① svm算法是什么
SVM(Support Vector Machine)中文名为支持向量机,是常见的一种判别方法。
支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning)方式对数据进行二元分类的广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane)。
数值求解特点:
SVM的求解可以使用二次凸优化问题的数值方法,例如内点法和序列最小优化算法,在拥有充足学习样本时也可使用随机梯度下降。
在二次凸优化问题中,SMO的每步迭代都严格地优化了SVM的对偶问题,且迭代会在有限步后收敛于全局极大值。SMO算法的迭代速度与所选取乘子对KKT条件的偏离程度有关,因此SMO通常采用启发式方法选取拉格朗日乘子。
在每次迭代时,SGD首先判定约束条件,若该样本不满足约束条件,则SGD按学习速率最小化结构风险;若该样本满足约束条件,为SVM的支持向量,则SGD根据正则化系数平衡经验风险和结构风险,即SGD的迭代保持了SVM的稀疏性。
② java中svm_scale怎么用
public class TestScale {
public static void main(String[] args) throws IOException {
String reafile = " "; /凯晌物/ 文件路径
svm_scale svms = new svm_scale();
String[] srg = { reafile };//在这可以添加相关的系数"-l","0","谨大-u","1","-s".以及要保存的盯液scale参数文件
svms.main(srg);
}
}
③ 如何在eclipse编写的java代码中调用Libsvm,训练分类器
下面是CSDN上改桐面关于libsvm的使用介绍,由于内容较多,我只把戚枯网址复制过来了,你可以参核仔坦考一下,祝你好运!
http://blog.csdn.net/flydreamGG/archive/2009/08/20/4466023.aspx
http://blog.csdn.net/flydreamGG/archive/2009/08/20/4466059.aspx
http://blog.csdn.net/flydreamGG/archive/2009/08/21/4468995.aspx
http://blog.csdn.net/flydreamGG/archive/2009/08/21/4470121.aspx
http://blog.csdn.net/flydreamGG/archive/2009/08/21/4469617.aspx
http://blog.csdn.net/flydreamGG/archive/2009/08/21/4470477.aspx
④ “数据分类”15支持向量机(SVM)及混淆矩阵
1.支持向量机(SVM)概述
(1)支持向量机(Support Vector Machines,SVM)是一种二元分类模型,它是一类模型的统称,其中包括:
①线性可分支持向量机;
②线性支持向量机;
③非线性支持向量机。
(如滚2)核心思想:
训练阶段在特征空间中寻找一个超平面,它能(或尽量能)将训练样本中的正例和负例分离在它的两侧,预测时以该超平面作为决策边界判断输入实例的类别。寻找超平面的原则是,在可分离的情况下使超平面与数据集间隔最大化。
(3)支持向量机的分类示意图为:
简单来说,SVM的原理就是在平面内找到一条直线,使得这两类不同的样本点分开,并且保证能够尽可能远的远离这条直线。用向量表示两类样本点之间的分类间隔(Margin)为:
支持向量机的目的是使r最大,等价于使||w||/2最小。而几何向量使分类间隔最大问题可以转化为运筹学上的约束优化问题。因为涉及太多复杂公式,此处省略。
只要理解了SVM的原理,并且学会利用sklearn库调用SVM模块,就达到了数据分析的目的。
2.SVM算法实现
(1)重要参数说明:
①kernel :核函数,默认是rbf,可以是‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’ 。
