❶ 二进制计算方法是什么
加法:0+0=0;0+1=1;1+0=1;1+1=10;0进位为1。减法:0-0=0,1-0=1,1-1=0,0-1=1。
二进数转四进制时,以小数点为起点,向左和向右两个方向分别进行分段,每两个数字一段,不足两位的分别在左边或右边补零。
二进制数转换成八进制数:从小数点开始,整数部分向左、小数部分向右,每3位为一组用一位八进制数的数字表示,不足3位的要用“0”补足3位,就得到一个八进制数。
(1)2345二进制算法扩展阅读:
二进制数与十进制数一样,同样可以进行加、减、乘、除四则运算。其算法规则如下:
加运算:0+0=0,0+1=1,1+0=1,1+1=10,(逢2进1);
减运算:1-1=0,1-0=1,0-0=0,0-1=1,(向高位借1当2);
乘运算:0×0=0,0×1=0,1×0=0,1×1=1,(只有同时为“1”时结果才为“1”);
除运算:二进制数只有两个数(0,1),因此它的商是1或0。
加法0+0=0,0+1=1+0=1,1+1=10
减法0-0=0,1-0=1,1-1=0,0-1=-1,10100-1010=1010
❷ 将2345.78转成二进制并写出步骤
整数部分用除以二取余数法计算。小数部分用乘2取整法州岁携计算。
2345/2 1172 余1;1172/2 586 余0;586/2 293 余0
293/2 146 余1;146/2 73 余0;73/2 36 余1
36/2 18 余0;18/2 9 余0;9/2 4 余1;4/册伏2 2 余0
2/2 1 余0;1/2 0 余1
整数部分 得 1001 0010 1001
.78*2 1.56 取1;.56*2 1.12 取1;.12*2 0.24 取0
.24*2 0.48 取0;.48*2 0.96 取雀历0;.96*2 1.92 取1
.92*2 1.84 取1;.84*2 1.68 取1
小数部分 得 .11000111
合起来: 100100101001.11000111
❸ 二进制怎么算
二进制计算的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”。
二进制数(binaries)是逢2进位的进位制,0、1是基本算符;计算机运算基础采用二进制。电脑的基础是二进制。
在早期设计的常用的进制主要是十进制(因为我们有十个手指,所以十进制是比较合理的选择,用手指可以表示十个数字,0的概念直到很久以后才出现,所以是1-10而不是0-9)。电子计算机出现以后,使用电子管来表示十种状态过于复杂,所以所有的电子计算机中只有两种基本的状态,开和关。
二进制数与十进制数一样,同样可以进行加、减、乘、除四则运算。其算法规则如下:
加运算:0+0=0,0+1=1,1+0=1,1+1=10,(逢2进1)。
减运算:1-1=0,1-0=1,0-0=0,0-1=1,(向高位借1当2)。
乘运算:0×0=0,0×1=0,1×0=0,1×1=1,(只有同时为“1”时结果才为“1”)。
除运算:二进制数只有两个数(0,1),因此它的商是1或0。
加法0+0=0,0+1=1+0=1,1+1=10。
减法0-0=0,1-0=1,1-1=0,0-1=-1,10100-1010=1010。
乘法0×0=0,0×1=1×0=0,1×1=1。
❹ 二进制的计算方法
加法:0+0=0;0+1=1;1+0=1;1+1=10;0进位为1。减法:0-0=0,1-0=1,1-1=0,0-1=1。
二进数转四进制时,以小数点为起点,向左和向右两个方向分别进行分段,每两个数字一段,不足两位的分别在左边或右边补零。
二进制数转换成八进制数:从小数点开始,整数部分向左、小数部分向右,每3位为一组用一位八进制数的数字表示,不足3位的要用“0”补足3位,就得到一个八进制数。
