还未涉及的术语和缩写。在此我们包括这些术语和缩写是为了说明缓存是多么的普遍。
3. C51编译器支持的存储器类型有哪些
c51存储器类型有bit
sbit
data
xdata
bdata
pdata
sfr
code等,可能不全面有遗漏
对应的物理存储器是:
bit,即位数据:数据存储器位寻址区,即20h~2fh的范围,共16个字节,16*8=128个位,位地址00h~7fh,连续的。
sbit:特殊功能寄存器中的位数据:只有能够被8整除的那些特殊功能寄存器中的各个位才能被称为sbit,位地址80h~ffh,不连续的,间断的。
data:数据区,对51为00h~7fh共128个字节,对52为00h~ffh,共256个字节,用mov寻址,前128用直接寻址或寄存器(r0~r7)寻址,后128用r0、r1间接寻址。
xdata:外部数据区,0000h~ffffh连续,用dptr间接寻址(movx指令)
bdata:位寻址去的字节,20h~2fh
sfr:特殊功能寄存器(80h~ffh),直接寻址
pdata:外部数据区,p2口保持数据,用r0r1间接寻址(movx指令)
code:程序存储器,用movc指令只读
4. java寄存器是什么
这是速度最快的存储场所,因为寄存器位于虚洞处理器内部,这一点和其他的存储媒介都不一样。不过寄存器个数是有限的。在内存中的寄存器区域是由编译器根据需要来分配的。我们程序开发人员不能够通过代码来控制这个寄存器的分配。所以说,这第一个存储区域寄存哗运器,我们只能够看看,而不能够对其产生任何的影响。,也没办法在程序里头感觉到寄存器的任乱誉梁何存在迹象。
5. CPU内部寄存器组结构及其功能是什么
1.什么是寄存器 所谓寄存器(register),它是CPU内部用来存放数据的一些小型存储区域,用来暂时存放参与运算的数据袜没和运算结果。其实寄存器就是一种常用的时序逻辑电路,但这种时序逻辑电路只包含存储电路。寄存器的存储电路是由锁存器或触发器构成的,因为一个锁存器或触发器能存储1位二进制数,所以由N个锁存器或触发器可以构成N位寄存器。 2.寄存器与CPU指令 在讲CPU的寄存器之前,我们先了解一下CPU指令系统。指令系统指的是一个CPU所能够处理的全部指令的集合,Athlon XP和P4都是基于x86指令集,这是CPU的根本属性,决定CPU运行什么样的程序。 指令一般分为:算术逻辑运算指令、浮点运算指令、位操作指令及其他的一些非运算指令,其中整数、地址、指令指针和浮点数据是按照数据形式来划分的。通常我们把需要CPU进行不同处理的单个数据称为标量数据(Scala Data)。标量数据既可以是整数数据,也可以是浮点数据。其中整数标量数据的存放区一般为通用寄存器(GPR),浮点标量数据的存放区一般为浮点寄存器(FPR)。与标量数据相对的是矢量数据(Vector Data),所谓矢量数据就是指一列需要由处理器作相同处理的数据集合。比如处理器在做MP3编码的过程中,需要对内存中的音频文件里的各字节数据作相同的MP3编码操作。那么通常使用MMX或SSE这类单指令多数据流(SIMD)指令,将数个字节打包为一组矢量数据,存放在MMX或SSE寄存器中,再送往相应的功能单元进行统一操作。 其中通用寄存器是处理器中最快的存储器,用来保存参加运算的操作数和中间结果。在通用寄存器的设计上,RISC与CISC(也就是我们常说的x86架构)有着很大的不同。CISC的寄存器通常很少——只有8个通用寄存器。由于CPU在执行指令过程中,存在指令依赖性,在一定程度上使得x86 CPU不能在每个时钟周期中立即发布大量的指令。所谓“依赖性”就是巧烂指令的执行需要前个指令的运算结果。比如程序员经常使用的分支程序,请看下面这个例子: A=C*1 B=A+2 只要变量A的值还不知道,B=A+2就不能进行运算。也就是说,只要指令1的结果没有写进寄存器,CPU调度器就不能把指令2发布到执行单元。