·kernel='linear'时为线性核,C越大分类效果越好,但有可能会过拟合(defaul C=1);
·kernel='poly'时为多项式核函数;
·kernel='rbf'时(default)为高斯核,gamma值越小,分类界面越连续;gamma值越大,分类界面越“散”,分类效果越好,但有可能会过拟合。
②decision_function_shape:
·decision_function_shape='ovr'时,为one v rest,即一个类别与其他类别进行划分;
·decision_function_shape='ovo'时,为one v one,即将类别两两之间进行划分,用二分类的方法模拟多分类的结果。
(2)程序实现过程:
【注】
在分类型模型评判的指标中,常见的方法有如下三种:
①混淆矩阵(也称误差矩阵,Confusion Matrix)
混淆矩阵是评判模型结果的指标,属于模型评估的一部分。此外袭御,混淆矩阵多用于判断分类器(Classifier)的优渣禅余劣,适用于分类型的数据模型,如分类树(Classification Tree)、逻辑回归(Logistic Regression)、线性判别分析(Linear Discriminant Analysis)等方法。
混淆矩阵的一级指标:
通过混淆矩阵可以计算出评估模型的几个指标(二级指标):
三级指标:F1-score
其中,P代表Precision,R代表Recall。
F1-Score指标综合了Precision与Recall的产出的结果。F1-Score的取值范围从0到1的,1代表模型的输出最好,0代表模型的输出结果最差。
Ps:当分类结果多于两种时,需要将结果转化为上面的类型。
详细内容参考博文https://blog.csdn.net/Orange_Spotty_Cat/article/details/80520839
②ROC曲线
③AUC面积
⑤ java检测人脸图片是否高清
Java检测人脸埋拿图片是否高清可以通过以下步骤实现。
1、对人脸图片进行图像处理,以提取出图像中的人脸特征。
2、使用支持向量机SVM分类算法,建立一个高清人脸图像与模糊人脸图像的分颤慧类模型,用来区分高清图像和模糊图像。
3、将待测人脸图像和模型进行比较,并判断其属于高清图像还是模糊图像茄液答。
⑥ 北大青鸟java培训:人工智能开发机器学习的常用算法
我们在学习人工智能以及智能AI技术的时候曾经给大家介绍过不同的机器学习的方法,而今天我们就着重介绍一下,关于机器学习的常用算法都有哪些类型。
支持向量机是什么?支持向量机是一种有监督的机器学习算法,可以用于分类或回归问题。
它使用一种称为大核哪核技巧的技术来转换数据,然后根据这些转换在可能的输出之间找到一个边界。
简单地说,它做一些非常复杂的数据转换,然后根据定义的标签或输出来划分数据。
那么是什么让它如此伟大呢?支持向量机既能进行分类又能进行回归。
在本文中,我将重点介绍如何使用SVM进行分类。
我将特别关注非线性支持向量机,或者说是使用非线性核的支持向量机。
非线性支持向量机意味着算法计算的边界不一定是直线。
好处是您可以捕获数据点之间更复杂的关系,而不必自己做困难的转换。
缺点是训练时间更长,因为它需要更多的计算。
那么核技巧是什么?核技巧对你获得的数据进行转换。
有一些很好的特性,你认为可以用来做一个很好的分类器,然后出来一些你不再认识的数据。
这有点像解开一条DNA链。
你从这个看起来很难看的数据向量开始,在通过核滚码技巧之后,它会被解开并自我复合,直到它现在是一个更大的数据集,氏含通过查看电子表格无法理解。
但是这里有魔力,在扩展数据集时,你的类之间现在有更明显的界限,SVM算法能够计算出更加优化的超平面。
接下来,假设你是一个农民,你有一个问题-你需要设置一个围栏,以保护你的奶牛免受狼的攻击。
但是你在哪里建造篱笆?好吧,如果你是一个真正的数据驱动农民,你可以做的一件事就是建立一个基于你牧场中奶牛和狼的位置的分类器。
天津北大青鸟http://www.kmbdqn.cn/建议通过几种不同类型的分类器,我们看到SVM在从狼群中分离你的奶牛方面做得很好。
我认为这些图也很好地说明了使用非线性分类器的好处。
