导航:首页 > 源码编译 > 遗传算法流程图

遗传算法流程图

发布时间:2022-02-16 07:04:46

‘壹’ 遗传算法的主要步骤

为了使用遗传算法来解决优化问题,准备工作分为以下四步[56,57,61]

7.4.1 确定问题的潜在解的遗传表示方案

在基本的遗传算法中,表示方案是把问题的搜索空间中每个可能的点表示为确定长度的特征串(通常是二进制串)。表示方案的确定需要选择串长l和字母表规模k。在染色体串和问题的搜索空间中的点之间选择映射有时容易实现,有时又非常困难。选择一个便于遗传算法求解问题的表示方案经常需要对问题有深入的了解。

7.4.2 确定适应值的度量

适应值度量为群体中每个可能的确定长度的特征串指定一个适应值,它经常是问题本身所具有的。适应值度量必须有能力计算搜索空间中每个确定长度的特征串的适应值。

7.4.3 确定控制该算法的参数和变量

控制遗传算法的主要参数有群体规模Pop-Size、算法执行的最大代数N-Gen、交叉概率Pc、变异概率Pm和选择策略R等参数。

(1)群体规模Pop-Size。群体规模影响到遗传算法的最终性能和效率。当规模太小时,由于群体对大部分超平面只给出了不充分的样本量,所以得到的结果一般不佳。大的群体更有希望包含出自大量超平面的代表,从而可以阻止过早收敛到局部最优解;然而群体越大,每一代需要的计算量也就越多,这有可能导致一个无法接受的慢收敛率。

(2)交叉率Pc。交叉率控制交叉算子应用的频率,在每代新的群体中,有Pc·Pop-Size个串实行交叉。交叉率越高,群体中串的更新就越快。如果交叉率过高,相对选择能够产生的改进而言,高性能的串被破坏得更快。如果交叉率过低,搜索会由于太小的探查率而可能停滞不前。

(3)变异率Pm。变异是增加群体多样性的搜索算子,每次选择之后,新的群体中的每个串的每一位以相等的变异率进行随机改变。对于M进制串,就是相应的位从1变为0或0变为1。从而每代大约发生Pm·Pop-Size·L次变异,其中L为串长。一个低水平的变异率足以防止整个群体中任一给定位保持永远收敛到单一的值。高水平的变异率产生的实质是随机搜索。

比起选择和交叉,变异在遗传算法中是次要的,它在恢复群体中失去的多样性方面具有潜在的作用。例如,在遗传算法执行的开始阶段,串中一个特定位上的值1可能与好的性能紧密联系,也就是说从搜索空间中某些初始随机点开始,在那个位上的值1可能一致地产生适应性度量好的值。因为越好的适应值与串中那个位上的值1相联系,复制作用就越会使群体的遗传多样性损失。当达到一定程度时,值0会从整个群体中的那个位上消失,然而全局最优解可能在串中那个位上是0。一旦搜索范围缩小到实际包含全局最优解的那部分搜索空间,在那个位上的值0就可能正好是达到全局最优解所需的。这仅仅是一种说明搜索空间是非线性的方式,这种情形不是假定的,因为实际上所有我们感兴趣的问题都是非线性的。变异作用提供了一个恢复遗传多样性的损失的方法。

(4)选择策略R。有两种选择策略。一是利用纯选择,即当前群体中每个点复制的次数比与点的性能值成比例。二是利用最优选择,即首先执行纯选择,且具有最好性能的点总是保留到下一代。在缺少最优选择的情况下,由于采样误差、交叉和变异,最好性能的点可能会丢失。

通过指定各个参数Pop-Size、Pc、Pm和R的值,可以表示一个特定的遗传算法。

7.4.4 确定指定结果的方法和停止运行的准则

当遗传的代数达到最大允许代数时,就可以停止算法的执行,并指定执行中得到的最好结果作为算法的结果。

基本的遗传算法

1)随机产生一个由固定长度字符串组成的初始群体。

2)对于字符串群体,迭代地执行下述步骤,直到选择标准被满足为止。

①计算群体中的每个个体字符串的适应值;

②实施下列三种操作(至少前两种)来产生新的群体,操作对象的选取基于与适应度成比例的概率。

选择:把现有的个体串按适应值复制到新的群体中。

交叉:通过遗传重组随机选择两个现有的子串进行遗传重组,产生两个新的串。

变异:将现有串中某一位的字符随机变异产生一个新串。

3)把在后代中出现的最好适应值的个体串指定为遗传算法运行的结果。这一结果可以是问题的解(或近似解)。

基本的遗传算法流程图如图7-1所示。

‘贰’ 遗传算法 简单程序应用

import java.awt.BorderLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
import javax.swing.JTextField;

class Best {
public int generations; //最佳适应值代号
public String str; //最佳染色体
public double fitness; //最佳适应值
}

public class SGAFrame extends JFrame {

private JTextArea textArea;
private String str = "";
private Best best = null; //最佳染色体
private String[] ipop = new String[10]; //染色体
private int gernation = 0; //染色体代号
public static final int GENE = 22; //基因数
/**
* Launch the application
* @param args
*/
public static void main(String args[]) {
try {
SGAFrame frame = new SGAFrame();
frame.setVisible(true);
} catch (Exception e) {
e.printStackTrace();
}
}

/**
* Create the frame
*/
public SGAFrame() {
super();

this.ipop = inialPops();

getContentPane().setLayout(null);
setBounds(100, 100, 461, 277);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

final JLabel label = new JLabel();
label.setText("X的区间:");
label.setBounds(23, 10, 88, 15);
getContentPane().add(label);

final JLabel label_1 = new JLabel();
label_1.setText("[-255,255]");
label_1.setBounds(92, 10, 84, 15);
getContentPane().add(label_1);

final JButton button = new JButton();
button.addActionListener(new ActionListener() {
public void actionPerformed(final ActionEvent e) {
SGAFrame s = new SGAFrame();
str = str + s.process() + "\n";
textArea.setText(str);
}
});
button.setText("求最小值");
button.setBounds(323, 27, 99, 23);
getContentPane().add(button);

final JLabel label_2 = new JLabel();
label_2.setText("利用标准遗传算法求解函数f(x)=(x-5)*(x-5)的最小值:");
label_2.setBounds(23, 31, 318, 15);
getContentPane().add(label_2);

final JPanel panel = new JPanel();
panel.setLayout(new BorderLayout());
panel.setBounds(23, 65, 399, 164);
getContentPane().add(panel);

final JScrollPane scrollPane = new JScrollPane();
panel.add(scrollPane, BorderLayout.CENTER);

textArea = new JTextArea();
scrollPane.setViewportView(textArea);
//
}

/**
* 初始化一条染色体(用二进制字符串表示)
* @return 一条染色体
*/
private String inialPop() {
String res = "";
for (int i = 0; i < GENE; i++) {
if (Math.random() > 0.5) {
res += "0";
} else {
res += "1";
}
}
return res;
}