由于程序分支会造成具有较长流水线CPU运行停滞的,目前常用的解决方法是采用分支预测。 不过,分支预测同样存在一个问题:流水线越长,指令潜伏期也越长,等待前一指令运算结果的时间也越长,同样会造成CPU运行停滞。我们知道,程序指令通常都有各类型的条件分支语句,通过验证条件决定执行路线。但CPU执行单元内是通过一项特殊的预测机制选择一条路线直接执行(这样可以避免验证语句条件而处于等待情况),然后在后面进行验证。如果预测正确则继续往下执行,如果发现以前的预测错误,那么就必须返回原地重新开始,以前的指令就会作废。 因此,管线越长告宽纳,意味着出现分支预测错误的机会就越多,越多在管线内的指令会被清除掉,而且重新让管道填满指令的时间也会越长。对于普通处理器来说,如果出现分支预测错误,CPU就不得不将整条流水线清空后从错误的地方重新装满数据、重新执行。毫无疑问这将花更多的时间,整体性能就会下降。因此,针对通用寄存器少的问题,在x86架构中比较完美的解决方法就是增加寄存器的数量和采用“乱序执行”。3.为什么寄存器不够用 在上面我们已经提到,寄存器只是用来暂时存放指令值的,如果CPU需要把两个值加起来,它需要用1个寄存器来存放运算结果,用2个寄存器来存放相加的数值。例如,在以下的方程式中:A = 2 + 4 * 在寄存器1储存“2”; * 在寄存器2储存“4”; * 在寄存器3储存“寄存器1 + 寄存器 2”; 因为在微处理器里面有超过3个寄存器,因此这个运算能够轻易地执行,不会造成用光寄存器的情况。在这些运算被执行之后,所有的3个数值都能够被保留并重新使用,因此如果我们再想在结果加上2的话,处理器只需要执行:寄存器 1 + 寄存器 3 就可以了。如果微处理器仅有2个剩余的寄存器,而我们又需要再次使用2和4的值,那么这些值在覆盖结果A之前,必须储存在主内存之中 。运算执行的过程则会变成如下所示: * 在寄存器1储存 “2”; * 在寄存器2储存“4”; * 在主内存的某个空间储存“寄存器1 + 寄存器2”; 我们可以看到这里使用了其它的内存访问过程,而在这期间其实还有我们没有提到的其它处理过程,比如主内存的定位也需要占据寄存器,以便让CPU 告诉装载/储存单元该往哪里发送数据 。如果我们需要使用到这些结果的话,那么CPU将不得不首先到主内存中找回这些结果,把目前满载的寄存器驱逐一些数据,把它们写入主内存,然后再把寻找到的数据储存在寄存器里。 这里大家应该能够明白吧,对内存的访问次数将会可怕地增加;你需要访问内存的时间越多,那么处理器等待工作完成的时间就越长——因而造成性能的下降。因此面对超标量CPU在并行处理大量运算,x86体系仅有的8个通用寄存器远远不能满足需要,在同一时钟周期中,如果有3个指令发布,你就需要3个输出寄存器和6个输入寄存器。我们该怎么办呢?聪明的工程师们发现了突破这个限制的方法:“寄存器重命名”。 4.寄存器重命名技术 寄存器重命名,是CPU在解码过程中对寄存器进行重命名,解码器把“其它”的寄存器名字变为“通用”的寄存器名字,本质上是通过一个表格把x86寄存器重新映射到其它寄存器,这样可以让实际使用到的寄存器远大于8个。这样做的好处除了便于前面指令发生意外或分支预测出错时取消外,还避免了由于两条指令写同一个寄存器时的等待。 下面我们以一个超标量CPU执行8个算术指令为例:假设它在每个时钟周期中能对2个指令解码,引出计算结果是在指令发布后3个时钟周期发生的: (1)在第1个时钟周期,两个指令发布:它们互不关联,因此,它们将在3个时钟周期后(第4个时钟周期)引出; (2)在第2个时钟周期,我们首次遇到了“指令依赖”,指令3需要指令2的结果,此时指令3不能开始发布; (3)如果是按序执行,指令4、5、6就不能在指令3前发布。只有在第5个时钟周期时(指令2的结果已得到)才能发布指令3; (4)在第6个时钟周期有个大问题:我们想把结果写到寄存器R1,但这将改变指令5的结果。因此,我们只有在R1空闲时(第10个时钟周期)才能发布指令6。 