您可以看到逻辑和决策树模型都只使用直线。
⑦ 北大青鸟java培训:人工智能开发常用的机器学习方法
随着互联网行业的不断发展,人工智能和AI技术得到更多人的热捧,那么在学习人工智能和AI技术时,应该掌握各种各样的机器学习方法。
下面海南java培训为大家介绍不同机器学习的具体方法。
什么是支持向量机?支持向量机是一种机器学习算法,可用于分类和回归问题。
它使用一种称为核心技术的方法来转换数据,并根据转换在可能的输出之间查找嫌雹边界。
简单地说,北大青鸟发现它能够执行非常复杂的数据转换,并根据定义的标签或输出进行数据划分。
支持向量机的优势支持向量机不仅能够进行分类还能起到回归的作用,可以说是非线性支持向量机,也可以说是使用非线性核的支持向量机。
非线性支持向量机的算法计算边界不一定为直线。
海南UI设计认为好处是能够捕获数据点之间更复杂的关系。
因此,您不需要进行复杂的转换。
缺点是需要更多的计算,因此需要更长的训练时间。
核心技巧具体是什么呢?核技术可以转换得到的数据,具有几个优秀的特性,可以使用这些特性制作分类器,得出自己不知道的数据。
就像解开DNA的锁链一样。
首先,从这个不可见的数据向量开始。
使用核心提示时,会对其进行解密宏敏和自合成,从而创建一个连电子表格都无法理解的大型数据集。
但是,大数据开发发现随着数据集的扩展,类之间的边界变得清蔽者枝晰,SVM算法可以计算出更优化的超平面。
⑧ 如何在Java中使用libsvm的Cross Validation Accuracy的值
SVM(support vector machine)是一项流行的分类技术。然而,初学者由于不熟悉SVM,常常得不到满意的结果,原因在于丢失了一些简单但是非常必要的步骤。在这篇文档中,我们给出了一个简单的操作流程,得到合理的结果。(译者注:本文中大部分SVM实际指的是LibSVM)
1 入门知识
SVM是一项非常实用的数据分类技术。虽然SVM比起神经网络(Neural Networks)要相对容易一些,但对于不熟悉该方法的用户而言,开始阶段通常很难得到满意的结果。这里,我们给出了一份指南,根据它可以得到合理结果。
需要注意,此指南不适用SVM的研究者,并且也不保证一定能够获得最高精度结果。同时,我们也没有打算要解决有挑战性的或者非常复杂的问题。我们的目的,仅在于给初学者提供快速获得可接受结果的秘诀。
虽然用户不是一定要深入理解SVM背后的理论,但为了后文解释操作过程,我们还是先给出必要的基础的介绍。一项分类任务通常将数据划分成训练集和测试集。训练集的每个实例,包含一个“目标值(target value)”(例如,分类标注)和一些“属性(attribute)”(例如,特征或者观测变量)。SVM的目标是基于训练数据产出一个模型(model),用来预测只给出属性的测试数据的目标值。
⑨ SVM算法原理
一、决策面方程
以二维空间为例,二维空间中任意一条直线方程可以写为
我们将其向量化,可以得到
设用向量w代表矩阵a1和a2,用向量x代表矩阵x1和x2,标量γ代表b,则方程可化表示为
从方程可知,一个n维空间的超平面在二维空间上的表现,可以是一条直线,或者一个曲线(二维空间中只能看到这个n维超平面穿过而无法看到其模样), 超平面方程即是我们的决策面方程
二、函数间隔和几何间隔
在SVM监督学习中,我们规定标签数据为+1和-1两个值,这么做的目的, 可以计算出任意一个样本点在超平面方程上的表现结果的符号,与标签符号是否一致来判断分类的正确性 ,为此我们可以引入函数间隔的概念
但是当我们成比例的缩放w和γ,函数间隔的值也将成比例的变化,可是超平面的位置并没有发生任何变化,所以函数间隔并不是我们想要的分类间隔,为此,我们需要引入几何间隔的概念
还是以二维空间出发,任意一点到直线的距离可以写成
我们将其拓展到n维空间,直线方程即是我们的超平面方程,则n维空间中任何一点到超平面的距离可以写成
为此,我们引入几何间隔概念,其中||w||表示向量w的二范数
从几何间隔可以看出,就算等比例缩放w和γ,由于除上了||w||使得几何间隔的值不会改变,它只随着超平面位置的变化而变化,因此, 我们要寻找的分类间隔是几何间隔
三、不等式约束条件