/**
* 初始化一组染色体
* @return 染色体组
*/
private String[] inialPops() {
String[] ipop = new String[10];
for (int i = 0; i < 10; i++) {
ipop[i] = inialPop();
}
return ipop;
}

/**
* 将染色体转换成x的值
* @param str 染色体
* @return 染色体的适应值
*/
private double calculatefitnessvalue(String str) {
int b = Integer.parseInt(str, 2);
//String str1 = "" + "/n";
double x = -255 + b * (255 - (-255)) / (Math.pow(2, GENE) - 1);
//System.out.println("X = " + x);
double fitness = -(x - 5) * (x - 5);
//System.out.println("f(x)=" + fitness);
//str1 = str1 + "X=" + x + "/n"
//+ "f(x)=" + "fitness" + "/n";
//textArea.setText(str1);

return fitness;
}

/**
* 计算群体上每个个体的适应度值;
* 按由个体适应度值所决定的某个规则选择将进入下一代的个体;
*/
private void select() {
double evals[] = new double[10]; // 所有染色体适应值
double p[] = new double[10]; // 各染色体选择概率
double q[] = new double[10]; // 累计概率
double F = 0; // 累计适应值总和
for (int i = 0; i < 10; i++) {
evals[i] = calculatefitnessvalue(ipop[i]);
if (best == null) {
best = new Best();
best.fitness = evals[i];
best.generations = 0;
best.str = ipop[i];
} else {
if (evals[i] > best.fitness) // 最好的记录下来
{
best.fitness = evals[i];
best.generations = gernation;
best.str = ipop[i];
}
}
F = F + evals[i]; // 所有染色体适应值总和

}
for (int i = 0; i < 10; i++) {
p[i] = evals[i] / F;
if (i == 0)
q[i] = p[i];
else {
q[i] = q[i - 1] + p[i];
}
}
for (int i = 0; i < 10; i++) {

double r = Math.random();
if (r <= q[0]) {
ipop[i] = ipop[0];

} else {
for (int j = 1; j < 10; j++) {
if (r < q[j]) {
ipop[i] = ipop[j];
break;
}
}
}
}
}

/**
* 交叉操作
* 交叉率为25%,平均为25%的染色体进行交叉
*/
private void cross() {
String temp1, temp2;
for (int i = 0; i < 10; i++) {
if (Math.random() < 0.25) {
double r = Math.random();
int pos = (int) (Math.round(r * 1000)) % GENE;
if (pos == 0) {
pos = 1;
}
temp1 = ipop[i].substring(0, pos)
+ ipop[(i + 1) % 10].substring(pos);
temp2 = ipop[(i + 1) % 10].substring(0, pos)
+ ipop[i].substring(pos);
ipop[i] = temp1;
ipop[(i + 1) / 10] = temp2;
}
}
}

/**
* 基因突变操作
* 1%基因变异m*pop_size 共180个基因,为了使每个基因都有相同机会发生变异,
* 需要产生[1--180]上均匀分布的
*/
private void mutation() {
for (int i = 0; i < 4; i++) {
int num = (int) (Math.random() * GENE * 10 + 1);
int chromosomeNum = (int) (num / GENE) + 1; // 染色体号

int mutationNum = num - (chromosomeNum - 1) * GENE; // 基因号
if (mutationNum == 0)
mutationNum = 1;
chromosomeNum = chromosomeNum - 1;
if (chromosomeNum >= 10)
chromosomeNum = 9;
//System.out.println("变异前" + ipop[chromosomeNum]);
String temp;
if (ipop[chromosomeNum].charAt(mutationNum - 1) == '0') {
if (mutationNum == 1) {
temp = "1" + ipop[chromosomeNum].substring

(mutationNum);
} else {
if (mutationNum != GENE) {
temp = ipop[chromosomeNum].substring(0, mutationNum -

1) + "1" + ipop

[chromosomeNum].substring(mutationNum);
} else {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "1";
}
}
} else {
if (mutationNum == 1) {
temp = "0" + ipop[chromosomeNum].substring

(mutationNum);
} else {
if (mutationNum != GENE) {
temp = ipop[chromosomeNum].substring(0, mutationNum -

1) + "0" + ipop

[chromosomeNum].substring(mutationNum);
} else {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "1";
}
}
}
ipop[chromosomeNum] = temp;
//System.out.println("变异后" + ipop[chromosomeNum]);
}
}
/**
* 执行遗传算法
*/
public String process() {
String str = "";
for (int i = 0; i < 10000; i++) {
this.select();
this.cross();
this.mutation();
gernation = i;
}
str = "最小值" + best.fitness + ",第" + best.generations + "个染色体";
return str;
}

}

‘叁’ 求基于遗传算法的TPS的matlab程序,坐标手动输入

1. 遗传算法实现过程

现实生活中很多问题都可以转换为函数优化问题,所以本文将以函数优化问题作为背景,对GA的实现过程进行探讨。大部分函数优化问题都可以写成求最大值或者最小值的形式,为了不是一般性,我们可以将所有求最优值的情况都转换成求最大值的形式,例如,求函数f(x)的最大值,

clip_image002

若是求函数f(x)的最小值,可以将其转换成g(x)=-f(x),然后求g(x)的最大值,

clip_image004

这里x可以是一个变量,也可是是一个由k个变量组成的向量, x=(x1, x2, …, xk)。每个xi, i=1,2,…,k, 其定义域为Di,Di=[ai, bi]。

一般规定f(x)在其定义域内只取正值,若不满足,可以将其转换成以下形式,

clip_image006

其中C是一个正常数。

1.1 编码与解码

要实现遗传算法首先需要弄清楚如何对求解问题进行编码和解码。对于函数优化问题,一般来说,有两种编码方式,一是实数编码,一是二进制编码,两者各有优缺点,二进制编码具有稳定性高、种群多样性大等优点,但是需要的存储空间大,需要解码过程并且难以理解;而实数编码直接用实数表示基因,容易理解并且不要解码过程,但是容易过早收敛,从而陷入局部最优。本文以最常用的二进制编码为例,说明遗传编码的过程。