按照正常情况处理的话,尽管这个CPU每个时钟周期可以对2个指令解码,但它每个时钟周期的指令执行数只有0.53。如果每次程序所需的寄存器正被使用,我们可以把数据放到其它的寄存器中,在第6个时钟周期将寄存器R1重命名,指令6和指令8不再耽误CPU的工作。结果是我们能够将每个时钟周期的指令执行数提高50%。寄存器重命名技术可以使x86 CPU的寄存器可以突破8个的限制,达到32个甚至更多。寄存器重命名技术现在已经深深地扎根于超标量CPU中了。5.乱序执行技术 除此之外,处理器工程师还引入了乱序执行技术,从一定程度上来缓解通用寄存器不足的问题。采用乱序执行技术的目的是为了使CPU内部电路满负荷运转并相应提高了CPU运行程序的速度。 这好比请A、B、C三个名人为春节联欢晚会题写横幅“春节联欢晚会”六个大字,每人各写两个字,如果这时在一张大纸上按顺序由A写好“春节”后再交给B写“联欢”,然后再由C写“晚会”,那么这样在A写的时候,B和C必须等待,而在B写的时候C仍然要等待而A已经没事了。但如果采用三个人分别用三张纸同时写的做法,那么B和C都不必等待就可以同时各写各的了,甚至C和B还可以比A先写好也没关系(就像乱序执行),但当他们都写完后就必须重新在横幅上按“春节联欢晚会”的顺序排好(自然可以由别人做,就象CPU中乱序执行后的重新排列单元)才能挂出去。 不过,虽然采用寄存器重命名技术、乱序执行技术,但仍不能从根本上解决x86处理器通用寄存器不足的问题。以寄存器重命名技术来说,这种技术的寄存器操作相对于RISC来说,要花费一个时钟周期来对寄存器进行重命名,这无形中降低了处理器性能以及流水线工作效率,也增加了程序和编译器的优化难度。针对这个问题,最新的x86-64架构中(K8处理器),AMD在x86架构基础上将通用寄存器和SIMD寄存器的数量增加了1倍:其中新增了8个通用寄存器以及8个SIMD寄存器作为原有x86处理器寄存器的扩充。 这些通用寄存器都工作在64位模式下,经过64位编码的程序就可以使用到它们。这些64位寄存器称为RAX、RBX、RCX、RDX、RDI、RSI、RBP、RSP、RIP以及EFLAGS,在32位环境下并不完全使用到这些寄存器,同时AMD也将原有的EAX等寄存器扩展至64位的RAX,这样可以增强通用寄存器对字节的操作能力。从扩充方式上看,EAX等寄存器可以看做是RAX的一个子集,系统仍然可以完整地执行以往的32位编码程序。增加通用寄存器除了可高效存储数据外,还可作为寻址时的地址指针,从而缩短指令长度和指令执行时间,加快CPU的运算处理速度,同时也给编程带来方便。 此外,为了保证K8的分支预测更有效率,K8的分支预测寄存器增加到64个。分支指令可以被设为真或假,而每个指令中的6位被分配到单独一个预测寄存器中,只有预测寄存器被设定为“真”时,那些指向预测寄存器为“真”的指令结果才会被执行。其次由于所有的分支都能并行执行,CPU所花的时间同只执行单个分支的时间是相同的,降低了预测出错的风险。第三由于CPU不再跳跃执行,它不会把程序代码分成小块。也就是说,稍前和稍后的程序代码可以打包。这样CPU能够一并将它们发布,增大并行工作量。从而使性能提高10%~15%,特别是在整数代码部分。 不过在x86-64中,寄存器的扩展部分似乎仅对于整数、地址数据有效。对浮点和向量数据则仍然保持原样。我们能从K8向64位的扩展所获得的好处,只不过是可以在同样一条指令中,处理更大数值的整数数值以及管理空间更大的内存区域而已。而在32位的情况下,由于通用寄存器只能容纳最大32位的数据,因此显然要花费更多条指令对尺寸超过32位的数据进行处理。这种改进对服务器、科学计算这样的领域具有一定的意义,但显然并不是普通家用环境急需的改进。 可以说,处理器的寄存器对处理器的性能有着巨大的影响。但是无论怎么发展,通用型CPU目前还没有脱离x86架构的限制,也许有一天,新的寄存器技术能让我们的CPU变得更加功能强大!