SVM算法的目的是找到一个将分类效果达到最合理化的超平面,这个超平面即是分类器 。而评估分类器的好坏的标准就是分类间隔的大小
我们定义分类间隔的距离为d,好的分类器应该让所有样本点到决策面的几何间隔都大于等于d
化简上式,不等式两边同时除以d可得
由于||w||和d都是标量,可定义
则上式可化简为
在不等式两边同时乘以yi,即将两个式子化简为一个式子(这里体现了正是因为标签数据为+1和-1,才方便将约束条件变成一个约束方程)
这个约束方程的意义 即是任何样本点到超平面(分类器)的几何间隔都大于等于分类间隔
四、SVM最优化模型的数学描述
评估分类器的优劣是分类间隔的大小,且对于任意样本点都满足约束方程
由约束方程可知,当样本点落在支持向量边界上有如下关系
则分类间隔d可以表示为支持向量点到超平面的几何间隔
要让任何样本点都在d之外,即求分类间隔d的最大值,则目标函数可以写成
为了方便在后续最优化处理中对目标函数的求导,我们将目标函数做等效变化
由目标函数是二次的,而约束条件是线性的,则 SVM的数学模型即是:不等式约束条件下的二次型函数优化 ,而求解这一类优化问题,接下来我们需要构造 拉格朗乘子函数
五、引入拉格朗函数
目标函数是求解在约束条件g(x)下的二次型函数f(x)的最小值,直观上我们希望构造一个函数L(x),使得L(x)在f(x)的可行解区域内的求出的值和f(x)求出的值完全一样,而在f(x)的可行解区域外,L(x)的值又接近无穷大,这么做的目的,使得我们可以用一个函数L(x)来等效表示原问题的g(x)和f(x)
拉格朗函数的目的,就是将约束条件融合到目标函数中,构造一个新函数来表示目标函数,将有约束的优化问题转化为无约束的优化问题
下面,我们构造拉格朗函数来表示目标函数
其中αi是拉格朗日乘子,每一个约束条件对应一个拉格朗日乘子,其中αi大于等于0
则原优化问题可以转化为
讨论如下条件(1)(2):
(1) 当样本点不满足约束条件时,即说明在 可行解区域外
此时将αi置为正无穷大,那么θ(w)显然也是正无穷大
(2) 当样本点满足约束条件时,即说明在 可行解区域内
此时θ(w)的最小值就是原目标函数,于是综上所述,引入拉格朗乘子函数后,可以得到新的目标函数
我们用p*表示优化目标函数后的最优解,且与最初的目标函数等价
观察新的目标函数,如果直接求偏导数求解,那么一上来将面对w和b两个未知参数,而αi又是不等式约束,求解过程将非常复杂。换一个角度思考,如果将max和min的位置对调,变成如下新的目标函数
上式变化使用了 拉格朗日函数的对偶性,交换后的新问题即是原目标函数的对偶问题 ,我们用d*来表示对偶目标函数的最优解,可见d*的求导过程比p*相对容易,且d*<=p*,而当满足下列条件时,d*= p*
因为目标函数本身已经是一个凸函数,而优化问题又是求解最小值,所以目标函数的最优化问题就是凸优化问题,则接下来就要重点讨论KKT条件
六、KKT条件的描述
一个最优化模型能够表示成下列标准形式
其中f(x)是需要最小化的函数,h(x)是等式约束,g(x)是不等式约束,m和n分别是等式约束和不等式约束的数量
KKT条件即是规定f(x)的 最优值 必须满足以下(1)(2)(3)条件, 只有满足KKT条件,目标函数的最优化问题依然可以用拉格朗日乘子法解决
很明显,我们需要优化的目标函数属于带有不等式约束函数g(x),所以条件二显然满足,下面我们来分析条件一和条件三的理论
七、目标函数的等高线与约束条件的最优值分析(条件一)
对于KKT条件一的分析,我们假设目标函数是f(x1,x2)的二元函数,它的图像在三维空间里是一个曲面,准确的来说是一个凸曲面
其中g(x1,x2)是约束方程,要求目标函数f(x1,x2)的最小值,即转化为 求g(x1,x2)=c这条曲线上的一点,使得f(x1,x2)取得最小值,换个比喻,就是在山上(目标函数曲面)寻找一条山路(约束条件曲线)的最低点
我们画出目标函数的等高线,来分析目标函数最优值和约束条件的关系
对于研究目标函数z=f(x1,x2),当z取不同的值,即将曲线z投影在(x1,x2)组成的空间中(这里指的是二维空间),也就是曲面的等高线,上图中d1和d2即是两条目标函数的等高线,可以看出,当约束函数g(x1,x2)与目标函数的等高线有共同的交点, 即证明这组值同时满足在目标函数的可行域中,也符合约束条件的约束关系