从遗传算法求解的过程来看,需要处理好两个空间的问题,一个是编码空间,另一个是解空间,如下图所示

clip_image007

从解空间到编码空间的映射过程成为编码过程;从编码空间到解空间的映射过程成为解码过程。下面就以求解一个简单的一维函数f(x) = -(x-1)^2+4, x的取值范围为[-1,3]最大值为例,来说明编码及解码过程。

编码:

在编码之前需要确定求解的精度,在这里,我们设定求解的精度为小数点后四位,即1e-4。这样可以将每个自变量xi的解空间划分为clip_image011个等分。以上面这个函数为例,即可以将x的解空间划分为(3-(-1))*1e+4=40000个等分。使ni满足clip_image013,这里ni表示使上式成立的最小整数,即表示自变量xi的基因串的长度。因为215<40000<216 ,这里ni取16。例如0000110110000101就表示一个解空间中的基因串。表示所有自变量x=(x1, x2, …, xk)的二进制串的总长度称为一个染色体(Chromosome)的长度或者一个个体(Indivial)的长度,clip_image015。编码过程一般在实现遗传算法之前需要指定。

解码:

解码即将编码空间中的基因串翻译成解空间中的自变量的实际值的过程。对于二进制编码而言,每个二进制基因串都可以这样翻译成一个十进制实数值,clip_image017。例如基因串0000110110000101,可以翻译为clip_image019,这里二进制基因串转变成十进制是从左至右进行的。

1.2 初始化种群

在开始遗传算法迭代过程之前,需要对种群进行初始化。设种群大小为pop_size,每个染色体或个体的长度为chromo_size,种群的大小决定了种群的多样性,而染色体的长度则是由前述的编码过程决定的。一般随机生成初始种群,但是如果知道种群的实际分布,也可以按照此分布来生成初始种群。假设生成的初始种群为(v1, v2, …, vpop_size)。

1.3 选择操作

选择操作即从前代种群中选择个体到下一代种群的过程。一般根据个体适应度的分布来选择个体。以初始种群(v1, v2, …, vpop_size)为例,假设每个个体的适应度为(fitness(v1), fitness(v2),…, fitness(vpop_size)),一般适应度可以按照解码的过程进行计算。以轮盘赌的方式选择个体,如下图

clip_image020

随机转动一下轮盘,当轮盘停止转动时,若指针指向某个个体,则该个体被选中。很明显,具有较高适应度的个体比具有较低适应度的个体更有机会被选中。但是这种选择具有随机性,在选择的过程中可能会丢失掉比较好的个体,所以可以使用精英机制,将前代最优个体直接选到下一代中。

轮盘赌选择具体算法如下(这里假定种群中个体是按照适应度从小到大进行排列的,如果不是,可以按照某种排序算法对种群个体进行重排):

Selection Algorithm
var pop, pop_new;/*pop为前代种群,pop_new为下一代种群*/
var fitness_value, fitness_table;/*fitness_value为种群的适应度,fitness_table为种群累积适应度*/
for i=1:pop_size
r = rand*fitness_table(pop_size);/*随机生成一个随机数,在0和总适应度之间,因为fitness_table(pop_size)为最后一个个体的累积适应度,即为总适应度*/
first = 1;
last = pop_size;
mid = round((last+first)/2);
idx = -1;
/*下面按照排中法选择个体*/
while (first <= last) && (idx == -1)
if r > fitness_table(mid)
first = mid;
elseif r < fitness_table(mid)
last = mid;
else
idx = mid;
break;
end if
mid = round((last+first)/2);
if (last - first) == 1
idx = last;
break;
end if
end while

for j=1:chromo_size
pop_new(i,j)=pop(idx,j);
end for
end for
/*是否精英选择*/
if elitism
p = pop_size-1;
else
p = pop_size;
end if
for i=1:p
for j=1:chromo_size
pop(i,j) = pop_new(i,j);/*若是精英选择,则只将pop_new前pop_size-1个个体赋给pop,最后一个为前代最优个体保留*/
end for
end for
1.3 交叉操作

交叉操作是对任意两个个体进行的(在这里我们实现的算法是直接对相邻的两个个体进行的)。随机选择两个个体,如下图所示

clip_image001

然后随机生成一个实数0<=r<=1, 如果r<cross_rate, 0<cross_rate<1为交叉概率,则对这两个个体进行交叉,否则则不进行。如果需要进行交叉,再随机选择交叉位置(rand*chromo_size),如果等于0或者1,将不进行交叉。否则将交叉位置以后的二进制串进行对换(包括交叉位置)。(注意:有时候还可以进行多点交叉,但是这里只讨论单点交叉的情况)

单点交叉具体算法如下:

Crossover algorithm
for i=1:2:pop_size
if(rand < cross_rate)/*cross_rate为交叉概率*/
cross_pos = round(rand * chromo_size);/*交叉位置*/
if or (cross_pos == 0, cross_pos == 1)
continue;/*若交叉位置为0或1,则不进行交叉*/
end if
for j=cross_pos:chromo_size
pop(i,j)<->pop(i+1,j);/*交换*/
end for
end if
end for
1.4 变异操作

变异操作是对单个个体进行的。首先生成一个随机实数0<=r<=1, 如果r<mutate_rate,则对此个体进行变异操作, 0<mutate_rate<1为变异概率,一般为一个比较小的实数。对每一个个体,进行变异操作,如下图所示

clip_image001[4]

如个体需要进行变异操作,首先需要确定变异位置(rand*chromo_size),若为0则不进行变异,否则则对该位置的二进制数字进行变异:1变成0, 0变成1.(当然也可以选择多点进行变异)

单点变异的具体算法描述如下:

Mutation algorithm
for i=1:pop_size
if rand < mutate_rate/*mutate_rate为变异概率*/
mutate_pos = round(rand*chromo_size);/*变异位置*/
if mutate_pos == 0
continue;/*若变异位置为0,则不进行变异*/
end if
pop(i,mutate_pos) = 1 - pop(i, mutate_pos);/*将变异位置上的数字至反*/
end if
end for
1.5 遗传算法流程

遗传算法计算流程图如下图所示

clip_image001[6]

1.6 MATLAB程序实现

初始化:

%初始化种群
%pop_size: 种群大小
%chromo_size: 染色体长度

function initilize(pop_size, chromo_size)
global pop;
for i=1:pop_size
for j=1:chromo_size
pop(i,j) = round(rand);
end
end
clear i;
clear j;
计算适应度:(该函数应该根据具体问题进行修改,这里优化的函数是前述的一维函数)