6. 寄存器原理
寄存器原理:
寄存器应具有接收数据、存放数据和输出数据的功能,它由触发器和门电路组成。只有得到“存入脉冲”(又称“存入指令”、“写入指令”)时,寄存器才能接收数据;在得到“读出”指令时,寄存器才将数据输出。
寄存器存放数码的方式有并行和串行两种。并行方式是数码从各对应位输入端同时输入到寄存器中;串行方式是数码从一个输入端逐位输入到寄存器中。
寄存器读出数码的方式也有并行和串行两种。在并行方式中,被读出的数码同时出现在各位的输出端上;在串行方式中,被读出的数码在一个输出端逐位出现。
(6)编译器管理存储的寄存器扩展阅读:
寄存器最起码具备以下4种功能。
①清除数码:将寄存器里的原有数码清除。
②接收数码:在接收脉冲作用下,将外输入数码存入寄存器中。
③存储数码:在没有新的写入脉冲来之前,寄存器能保存原有数码不变。
④输出数码:在输出脉冲作用下,才通过电路输出数码。
仅具有以上功能的寄存器称为数码寄存器;有的寄存器还具有移位功能,称为移位寄存器。
寄存器有串行和并行两种数码存取方式。将n位二进制数一次存入寄存器或从寄存器中读出的方式称为并行方式。将n位二进制数以每次1位,分成n次存入寄存器并从寄存器读出,这种方式称为串行方式。并行方式只需一个时钟脉冲就可以完成数据操作,工作速度快,但需要n根输入和输出数据线。串行方式要使用几个时钟脉冲完成输入或输出操作,工作速度慢,但只需要一根输入或输出数据线,传输线少,适用于远距离传输。
7. 通用寄存器有哪些
1、数据寄存器
数据寄存器主要用来保存操作数和运算结果等信息,从而节省读取操作数所需占用总线和访问存储器的时间。
2、变址寄存器
32位CPU有2个32位通用寄存器ESI和EDI。其低16位对应先前CPU中的SI和DI,对低16位数据的存取,不影响高16位的数据。
3、指针寄存器
32位CPU有2个32位通用寄存器EBP和ESP。其低16位对应先前CPU中的SBP和SP,对低16位数据的存取,不影响高16位的数据。
4、段寄存器
段寄存器是根据内存分段的管理亏袭模式而设置的。内存单元的物理地址由段寄存器的值和一个偏移量组合而成的,这样可用两个较少位数的值组合成迹铅一个可访问较大物理空间的内存地址。
5、指令指针寄存器
32位CPU把指令指针扩展到32位,并记作EIP,EIP的低16位与先前CPU中的IP作用相同。 指令指针EIP、IP(Instruction Pointer)是存放下次将要执行的指令在代码段的偏移量。
(7)编译器管理存储的寄存器扩展阅读
寄存器是CPU内部重要的数据存储资源,用来暂存数据和地址,是汇编程序员能直接使用的硬件资源之一。由于寄存器的存取速度比内存快,所以,在用汇编语言编写程序时,要尽可能充分利用寄存器的存储功能。
寄存器一般用来保存程序的中间结果,为随后的指令快速提供操作数,从而避免把中间结果存入内存,再读取内存的操作。在高级语言(如:C/C++语言)中,也有定义变量为寄存器类型的,这就是提高寄存器利用率的一种可行的方法。
另外,由于寄存器的个数和容量都有限,不可能把所有中间结果都存储在寄存器中,所以,要对寄存器进行适当的调度。根据指令的要求,如何安排适当的寄存器,避免操作数过多的传送操作是一项细致而又周密的工作。
参考资料来源:网络-通用寄存器姿空好
8. 汇编语言寄存器都叫什么
1、寄存器
32位寄存器有16个,分别是:
4个数据寄存器(EAX、EBX、ECX、EDX)。
2个变址和指针寄存器(ESI和EDI);2个指针寄存器(ESP和EBP)。
6个段寄存器(ES、CS、SS、DS、FS、GS)。