如果等高线与g(x1,x2) 相交 ,则是一组目标函数的解,但是这个解一定不是最优解, 因为相交意味着肯定存在其它等高线在该条等高线的内部或者外部 ,可能会使得新的等高线与g(x1,x2)的交点更大或者更小,这就意味着只有当等高线与g(x1,x2) 相切 ,才可能得到最优解(切线可能多条)
所以最优解必须满足: 目标函数的负梯度方向与约束函数的梯度方向一致
而上式恒成立的条件就是: 拉格朗日乘子α >= 0 ,且这个式子就是目标函数对各个参数求偏导数的结果,即KKT的第一个条件:目标函数对各个参数的导数为0
八、分类讨论约束条件和拉格朗日乘子的组合(条件三)
对于KKT条件三,可以看出,因为所有的约束函数gi(x)<=0,所有的拉格朗日乘子αi>=0,要使得求和后结果为0,要么某个约束函数gi(x)=0,要么其对应的αi=0
从一个案例出发来分析KKT条件三的逻辑,假设目标函数和约束函数是
将不等式约束构造出拉格朗日函数,并分别对x1和x2求偏导数
而KKT的条件三要求最优解满足 ∑α*g(x) = 0,在这个案例里α和g(x)只有一个,结合条件一,可以得到
根据之前的分析,最优值满足条件三的话,要么α=0,要么g(x)=0
(i):如果α=0,则x1=1,x2=-2,代入g(x1,x2) =10-1-10*(-2)=29>0,发现这组解违背了约束函数g(x)<0,则舍弃这组解
(ii): 如果g(x1,x2)=0,则代入x1和x2的表达式到g(x)中,解出α=58/101>0,发现这组解不违背约束函数,则代入α解出x1=130/101,x2=88/101,则这组解有可能是最优解
综上(i)(ii)讨论,目标函数的最优值符合KKT条件三,也说明了 满足强对偶条件的优化问题的最优值必须满足KKT条件
九、求解对偶问题
上面分析了目标函数满足凸优化和KKT条件,则问题转化为求解原问题的对偶问题(即p*=d*)
根据对偶问题描述,先要求内侧w和b关于L(w,b,α)的最小化值,即求L对w和b的偏导数
将w和b的偏导数带入拉格朗函数化简得
整理一下最终化简结果为
从上述结果可以看出,样本的x和y是已知的,此时的 L(w,b,α)函数只有一个变量,即αi
我们归纳一下现在的目标函数为
现在目标函数变成了如上形式,其中αi>=0,这里隐含着一个假设,即数据100%线性可分,但是现实生活中,数据往往是不会那么规则的线性化,为此我们需要引入松弛变量
十、引入松弛变量
由于现实世界中的数据都是带有噪音的,也就是数据可能出偏离其正常的位置很远,而出现这种极端现象后往往会影响超平面的选择,也许将无法构造出将数据彻底分开的超平面出来
所以对于处理这种情况, SVM需要允许(妥协)出某些噪音很大的数据点能够偏离超平面,即允许其出现在超平面的错误的一侧 ,为此我们引入松弛变量C,这样我们的目标函数又变为
接下来为了研究讨论αi的取值范围,我们加上一个负号将目标函数等价转化为
十一、讨论拉格朗乘子的取值意义和其值域
回顾一下最初的约束条件为
设ui为该约束条件,可以归纳出αi关于约束函数的取值意义
αi只有满足上述3种情况,才能求出最优解,所以 当αi与约束条件ui冲突的时候,需要更新这些αi ,这也就是满足目标函数的第一个约束限制,即0<=αi<=C
而同时目标函数还受到第二个约束条件的限制,即
所以不能只更新一个αi因子,需要同时再次更新第二个αj因子,也就是 α因子总是成对的更新(αi对总是和αj配对),一增一减,此消彼长,才能保证加权和为0的约束 ,同时这也就是下面提及SMO算法的思想和多元函数化简为二元函数,在从二元函数化简为一元函数的难点
根据这个约束和α因子需要成对更新,假设我们选取的两个拉格朗乘子为α1和α2,则更新之前是old,更新之后是new,且更新前后需要满足和为0的约束
两个因子同时更新显然非常困难,所以需要先求出第一个αj的解,再用αj的解去表示更新第二个αi的解 ,后文的SMO算法会阐述这一点。因此需要先确定αj的取值范围,假设L和H分别为它的下界和上界,结合目标函数的约束限制来综合讨论L和H的取值关系
(i):当y1和y2异号时,可以得到
移项可得a2 = a1 - A,此时α的取值范围如下图所示