二进制数转换成十六进制数:二进制数转换成十六进制数时,只要从小数点位置开始,向左或向右每四位二进制划分一组(不足四位数可补0),然后写出每一组二进制数所对应的十六进制数码即可。
(4)2345二进制算法扩展阅读:
计算机采用二进制的原因:
1、技术实现简单,计算机是由逻辑电路组成,逻辑电路通常只有两个状态,开关的接通与断开,这两种状态正好可以用“1”和“0”表示。
2、简化运算规则:两个二进制数和、积运算组合各有三种,运算规则简单,有利于简化计算机内部结构,提高运算速度。
3、适合逻辑运算:逻辑代数是逻辑运算的理论依据,二进制只有两个数码,正好与逻辑代数中的“真”和“假”相吻合。
4、易于进行转换,二进制与十进制数易于互相转换。
5、用二进制表示数据具有抗干扰能力强,可靠性高等优点。因为每位数据只有高低两个状态,当受到一定程度的干扰时,仍能可靠地分辨出它是高还是低。
❺ 2进制怎么算计算步骤
二进制的或运算:遇1得1。
二进制的与运算:遇0得0。
二进制的非运算:各位取反。
加法法则: 0+0=0,0+1=1+0=1,1+1=10。
减法,当需要向上一位借数时,必须把上一位的1看成下一位的10。
减法法则: 0-0 =0,1-0=1,1-1=0,0-1=1 有借位,借1当10看成 2,
则 0 - 1 - 1 = 0 有借位 1 - 1 - 1 = 1 有借位。
乘法法则: 0×0=0,0×1=0,1×0=0,1×1=1。
除法应注意: 0÷0 =0(无意义),0÷1 =0,1÷0 =0(无意义)。
除法法则: 0÷1=0,1÷1=1。
(5)2345二进制算法扩展阅读:
二进制运算法则:
莱布尼兹也是第一个认识到二进制记数法重要性的人,并系统地提出了二进制数的运算法则。
二进制对200多年后计算机的发展产生了深远的影响。
他于1716年发表了《论中国的哲学》一文,专门讨论八卦与二进制,指出二进制与八卦有共同之处。
0、1是基本算符。
因为它只使用0、1两个数字符号,非常简单方便,易于用电子方式实现。
从右往左第一位表示2的0次方,第二位表示2的1次方,第n位表示2的n-1次方。
可以将1理解为有,0理解为无。
❻ 二进制的计算方法是怎样的
二进制的计算方法是怎样的
二进制的计算方法是怎样的,在大学的时候,选择了计算机专业的学生,肯定碰到过这个问题的,那就是二进制的计算方法是什么,还难倒了不少的人,我和大家一起来看看二进制的计算方法是怎样的。
二进制的运算算术运算二进制的加法:0+0=0,0+1=1 ,1+0=1, 1+1=10(向高位进位);即7=111,10=10103=11。
二进制的减法:0-0=0,0-1=1(向高位借位) 1-0=1,1-1=0 (模二加运算或异或运算) ;
二进制的乘法:0 * 0 = 0 0 * 1 = 0,1 * 0 = 0,1 * 1 = 1 二进制的除法:0÷0 = 0,0÷1 = 0,1÷0 = 0 (无意义),1÷1 = 1
逻辑运算二进制的或运算:遇1得1 二进制的与运算:遇0得0 二进制的非运算:各位取反。
(6)2345二进制算法扩展阅读:
二进制的转换:
二进制转换为其他进制:
1、二进制转换成十进制:基数乘以权,然后相加,简化运算时可以把数位数是0的项不写出来,(因为0乘以其他不为0的数都是0)。小数部分也一样,但精确度较少。
2、二进制转换为八进制:采用“三位一并法”(是以小数点为中心向左右两边以每三位分组,不足的补上0)这样就可以轻松的'进行转换。例:将二进制数(11100101.11101011)2转换成八进制数。 (11100101.11101011)2=(345.353)8
3、二进制转换为十六进制:采用的是“四位一并法”,整数部分从低位开始,每四位二进制数为一组,最后不足四位的,则在高位加0补足四位为止,也可以不补0。