1个指令指针寄存器(EIP);1个标志寄存器(EFlags)。
2、数据寄存器
数据寄存器主要用来保存操作数和运算结果等信息,从而节省读取操作数所需占用总线和访问存储器猛基的时间。
32位CPU有4个32位通用寄存器:EAX、EBX、ECX和EDX。对低16位数据的取存,不会影响高16
位的数据,这些低16位寄存器分别命名为AX、BX、CX和DX,它和先前的CPU中的寄存器相一致。
4个16位寄存器又可分割成8个独立的8位寄存器(AX:ah~al、BX:bh~bl、CX:ch~cl:DX:dh~dl)。
每个寄存器都有自己的名称,可独立存取。程序员可利用数据寄存器的这种“可合可分”的特性,灵活地处理字/
字节的信息。
AX和al通常称为累加器,用累加器进行的操作可能需要更少时间,累加器可用于乘、除、输入/输出等操作,
它们的使用频率很高。
BX称为基地址寄存器,它可作为存储器指针来使用。
CX称为计数寄存器,在循环和字符串操作时,要用它来控制循环次数;在位操作中,当移多位时,要用cl来
指明位移的位数。
DX称为数据寄存器,在进行乘、除运算时,枝巧谨它可以为默认的操作数参与运算,也可用于存放I/O的端口地址。
在16位CPU中,AX、BX、CX和DX不能作为基址和变址寄存器来存放存储单元的地址,但在32位CPU
中,宽核其32位寄存器EAX、EBX、ECX和EDX不仅可传送数据、暂存数据、保存算术逻辑运算结果,而且也可
作为指针寄存器,所以,这些32位寄存器更具有通用性。
3、变址寄存器
32位CPU有2个32位通用寄存器ESI和EDI,其低16位对应先前CPU中的SI和DI,对低16位数据的
存取,不影响高16位的数据。
ESI、EDI、SI和DI称为变址寄存器,它们主要用于存放存储单元在段内的偏移量,用它们可实现多种存储器
操作数的寻址方式,为以不同的地址形式访问存储单元提供方便。
变址寄存器不可分割成8位寄存器,作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。
它们可作一般的存储器指针使用,在字符串操作指令的执行过程中,对它们有特定的要求,而且还具有特殊的
功能。
4、指针寄存器
32位CPU有2个32位通用寄存器EBP和ESP,其低16位对应先前CPU中的BP和SP,对低16位数
据的存取,不影响高16位的数据。
EBP、ESP、BP和SP称为指针寄存器,主要用于存放堆栈内存储单元的偏移量,用它们可实现多种存储器
操作数的寻址方式,为以不同的地址形式访问存储单元提供方便。
指针寄存器不可分割成8位寄存器,作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。
它们主要用于访问堆栈内的存储单元,并且规定:
BP为基指针寄存器,用它可直接存取堆栈中的数据。
SP为堆栈指针寄存器,用它只可访问栈顶。
5、段寄存器
段寄存器是根据内存分段的管理模式而设置的。内存单元的物理地址由段寄存器的值和一个偏移量组合而成
的,这样可用两个较少位数的值组合成一个可访问较大物理空间的内存地址。
32位CPU有6个段寄存器,分别如下:
CS:代码段寄存器 ES:附加段寄存器
DS:数据段寄存器 FS:附加段寄存器
SS:堆栈段寄存器 GS:附件段寄存器
在16位CPU系统中,只有4个段寄存器,所以,程序在任何时刻至多有4个正在使用的段可直接访问,在
32位微机系统中,它有6个段寄存器,所以在此环境下开发的程序最多可同时访问6个段。