所以此时α的上下界H和L为
(ii):当y1和y2同号时,可以得到
移项可得a2 = -a1 + A,此时α的取值范围如下图所示
所以此时α的上下界H和L为
综上(i)(ii)的讨论,通过y1和y2的异号或者同号,可以推导出α更新后的上下界分别为
这个公式显得非常的重要,它将α因子限制在有效的矩形范围内,在SMO算法中,当我们更新完α后,由于α可能会被更新得很大或很小,因此需要经过裁剪来保证α的在约束条件内
12、SMO算法的思想
回顾之前第九,第十,第十一步的分析,目标函数为
目标函数只包含n个变量α的 多元函数 ,且带有两个约束条件,我们的 目的是求出目标函数的最小值,即找到一组α的组合,使得目标函数取得最小值
由第十一步的分析,我们需要不断更新这n个α因子,通过迭代来逼近函数达到最小值,但是如果一次性更新n个参数,将会有n!种组合,那么时间复杂度将会非常高,为此我们首先想到 坐标上升(下降)法
来通过一个例子来说明坐标上升法的思路
可知案例中要求一个三元函数的最大值, 算法的思想是每次迭代时只更新一个维度,通过多次迭代直到收敛来优化函数的最值 ,求出三个变量的偏导数推出其关系
通过迭代即就可以求出其最值
SMO算法借鉴了坐标上升(下降)法的思想来优化α因子组合,但是由于目标函数的第二个约束条件有加权和为0的限制,导致每次迭代时候不能只更新一个因子αi,必须同时更新与之配对的另一个因子αj,此消彼长才能保证加权和为0(第十一步中已提及)
所以SMO算法思想是将原始问题中,求解n个参数的二次规划问题,分解成了多个子二次规划问题来分别求解,每一个子问题只需要求解2个参数,即将多元函数推导为二元函数,再将二元函数推导为一元函数
13、多元函数推导为二元函数
目标函数是关于α的N元函数,通过SMO的算法思想,假设每次迭代更新,选取一对α1和α2的组合,其余的乘子不变, 首先需要将α1和α2从目标函数中分离出来 ,也就是将多元函数推导为二元函数
从N元函数中分离出α1和α2因子
由于上式推导结果过于复杂,我们定义2个表达式来表示上式常量部分,用来简化上式
又由于单独存下的常数项对以后的求导没有贡献,所以我们提出单独的常数项定义为Constant
带入vi和Constant表达式,则结果化简为
至此,我们将 多元函数推导为含有α1和α2变量的二元函数 ,接下来将这个二元函数推导为一元函数
14、二元函数推导为一元函数
我们需要推导出α1和α2的关系,然后用α2来表示α1带入二元函数,就可以推导出关于α2的一元函数了
由目标函数的第二个约束条件
同理根据SMO算法思想,从约束条件中分离出α1和α2
将等式两边同时乘以y1,可推导出α1和α2的关系
同理,我们定义两个表达式r和s来表示上式的常量部分,用来简化上式关系
带入r和s后,α1和α2的关系推导为
下面将α1带入我们的二元函数中,可得
至此, 我们将二元函数推导为只含有一个变量α2的一元函数 ,接下来终于可以对目标函数求导了
15、求解一元函数的偏导数,推导出第一个拉格朗乘子的递推关系
我们对一元函数求α2的偏导数为0
带入s=y1*y2和y2*y2=1,整理上式可求出α2
⑩ svm算法是什么
SVM(Support Vector Machine)中文名为支持向量机,是常见的一种判别方法。
支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning)方式对数据进行二元分类的广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane)。
数值求解特点:
SVM的求解可以使用二次凸优化问题的数值方法,例如内点法和序列最小优化算法,在拥有充足学习样本时也可使用随机梯度下降。
在二次凸优化问题中,SMO的每步迭代都严格地优化了SVM的对偶问题,且迭代会在有限步后收敛于全局极大值。SMO算法的迭代速度与所选取乘子对KKT条件的偏离程度有关,因此SMO通常采用启发式方法选取拉格朗日乘子。
在每次迭代时,SGD首先判定约束条件,若该样本不满足约束条件,则SGD按学习速率最小化结构风险;若该样本满足约束条件,为SVM的支持向量,则SGD根据正则化系数平衡经验风险和结构风险,即SGD的迭代保持了SVM的稀疏性。