%计算种群个体适应度,对不同的优化目标,此处需要改写
%pop_size: 种群大小
%chromo_size: 染色体长度

function fitness(pop_size, chromo_size)
global fitness_value;
global pop;
global G;
for i=1:pop_size
fitness_value(i) = 0.;
end

for i=1:pop_size
for j=1:chromo_size
if pop(i,j) == 1
fitness_value(i) = fitness_value(i)+2^(j-1);
end
end
fitness_value(i) = -1+fitness_value(i)*(3.-(-1.))/(2^chromo_size-1);
fitness_value(i) = -(fitness_value(i)-1).^2+4;
end

clear i;
clear j;
对个体按照适应度大小进行排序:

%对个体按适应度大小进行排序,并且保存最佳个体
%pop_size: 种群大小
%chromo_size: 染色体长度

function rank(pop_size, chromo_size)
global fitness_value;
global fitness_table;
global fitness_avg;
global best_fitness;
global best_indivial;
global best_generation;
global pop;
global G;

for i=1:pop_size
fitness_table(i) = 0.;
end

min = 1;
temp = 1;
temp1(chromo_size)=0;
for i=1:pop_size
min = i;
for j = i+1:pop_size
if fitness_value(j)<fitness_value(min);
min = j;
end
end
if min~=i
temp = fitness_value(i);
fitness_value(i) = fitness_value(min);
fitness_value(min) = temp;
for k = 1:chromo_size
temp1(k) = pop(i,k);
pop(i,k) = pop(min,k);
pop(min,k) = temp1(k);
end
end

end

for i=1:pop_size
if i==1
fitness_table(i) = fitness_table(i) + fitness_value(i);
else
fitness_table(i) = fitness_table(i-1) + fitness_value(i);
end
end
fitness_table
fitness_avg(G) = fitness_table(pop_size)/pop_size;

if fitness_value(pop_size) > best_fitness
best_fitness = fitness_value(pop_size);
best_generation = G;
for j=1:chromo_size
best_indivial(j) = pop(pop_size,j);
end
end

clear i;
clear j;
clear k;
clear min;
clear temp;
clear temp1;

选择操作:

%轮盘赌选择操作
%pop_size: 种群大小
%chromo_size: 染色体长度
%cross_rate: 是否精英选择

function selection(pop_size, chromo_size, elitism)
global pop;
global fitness_table;

for i=1:pop_size
r = rand * fitness_table(pop_size);
first = 1;
last = pop_size;
mid = round((last+first)/2);
idx = -1;
while (first <= last) && (idx == -1)
if r > fitness_table(mid)
first = mid;
elseif r < fitness_table(mid)
last = mid;
else
idx = mid;
break;
end
mid = round((last+first)/2);
if (last - first) == 1
idx = last;
break;
end
end

for j=1:chromo_size
pop_new(i,j)=pop(idx,j);
end
end
if elitism
p = pop_size-1;
else
p = pop_size;
end
for i=1:p
for j=1:chromo_size
pop(i,j) = pop_new(i,j);
end
end

clear i;
clear j;
clear pop_new;
clear first;
clear last;
clear idx;
clear mid;

交叉操作:

%单点交叉操作
%pop_size: 种群大小
%chromo_size: 染色体长度
%cross_rate: 交叉概率

function crossover(pop_size, chromo_size, cross_rate)
global pop;
for i=1:2:pop_size
if(rand < cross_rate)
cross_pos = round(rand * chromo_size);
if or (cross_pos == 0, cross_pos == 1)
continue;
end
for j=cross_pos:chromo_size
temp = pop(i,j);
pop(i,j) = pop(i+1,j);
pop(i+1,j) = temp;
end
end
end

clear i;
clear j;
clear temp;
clear cross_pos;

变异操作:

%单点变异操作
%pop_size: 种群大小
%chromo_size: 染色体长度
%cross_rate: 变异概率
function mutation(pop_size, chromo_size, mutate_rate)
global pop;

for i=1:pop_size
if rand < mutate_rate
mutate_pos = round(rand*chromo_size);
if mutate_pos == 0
continue;
end
pop(i,mutate_pos) = 1 - pop(i, mutate_pos);
end
end

clear i;
clear mutate_pos;
打印算法迭代过程:

%打印算法迭代过程
%generation_size: 迭代次数

function plotGA(generation_size)
global fitness_avg;
x = 1:1:generation_size;
y = fitness_avg;
plot(x,y)
算法主函数:

%遗传算法主函数
%pop_size: 输入种群大小
%chromo_size: 输入染色体长度
%generation_size: 输入迭代次数
%cross_rate: 输入交叉概率
%cross_rate: 输入变异概率
%elitism: 输入是否精英选择
%m: 输出最佳个体
%n: 输出最佳适应度
%p: 输出最佳个体出现代
%q: 输出最佳个体自变量值

function [m,n,p,q] = GeneticAlgorithm(pop_size, chromo_size, generation_size, cross_rate, mutate_rate, elitism)

global G ; %当前代
global fitness_value;%当前代适应度矩阵
global best_fitness;%历代最佳适应值
global fitness_avg;%历代平均适应值矩阵
global best_indivial;%历代最佳个体
global best_generation;%最佳个体出现代

fitness_avg = zeros(generation_size,1);

disp "hhee"

fitness_value(pop_size) = 0.;
best_fitness = 0.;
best_generation = 0;
initilize(pop_size, chromo_size);%初始化
for G=1:generation_size
fitness(pop_size, chromo_size); %计算适应度
rank(pop_size, chromo_size); %对个体按适应度大小进行排序
selection(pop_size, chromo_size, elitism);%选择操作
crossover(pop_size, chromo_size, cross_rate);%交叉操作
mutation(pop_size, chromo_size, mutate_rate);%变异操作
end
plotGA(generation_size);%打印算法迭代过程
m = best_indivial;%获得最佳个体
n = best_fitness;%获得最佳适应度
p = best_generation;%获得最佳个体出现代

%获得最佳个体变量值,对不同的优化目标,此处需要改写
q = 0.;
for j=1:chromo_size
if best_indivial(j) == 1
q = q+2^(j-1);
end
end
q = -1+q*(3.-(-1.))/(2^chromo_size-1);

clear i;
clear j;