小数部分从高位开始,每四位二进制数为一组,最后不足四位的,必须在低位加0补足四位,然后用对应的十六进制数来代替,再按顺序写出对应的十六进制数。
方法/步骤1
十进制的小数转换为二进制,主要是小数部分乘以2,取整数部分依次从左往右放在小数点后,直至小数点后为0。例如十进制的0.125,要转换为二进制的小数。
转换为二进制,将小数部分0.125乘以2,得0.25,然后取整数部分0
再将小数部分0.25乘以2,得0.5,然后取整数部分0
再将小数部分0.5乘以2,得1,然后取整数部分1
则得到的二进制的结果就是0.001
方法/步骤2
二进制的小数转换为十进制主要是乘以2的负次方,从小数点后开始,依次乘以2的负一次方,2的负二次方,2的负三次方等。例如二进制数0.001转换为十进制。
第一位为0,则0*1/2,即0乘以2负 一次方。
第二位为0,则0*1/4,即0乘以2的负二次方。
第三位为1,则1*1/8,即1乘以2的负三次方。
各个位上乘完之后,相加,0*1/2+0*1/4+1*1/8得十进制的0.125
❼ 二进制如何计算
二进制如何计算
二进制如何计算,虽然现如今大家都或多或少的学习过二进制,但是还是很多人对于这一种内容很苦手,很难学会这一个知识点,因此难以看懂二进制的算法,下面我带大家简单了解一下二进制如何计算.
二进制的计算数据是用0和1两个数码来表示的数。基数为2,进位规则是“逢二进一”,借位规则是“借一当二”。计算机中的二进制是一个非常微小的开关,用“开”来表示1,“关”来表示0。二进制的计算分为五种:
1、加法有四种情况: 0+0=0,0+1=1,1+0=1,1+1=10,0进位为1。
2、乘法有四种情况: 0×0=0,1×0=0,0×1=0,1×1=1。
3、减法有四种情况:0-0=0,1-0=1,1-1=0,0-1=1。
4、除法有两种情况:0÷1=0,1÷1=1。
5、拈加法二进制是加减乘除外的.一种特殊算法。拈加法运算与进行加法类似,但不需要做进位。
(7)2345二进制算法扩展阅读:
1、二进制的优点
数字装置简单可靠,所用元件少;只有两个数码0和1,因此它的每一位数都可用任何具有两个不同稳定状态的元件来表示;基本运算规则简单,运算操作方便。
2、缺点
用二进制表示一个数时,位数多。因此实际使用中多采用送入数字系统前用十进制,送入机器后再转换成二进制数,让数字系统进行运算,运算结束后再将二进制转换为十进制阅读。二进制数太长,需要将它转换成10进制数,或者先将这个二进制转换成16进制,然后再转换为10进制。
加法: 0+0=0;0+1=1;1+0=1;1+1=10;0进位为1。减法:0-0=0,1-0=1,1-1=0,0-1=1。
二进数转四进制时,以小数点为起点,向左和向右两个方向分别进行分段,每两个数字一段,不足两位的分别在左边或右边补零。
二进制数转换成八进制数:从小数点开始,整数部分向左、小数部分向右,每3位为一组用一位八进制数的数字表示,不足3位的要用“0”补足3位,就得到一个八进制数。
二进制数转换成十六进制数:二进制数转换成十六进制数时,只要从小数点位置开始,向左或向右每四位二进制划分一组(不足四位数可补0),然后写出每一组二进制数所对应的十六进制数码即可。
(7)2345二进制算法扩展阅读:
计算机采用二进制的原因:
1、技术实现简单,计算机是由逻辑电路组成,逻辑电路通常只有两个状态,开关的接通与断开,这两种状态正好可以用“1”和“0”表示。
2、简化运算规则:两个二进制数和、积运算组合各有三种,运算规则简单,有利于简化计算机内部结构,提高运算速度。
3、适合逻辑运算:逻辑代数是逻辑运算的理论依据,二进制只有两个数码,正好与逻辑代数中的“真”和“假”相吻合。
4、易于进行转换,二进制与十进制数易于互相转换。
5、用二进制表示数据具有抗干扰能力强,可靠性高等优点。因为每位数据只有高低两个状态,当受到一定程度的干扰时,仍能可靠地分辨出它是高还是低。