32位CPU有两个不同的工作方式:实方式和保护方式。在每种方式下,段寄存器的作用是不同的,有关规定
简单描述如下:
实方式:段寄存器CS、DS、ES和SS与先前CPU中的所对应的段寄存器的含义完全一致,内存单元的逻辑
地址仍为“段地址:偏移地址”的形式,为访问某内存段内的数据,必须使用该段寄存器和存储单元的偏移地址。
保护方式:在此方式下,情况要复杂得多,装入段寄存器的不再是段值,而是称为“选择子”的某个值。
6、指令指针寄存器
32位CPU把指令指针扩展到32位,并记作EIP,EIP的低16位与先前CPU中的IP作用相同。
指令指针EIP、IP是存放下次将要执行的指令在代码段的偏移地址,在具有预取指令功能的系统中,下次要执
行的指令通常已被预取到指令队列中,除非发生转移情况,所以,在理解它们的功能时不考虑存在指令队列的情
况。
在实方式下,由于每个段的最大范围为64KB,所以,EIP的高16位肯定都为0,此时,相当于只用其低16
位的IP来反映程序中的指令的执行次序。
7、标志寄存器
1.运算结果标志位。一共6个,包括:CF进位标志位、PF奇偶标志位、AF辅助进位标志位、ZF零标志位、
SF符号标志位、OF溢出标志位。
2.状态控制标志位。一共3个,包括:TF追踪标志位、IF中断允许标志位、DF方向标志位。
以上标志位在第7章里都讲过了,在这里就不再解释了,现在讲讲32位标志寄存器增加的4个标志位。
1. I/O特权标志IOPL。
IOPL用两位二进制位来表示,也称为I/O特权级字段,该字段指定了要求执行I/O指令的特权级,如果当前
的特权级别在数值上小于等于IOPL的值,那么,该I/O指令可执行,否则将发生一个保护异常。
2. 嵌套任务标志NT。
NT用来控制中断返回指令IRET的执行。具体规定如下:
(1) 当NT=0,用堆栈中保存的值恢复EFlags、CS和EIP,执行常规的中断返回操作。
(2) 当NT=1,通过任务转换实现中断返回。
3. 重启动标志RF。
RF用来控制是否接受调试故障。规定:RF=0时,表示接受,否则拒绝。
4. 虚拟8086方式标志VM。
如果VM=1,表示处理机处于虚拟的8086方式下的工作状态,否则,处理机处于一般保护方式下的工作状态。
8、32位地址的寻址方式
最后说一下32位地址的寻址方式。在前面我们学习了16位地址的寻址方式,一共有5种,在32位微机系统
中,又提供了一种更灵活、方便但也更复杂的内存寻址方式,从而使内存地址的寻址范围得到了进一步扩大。
在用16位寄存器来访问存储单元时,只能使用基地址寄存器(BX和BP)和变址寄存器(SI和DI)来作为
偏移地址的一部分,但在用32位寄存器寻址时,不存在上述限制,所有32位寄存器(EAX、EBX、ECX、
EDX、ESI、EDI、EBP、和ESP)都可以是偏移地址的一个组成部分。
当用32位地址偏移量进行寻址时,偏移地址可分为3部分:
1. 一个32位基址寄存器(EAX、EBX、ECX、EDX、ESI、EDI、EBP、ESP)。
2. 一个可乘以1、2、4、8的32位变址寄存器(EAX、EBX、ECX、EDX、ESI、EDI和EBP)。
3. 一个8位~32位的偏移常量。
比如,指令:mov ebx, [eax+edx*2+300]
Eax就是基址寄存器,edx就是变址寄存器,300H就是偏移常量。
上面那3部分可进行任意组合,省去其中之一或之二。
下面列举几个32位地址寻址指令:
Mov ax, [123456]
Mov eax, [ebx]
Mov ebx, [ecx*2]
Mov ebx, [eax+100]