2. 案例研究

对上一节中的函数进行优化,设置遗传算法相关参数,程序如下

function run_ga()
elitism = true;%选择精英操作
pop_size = 20;%种群大小
chromo_size = 16;%染色体大小
generation_size = 200;%迭代次数
cross_rate = 0.6;%交叉概率
mutate_rate = 0.01;%变异概率

[m,n,p,q] = GeneticAlgorithm(pop_size, chromo_size, generation_size, cross_rate, mutate_rate,elitism);
disp "最优个体"
m
disp "最优适应度"
n
disp "最优个体对应自变量值"
q
disp "得到最优结果的代数"
p

clear;

结果如下:

"最优个体"

m =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

"最优适应度"

n =

4.0000

"最优个体对应自变量值"

q =

1.0000

"得到最优结果的代数"

p =

74

此结果非常准确。

‘肆’ 什么是遗传(要详细的资料和图片解说)

摘要
遗传是指经由基因的传递,使后代获得亲代的特征。遗传学是研究此一现象的学科,目前已知地球上现存的生命主要是以DNA作为遗传物质。除了遗传之外,决定生物特征的因素还有环境,以及环境与遗传的交互作用。
[编辑本段]特点
遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法,与传统的优化算法相比,主要有以下特点:[1]
1、 遗传算法以决策变量的编码作为运算对象。传统的优化算法往往直接决策变量的实际植本身,而遗传算法处理决策变量的某种编码形式,使得我们可以借鉴生物学中的染色体和基因的概念,可以模仿自然界生物的遗传和进化机理,也使得我们能够方便的应用遗传操作算子。
2、 遗传算法直接以适应度作为搜索信息,无需导数等其它辅助信息。
3、 遗传算法使用多个点的搜索信息,具有隐含并行性。
4、 遗传算法使用概率搜索技术,而非确定性规则。
[编辑本段]应用
由于遗传算法的整体搜索策略和优化搜索方法在计算是不依赖于梯度信息或其它辅助知识,而只需要影响搜索方向的目标函数和相应的适应度函数,所以遗传算法提供了一种求解复杂系统问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,所以广泛应用于许多科学,下面我们将介绍遗传算法的一些主要应用领域:
1、 函数优化。
函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。对于一些非线性、多模型、多目标的函数优化问题,用其它优化方法较难求解,而遗传算法可以方便的得到较好的结果。遗传与生育
2、 组合优化
随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。实践证明,遗传算法对于组合优化中的NP问题非常有效。例如遗传算法已经在求解旅行商问题、 背包问题、装箱问题、图形划分问题等方面得到成功的应用。
此外,GA也在生产调度问题、自动控制、机器人学、图象处理、人工生命、遗传编码和机器学习等方面获得了广泛的运用。
[编辑本段]现状
进入90年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。尤其是遗传算法的应用研究显得格外活跃,不但它的应用领域扩大,而且利用遗传算法进行优化和规则学习的能力也显着提高,同时产业应用方面的研究也在摸索之中。此外一些新的理论和方法在应用研究中亦得到了迅速的发展,这些无疑均给遗传算法增添了新的活力。遗传算法的应用研究已从初期的组合优化求解扩展到了许多更新、更工程化的应用方面。儿童孤独症可能来自遗传
随着应用领域的扩展,遗传算法的研究出现了几个引人注目的新动向:一是基于遗传算法的机器学习,这一新的研究课题把遗传算法从历来离散的搜索空间的优化搜索算法扩展到具有独特的规则生成功能的崭新的机器学习算法。这一新的学习机制对于解决人工智能中知识获取和知识优化精炼的瓶颈难题带来了希望。二是遗传算法正日益和神经网络、模糊推理以及混沌理论等其它智能计算方法相互渗透和结合,这对开拓21世纪中新的智能计算技术将具有重要的意义。三是并行处理的遗传算法的研究十分活跃。这一研究不仅对遗传算法本身的发展,而且对于新一代智能计算机体系结构的研究都是十分重要的。四是遗传算法和另一个称为人工生命的崭新研究领域正不断渗透。所谓人工生命即是用计算机模拟自然界丰富多彩的生命现象,其中生物的自适应、进化和免疫等现象是人工生命的重要研究对象,而遗传算法在这方面将会发挥一定的作用,五是遗传算法和进化规划(Evolution Programming,EP)以及进化策略(Evolution Strategy,ES)等进化计算理论日益结合。EP和ES几乎是和遗传算法同时独立发展起来的,同遗传算法一样,它们也是模拟自然界生物进化机制的只能计算方法,即同遗传算法具有相同之处,也有各自的特点。目前,这三者之间的比较研究和彼此结合的探讨正形成热点。
1991年D.Whitey在他的论文中提出了基于领域交叉的交叉算子(Adjacency based crossover),这个算子是特别针对用序号表示基因的个体的交叉,并将其应用到了TSP问题中,通过实验对其进行了验证。
D.H.Ackley等提出了随即迭代遗传爬山法(Stochastic Iterated Genetic Hill-climbing,SIGH)采用了一种复杂的概率选举机制,此机制中由m个“投票者”来共同决定新个体的值(m表示群体的大小)。实验结果表明,SIGH与单点交叉、均匀交叉的神经遗传算法相比,所测试的六个函数中有四个表现出更好的性能,而且总体来讲,SIGH比现存的许多算法在求解速度方面更有竞争力。
H.Bersini和G.Seront将遗传算法与单一方法(simplex method)结合起来,形成了一种叫单一操作的多亲交叉算子(simplex crossover),该算子在根据两个母体以及一个额外的个体产生新个体,事实上他的交叉结果与对三个个体用选举交叉产生的结果一致。同时,文献还将三者交叉算子与点交叉、均匀交叉做了比较,结果表明,三者交叉算子比其余两个有更好的性能。
国内也有不少的专家和学者对遗传算法的交叉算子进行改进。2002年,戴晓明等应用多种群遗传并行进化的思想,对不同种群基于不同的遗传策略,如变异概率,不同的变异算子等来搜索变量空间,并利用种群间迁移算子来进行遗传信息交流,以解决经典遗传算法的收敛到局部最优值问题
2004年,赵宏立等针对简单遗传算法在较大规模组合优化问题上搜索效率不高的现象,提出了一种用基因块编码的并行遗传算法(Building-block Coded Parallel GA,BCPGA)。该方法以粗粒度并行遗传算法为基本框架,在染色体群体中识别出可能的基因块,然后用基因块作为新的基因单位对染色体重新编码,产生长度较短的染色体,在用重新编码的染色体群体作为下一轮以相同方式演化的初始群体。
2005年,江雷等针对并行遗传算法求解TSP问题,探讨了使用弹性策略来维持群体的多样性,使得算法跨过局部收敛的障碍,向全局最优解方向进化。
[编辑本段]一般算法
遗传算法是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型。它的思想源于生物遗传学和适者生存的自然规律,是具有“生存+检测”的迭代过程的搜索算法。遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。 作为一种新的全局优化搜索算法,遗传算法以其简单通用、鲁棒性强、适于并行处理以及高效、实用等显着特点,在各个领域得到了广泛应用,取得了良好效果,并逐渐成为重要的智能算法之一。遗传算法是基于生物学的,理解或编程都不太难。下面是遗传算法的一般算法:
��
[编辑本段]创建一个随机的初始状态
��初始种群是从解中随机选择出来的,将这些解比喻为染色体或基因,该种群被称为第一代,这和符号人工智能系统的情况不一样,在那里问题的初始状态已经给定了。
��评估适应度
��对每一个解(染色体)指定一个适应度的值,根据问题求解的实际接近程度来指定(以便逼近求解问题的答案)。不要把这些“解”与问题的“答案”混为一谈,可以把它理解成为要得到答案,系统可能需要利用的那些特性。
��繁殖(包括子代突变)
��带有较高适应度值的那些染色体更可能产生后代(后代产生后也将发生突变)。后代是父母的产物,他们由来自父母的基因结合而成,这个过程被称为“杂交”。
��下一代
��如果新的一代包含一个解,能产生一个充分接近或等于期望答案的输出,那么问题就已经解决了。如果情况并非如此,新的一代将重复他们父母所进行的繁衍过程,一代一代演化下去,直到达到期望的解为止。
��并行计算
��非常容易将遗传算法用到并行计算和群集环境中。一种方法是直接把每个节点当成一个并行的种群看待。然后有机体根据不同的繁殖方法从一个节点迁移到另一个节点。另一种方法是“农场主/劳工”体系结构,指定一个节点为“农场主”节点,负责选择有机体和分派适应度的值,另外的节点作为“劳工”节点,负责重新组合、变异和适应度函数的评估。
[编辑本段]遗传算法-基本框架
1 GA的流程图
GA的流程图如下图所示
2 编码
遗传算法不能直接处理问题空间的参数,必须把它们转换成遗传空间的由基因按一定结构组成的染色体或个体。这一转换操作就叫做编码,也可以称作(问题的)表示(representation)。
评估编码策略常采用以下3个规范:
a)完备性(completeness):问题空间中的所有点(候选解)都能作为GA空间中的点(染色体)表现。
b)健全性(soundness): GA空间中的染色体能对应所有问题空间中的候选解。
c)非冗余性(nonrendancy):染色体和候选解一一对应。
目前的几种常用的编码技术有二进制编码,浮点数编码,字符编码,变成编码等。
而二进值编码是目前遗传算法中最常用的编码方法。即是由二进值字符集{0, 1}产生通常的0, 1字符串来表示问题空间的候选解。它具有以下特点:
a)简单易行;
b)符合最小字符集编码原则;
c)便于用模式定理进行分析,因为模式定理就是以基础的。
3 适应度函数
进化论中的适应度,是表示某一个体对环境的适应能力,也表示该个体繁殖后代的能力。遗传算法的适应度函数也叫评价函数,是用来判断群体中的个体的优劣程度的指标,它是根据所求问题的目标函数来进行评估的。
遗传算法在搜索进化过程中一般不需要其他外部信息,仅用评估函数来评估个体或解的优劣,并作为以后遗传操作的依据。由于遗传算法中,适应度函数要比较排序并在此基础上计算选择概率,所以适应度函数的值要取正值.由此可见,在不少场合,将目标函数映射成求最大值形式且函数值非负的适应度函数是必要的。
适应度函数的设计主要满足以下条件:
a)单值、连续、非负、最大化;
b) 合理、一致性;
c)计算量小;
d)通用性强。
在具体应用中,适应度函数的设计要结合求解问题本身的要求而定。适应度函数设计直接影响到遗传算法的性能。
4 初始群体的选取
遗传算法中初始群体中的个体是随机产生的。一般来讲,初始群体的设定可采取如下的策略:
a)根据问题固有知识,设法把握最优解所占空间在整个问题空间中的分布范围,然后,在此分布范围内设定初始群体。
b)先随机生成一定数目的个体,然后从中挑出最好的个体加到初始群体中。这种过程不断迭代,直到初始群体中个体数达到了预先确定的规模。
[编辑本段]遗传算法-遗传操作
遗传操作是模拟生物基因遗传的做法。在遗传算法中,通过编码组成初始群体后,遗传操作的任务就是对群体的个体按照它们对环境适应度(适应度评估)施加一定的操作,从而实现优胜劣汰的进化过程。从优化搜索的角度而言,遗传操作可使问题的解,一代又一代地优化,并逼进最优解。
遗传操作包括以下三个基本遗传算子(genetic operator):选择(selection);交叉(crossover);变异(mutation)。这三个遗传算子有如下特点:
个体遗传算子的操作都是在随机扰动情况下进行的。因此,群体中个体向最优解迁移的规则是随机的。需要强调的是,这种随机化操作和传统的随机搜索方法是有区别的。遗传操作进行的高效有向的搜索而不是如一般随机搜索方法所进行的无向搜索。
遗传操作的效果和上述三个遗传算子所取的操作概率,编码方法,群体大小,初始群体以及适应度函数的设定密切相关。
1 选择
从群体中选择优胜的个体,淘汰劣质个体的操作叫选择。选择算子有时又称为再生算子(reproction operator)。选择的目的是把优化的个体(或解)直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的,目前常用的选择算子有以下几种:适应度比例方法、随机遍历抽样法、局部选择法、局部选择法。