Mov ebx, [eax*4+200]
Mov ebx, [eax+edx*2]
Mov ebx, [eax+edx*4+300]
Mov ax, [esp]
由于32位寻址方式能使用所有的通用寄存器,所以,和该有效地址相组合的段寄存器也就有新的规定,具体
规定如下:
1. 地址中寄存器的书写顺序决定该寄存器是基址寄存器还是变址寄存器。
如:[ebx+ebp]中的ebx是基址寄存器,ebp是变址寄存器,而[ebp+ebx]中的ebp是基址寄存器,ebx是变
址寄存器,可以看出,左边那个是基址寄存器,另一个是变址寄存器。
2. 默认段寄存器的选用取决于基址寄存器。
3. 基址寄存器是ebp或esp时,默认的段寄存器是SS,否则,默认的段寄存器是DS。
4. 在指令中,如果显式地给出段寄存器,那么显式段寄存器优先。
下面列举几个32位地址寻址指令及其内存操作数的段寄存器。
指令列举: 访问内存单元所用的段寄存器
mov ax, [123456] ;默认段寄存器为DS。
mov ax, [ebx+ebp] ;默认段寄存器为DS。
mov ebx, [ebp+ebx] ;默认段寄存器为SS。
mov ebx, [eax+100] ;默认段寄存器为DS。
mov edx, ES:[eax*4+200] ;显式段寄存器为ES。
mov [esp+edx*2], ax ;默认段寄存器为SS。
mov ebx, GS:[eax+edx*8+300] ;显式段寄存器为GS。
mov ax, [esp] ;默认段寄存器为SS。
9. C++中 什么是 寄存器
C语言提供了另一种变量,即寄存器变量。这种变量存放在CPU的寄存器中,使用时,不需要访问内存,而直接从寄存器中读写, 这样可提高效率。寄存器变量的说明符是register。 对于循环次数较多的循环控制变量及循环体内反复使用的变量均可定义为寄存器变量。
[例5.16]
求∑200i=1imain()
{
register i,s=0;
for(i=1;i<=200;i++)
s=s+i;
printf("s=%d\n",s);
}
本程序循环200次,i和s都将频繁使用,因此可定义为寄存器变量。对寄存器变量还要说明以下几点:
1. 只有局部自动变量和形式参数才可以定义为寄存器变量。因为寄存器变量属于动态存储方式。凡需要采用静态存储方式的量不能定义为寄存器变量。
10. 什么是寄存器什么是寄存器变量
寄存器是中央处理器内的组成部分。寄存器是有限存贮容量的高速存贮部件,它们可用来暂存指令、数据和位址。在中央处理器的控制部件中,包含的寄存器有指令寄存器(IR)和程序计数器(PC)。在中央处理器的算术及逻辑部件中,包含的寄存器有累加器(ACC)。寄存器是内存阶层中的最顶端,也是系统获得操作资料的最快速途径。寄存器通常都是以他们可以保存的位元数量来估量,举例来说,一个 “8 位元寄存器”或 “32 位元寄存器”。寄存器现在都以寄存器档案的方式来实作,但是他们也可能使用单独的正反器、高速的核心内存、薄膜内存以及在数种机器上的其他方式来实作出来。 寄存器通常都用来意指由一个指令之输出或输入可以直接索引到的暂存器群组。更适当的是称他们为 “架构寄存器”。寄存器是CPU内部的元件,寄存器拥有非常高的读写速度,所以在寄存器之间的数据传送非常快。
register[寄存器]变量告诉编译器相关的变量应该改量存储在高速度的寄存器中。使用register存储类型的目的一般是为了提高执行速度,但是,register声明只是向编译器所提出的“建议”,并非强制要求。