其中轮盘赌选择法 (roulette wheel selection)是最简单也是最常用的选择方法。在该方法中,各个个体的选择概率和其适应度值成比例。设群体大小为n,其中个体i的适应度为,则i 被选择的概率,为
显然,概率反映了个体i的适应度在整个群体的个体适应度总和中所占的比例.个体适应度越大。其被选择的概率就越高、反之亦然。计算出群体中各个个体的选择概率后,为了选择交配个体,需要进行多轮选择。每一轮产生一个[0,1]之间均匀随机数,将该随机数作为选择指针来确定被选个体。个体被选后,可随机地组成交配对,以供后面的交叉操作。
2 交叉
在自然界生物进化过程中起核心作用的是生物遗传基因的重组(加上变异)。同样,遗传算法中起核心作用的是遗传操作的交叉算子。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。通过交叉,遗传算法的搜索能力得以飞跃提高。
交叉算子根据交叉率将种群中的两个个体随机地交换某些基因,能够产生新的基因组合,期望将有益基因组合在一起。根据编码表示方法的不同,可以有以下的算法:
a)实值重组(real valued recombination)
1)离散重组(discrete recombination);
2)中间重组(intermediate recombination);
3)线性重组(linear recombination);
4)扩展线性重组(extended linear recombination)。
b)二进制交叉(binary valued crossover)
1)单点交叉(single-point crossover);
2)多点交叉(multiple-point crossover);
3)均匀交叉(uniform crossover);
4)洗牌交叉(shuffle crossover);
5)缩小代理交叉(crossover with reced surrogate)。
最常用的交叉算子为单点交叉(one-point crossover)。具体操作是:在个体串中随机设定一个交叉点,实行交叉时,该点前或后的两个个体的部分结构进行互换,并生成两个新个体。下面给出了单点交叉的一个例子:
个体A:1 0 0 1 ↑1 1 1 → 1 0 0 1 0 0 0 新个体
个体B:0 0 1 1 ↑0 0 0 → 0 0 1 1 1 1 1 新个体
3 变异
变异算子的基本内容是对群体中的个体串的某些基因座上的基因值作变动。依据个体编码表示方法的不同,可以有以下的算法:
a)实值变异;
b)二进制变异。
一般来说,变异算子操作的基本步骤如下:
a)对群中所有个体以事先设定的编译概率判断是否进行变异;
b)对进行变异的个体随机选择变异位进行变异。
遗传算法导引入变异的目的有两个:一是使遗传算法具有局部的随机搜索能力。当遗传算法通过交叉算子已接近最优解邻域时,利用变异算子的这种局部随机搜索能力可以加速向最优解收敛。显然,此种情况下的变异概率应取较小值,否则接近最优解的积木块会因变异而遭到破坏。二是使遗传算法可维持群体多样性,以防止出现未成熟收敛现象。此时收敛概率应取较大值。
遗传算法中,交叉算子因其全局搜索能力而作为主要算子,变异算子因其局部搜索能力而作为辅助算子。遗传算法通过交叉和变异这对相互配合又相互竞争的操作而使其具备兼顾全局和局部的均衡搜索能力。所谓相互配合.是指当群体在进化中陷于搜索空间中某个超平面而仅靠交叉不能摆脱时,通过变异操作可有助于这种摆脱。所谓相互竞争,是指当通过交叉已形成所期望的积木块时,变异操作有可能破坏这些积木块。如何有效地配合使用交叉和变异操作,是目前遗传算法的一个重要研究内容。
基本变异算子是指对群体中的个体码串随机挑选一个或多个基因座并对这些基因座的基因值做变动(以变异概率P.做变动),(0,1)二值码串中的基本变异操作如下:
基因位下方标有*号的基因发生变异。
变异率的选取一般受种群大小、染色体长度等因素的影响,通常选取很小的值,一般取0.001-0.1。
终止条件
当最优个体的适应度达到给定的阀值,或者最优个体的适应度和群体适应度不再上升时,或者迭代次数达到预设的代数时,算法终止。预设的代数一般设置为100-500代。
[编辑本段]遗传算法-求解算法的特点分析
遗传算法作为一种快捷、简便、容错性强的算法,在各类结构对象的优化过程中显示出明显的优势。与传统的搜索方法相比,遗传算法具有如下特点:
a)搜索过程不直接作用在变量上,而是在参数集进行了编码的个体。此编码操作,使得遗传算法可直接对结构对象(集合、序列、矩阵、树、图、链和表)进行操作。
b)搜索过程是从一组解迭代到另一组解,采用同时处理群体中多个个体的方法,降低了陷入局部最优解的可能性,并易于并行化。
c)采用概率的变迁规则来指导搜索方向,而不采用确定性搜索规则。
d)对搜索空间没有任何特殊要求(如连通性、凸性等),只利用适应性信息,不需要导数等其它辅助信息,适应范围更广。
[编辑本段]术语说明
由于遗传算法是由进化论和遗传学机理而产生的搜索算法,所以在这个算法中会用到很多生物遗传学知识,下面是我们将会用来的一些术语说明:
一、染色体(Chronmosome)
染色体又可以叫做基因型个体(indivials),一定数量的个体组成了群体(population),群体中个体的数量叫做群体大小。
二、基因(Gene)
基因是串中的元素,基因用于表示个体的特征。例如有一个串S=1011,则其中的1,0,1,1这4个元素分别称为基因。它们的值称为等位基因(Alletes)。
三、基因地点(Locus)
基因地点在算法中表示一个基因在串中的位置称为基因位置(Gene Position),有时也简称基因位。基因位置由串的左向右计算,例如在串 S=1101 中,0的基因位置是3。
四、基因特征值(Gene Feature)
在用串表示整数时,基因的特征值与二进制数的权一致;例如在串 S=1011 中,基因位置3中的1,它的基因特征值为2;基因位置1中的1,它的基因特征值为8。
五、适应度(Fitness)
各个个体对环境的适应程度叫做适应度(fitness)。为了体现染色体的适应能力,引入了对问题中的每一个染色体都能进行度量的函数,叫适应度函数. 这个函数是计算个体在群体中被使用的概率。
[编辑本段]参考资料
1.《计算机教育》第10期 作者:王利
2.遗传算法——理论、应用与软件实现 王小平、曹立明着
3.同济大学计算机系 王小平编写的程序代码

参考资料
1. 中新网:英13岁少女患家族遗传怪病 满脸皱纹像老人,2010年01月27日

http://www.chinanews.com.cn/gj/gj-ywdd2/news/2010/01-27/2094204.shtml

‘伍’ 利用遗传算法求解区间[0, 31]上的二次函数y=x 2次方 的最大值

靠 你也太懒了

‘陆’ 遗传算法流程图

首先你的这个问题没有什么意义,明显x=31的时候y最大嘛。。。

%定义遗传算法参数
NIND=40; %个体数目(Number of indivials)
MAXGEN=25; %最大遗传代数(Maximum number of generations)
PRECI=20; %变量的二进制位数(Precision of variables)
GGAP=0.9; %代沟(Generation gap)
trace=zeros(2, MAXGEN); %寻优结果的初始值
FieldD=[20;0;31;1;0;1;1]; %区域描述器(Build field descriptor)
Chrom=crtbp(NIND, PRECI); %初始种群
gen=0; %代计数器
variable=bs2rv(Chrom, FieldD); %计算初始种群的十进制转换
ObjV=variable.*variable; %计算目标函数值
while gen<MAXGEN
FitnV=ranking(-ObjV); %分配适应度值(Assign fitness values)
SelCh=select('sus', Chrom, FitnV, GGAP); %选择
SelCh=recombin('xovsp', SelCh, 0.7); %重组
SelCh=mut(SelCh); %变异
variable=bs2rv(SelCh, FieldD); %子代个体的十进制转换
ObjVSel=variable.*variable; %计算子代的目标函数值
[Chrom ObjV]=reins(Chrom, SelCh, 1, 1, ObjV, ObjVSel); %重插入子代的新种群
variable=bs2rv(Chrom, FieldD);
gen=gen+1; %代计数器增加
%输出最优解及其序号,并在目标函数图像中标出,Y为最优解,I为种群的序号
[Y, I]=max(ObjV);hold on;
plot(variable(I), Y, 'bo');
trace(1, gen)=max(ObjV); %遗传算法性能跟踪
trace(2, gen)=sum(ObjV)/length(ObjV);
end
variable=bs2rv(Chrom, FieldD); %最优个体的十进制转换
hold on, grid;
plot(variable,ObjV,'b*');
figure(2);
plot(trace(1,:));
hold on;
plot(trace(2,:),'-.');grid
legend('解的变化','种群均值的变化')

上面是这个问题的MATLAB程序,你自己研究一下吧
运行的时候需要MATLAB遗传算法工具箱

‘柒’ 如何利用遗传算法求解问题试举例说明求解过程急急急!!!

遗传算法将目标函数转换为适应度函数,评估,复制,交叉,变异种群中的个体,并从中选出适应性最强的个体,算法的最优解就是这个个体。具体流程是:1.初始种群的产生。2.适应度函数的构造。3.选择和繁殖。4.终止条件。

‘捌’ 关于遗传算法

遗传算法(Genetic Algorithm,简称GA)是美国 Michigan大学的 John Golland提出的一种建立在自然选择和群体遗传学机理基础上的随机、迭代、进化、具有广泛适用性的搜索方法。现在已被广泛用于学习、优化、自适应等问题中。图4-1 给出了 GA搜索过程的直观描述。图中曲线对应一个具有复杂搜索空间(多峰空间)的问题。纵坐标表示适应度函数(目标函数),其值越大相应的解越优。横坐标表示搜索点。显然,用解析方法求解该目标函数是困难的。采用 GA时,首先随机挑选若干个搜索点,然后分别从这些搜索点开始并行搜索。在搜索过程中,仅靠适应度来反复指导和执行 GA 搜索。在经过若干代的进化后,搜索点后都具有较高的适应度并接近最优解。

一个简单GA由复制、杂交和变异三个遗传算子组成:

图4-2 常规遗传算法流程图

‘玖’ 蚂蚁算法的思想进化公式及遗传算法的算法流程图

遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专着《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。

‘拾’ 进化算法的基本步骤

进化计算是基于自然选择和自然遗传等生物进化机制的一种搜索算法。与普通的搜索方法一样,进化计算也是一种迭代算法,不同的是进化计算在最优解的搜索过程中,一般是从原问题的一组解出发改进到另一组较好的解,再从这组改进的解出发进一步改进。而且在进化问题中,要求当原问题的优化模型建立后,还必须对原问题的解进行编码。进化计算在搜索过程中利用结构化和随机性的信息,使最满足目标的决策获得最大的生存可能,是一种概率型的算法。
一般来说,进化计算的求解包括以下几个步骤:给定一组初始解;评价当前这组解的性能;从当前这组解中选择一定数量的解作为迭代后的解的基础;再对其进行操作,得到迭代后的解;若这些解满足要求则停止,否则将这些迭代得到的解作为当前解重新操作。
以遗传算法为例,其工作步骤可概括为:
(1) 对工作对象——字符串用二进制的0/1或其它进制字符编码 。
(2) 根据字符串的长度L,随即产生L个字符组成初始个体。
(3) 计算适应度。适应度是衡量个体优劣的标志,通常是所研究问题的目标函数。
(4) 通过复制,将优良个体插入下一代新群体中,体现“优胜劣汰”的原则。
(5) 交换字符,产生新个体。交换点的位置是随机决定的
(6) 对某个字符进行补运算,将字符1变为0,或将0变为1,这是产生新个体的另一种方法,突变字符的位置也是随机决定的。
(7) 遗传算法是一个反复迭代的过程,每次迭代期间,要执行适应度计算、复制、交换、突变等操作,直至满足终止条件。
将其用形式化语言表达,则为:假设α∈I记为个体,I记为个体空间。适应度函数记为Φ:I→R。在第t代,群体P(t)={a1(t),a2(t),…,an(t)}经过复制r(reproction)、交换c(crossover)及突变m(mutation)转换成下一代群体。这里r、c、m均指宏算子,把旧群体变换为新群体。L:I→{True, Flase}记为终止准则。利用上述符号,遗传算法可描述为:
t=0
initialize P(0):={ a1(0),a2(0),…,an(0)};
while(l(P(t))≠True) do
evaluate P(t):{ Φ(a1(t)), Φ(a2(t)),…,Φ(an(t))};
reproction: P′(t):=r(P(t));
crossover: P″(t):=c(P′(t));
mutation: P(t+1):= m(P″(t));
t=t+1;
end

阅读全文

与遗传算法流程图相关的资料

热点内容
java加密jar包防止反编译 浏览:397
redhatlinux安装mysql 浏览:691
怎么把word和ppt放在一个文件夹 浏览:139
pdf优化器 浏览:131
剪力墙柱钢筋搭接需要加密吗 浏览:873
萤石云加密视频怎么播放 浏览:983
winar如何压缩内存占小 浏览:727
哪里有大的解压软件 浏览:583
一个云服务器如何放多个网站 浏览:324
圆柱体重计算法 浏览:231
谷歌服务器解析地址 浏览:700
应届毕业生程序员实习期怎么过 浏览:707
板石楼梯计算法 浏览:436
swift开发pdf 浏览:293
ideajava编译版本 浏览:964
迈普交换机常用命令 浏览:179
删除创建的文件夹命令 浏览:183
linuxmysql连接拒绝连接 浏览:823
php关键词源码 浏览:832
小米公司需要那么多程序员吗 浏览:899