导航:首页 > 源码编译 > 编译器后端优化技巧

编译器后端优化技巧

发布时间:2023-04-04 18:59:23

1. 编译器生成的汇编语句执行顺序为什么与C代码顺序不同

不影响语义的前提下编译器可以任意重排代码顺序;
在乱序执行(Out-of-Order)的CPU里,机器码的执行也可以不按照你在“汇编”层面上看到的顺序执行,只要不影响语义。
所以说这些中间步骤的顺序,作为底层细节平时不需要那么在意——它们多半跟原始源码的顺序是不一样的。

现代优化编译器优化的思路之一是“基于依赖的优化”(dependence-based optimization)。题主引用的CSAPP的例子:

int arith(int x, int y, int z) {
int t1 = x + y;
int t2 = z * 48;
int t3 = t1 & 0xFFFF;
int t4 = t2 * t3;
return t4;
}

所有涉及运算的值都是局部标量变量(local scalar variable),这是最便于编译器做分析的情况,所有依赖都可以显式分析。
由于整个函数没有分支,这里也不需要讨论控制依赖(control dependence),只要讨论数据依赖(data dependence)就好。
把数据依赖图画出来是个DAG(这里正好是棵树,特例了):

x y z 48
\ / \ /
t1 0xFFFF t2
\ / /
t3 /
\ /
t4

优化必须要满足的约束是:每个节点求值之前,其子节点(依赖的数据源)必须要先求了值。
显然,t1和t2之间没有依赖关系,它们的相对求值顺序怎样重排都没关系。

有本我很喜欢的书,里面讲的是各种基于依赖的优化:Optimizing Compilers for Modern Architectures - A Dependence-based Approach

以上是理论部分。

================================================================

下面来看例子。

我们可以用一个实际编译器来看看CSAPP的例子编译出来的结果:

.text
# -- Begin arith
.p2align 4,,15
.globl arith
.type arith, @function
arith:
.p2align 4,,7
/*.L0:*/ /* Block BB[54:2] preds: none, freq: 1.000 */
movl 8(%esp), %edx /* ia32_Load T[139:10] -:1:22 */
addl 4(%esp), %edx /* ia32_Add Iu[141:12] -:2:14 */
movzwl %dx, %edx /* ia32_Conv_I2I Iu[142:13] -:4:15 */
imull 12(%esp), %edx /* ia32_IMul Iu[143:14] -:5:15 */
leal (%edx,%edx,2), %eax /* ia32_Lea Iu[144:15] -:5:15 */
shll $0x4, %eax /* ia32_Shl Iu[146:17] -:5:15 */
ret /* ia32_Return X[152:23] -:6:3 */
.size arith, .-arith
# -- End arith

这里用的是libFirm。可见它跟CSAPP书里所说的汇编的顺序又有所不同。这也是完全合理的。
这个编译结果的顺序是:

edx = y;
edx += x;
edx = zeroextend dx; // edx = edx & 0xFFFF
edx *= z;
eax = edx * 3;
eax <<= 4; // eax = eax * 16

也是完全符合依赖关系的约束的一种顺序。
之所以用libFirm举例是因为它的中间表示(Intermediate Representation)是一种程序依赖图(Program Dependence Graph),可以很方便的看出控制与数据依赖。把CSAPP那里例子对应的libFirm IR画出来,是这个样子的:
(这张图跟我前面画的数据依赖图正好是左右翻转的,不过意思一样。(这张图跟我前面画的数据依赖图正好是左右翻转的,不过意思一样。
Arg 0、1、2分别代表x、y、z。白色方块是普通数据节点,黄色方块是常量节点,蓝色方块是内存相关节点,红色方块是控制流节点,粉红色方块是特殊的开始/结束节点。)

某版LLVM生成的代码:

; MoleID = '/tmp/webcompile/_16355_0.bc'
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-ellcc-linux"

; Function Attrs: nounwind readnone
define i32 @arith(i32 %x, i32 %y, i32 %z) #0 {
entry:
%add = add nsw i32 %y, %x
%mul = mul nsw i32 %z, 48
%and = and i32 %add, 65535
%mul1 = mul nsw i32 %mul, %and
ret i32 %mul1
}

attributes #0 = { nounwind readnone "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }

!llvm.ident = !{!0}

!0 = !{!"ecc 0.1.10 based on clang version 3.7.0 (trunk) (based on LLVM 3.7.0svn)"}

最终生成的x86汇编:

.text
.file "/tmp/webcompile/_15964_0.c"
.globl arith
.align 16, 0x90
.type arith,@function
arith: # @arith
# BB#0: # %entry
movl 8(%esp), %eax
addl 4(%esp), %eax
movzwl %ax, %eax
imull 12(%esp), %eax
shll $4, %eax
leal (%eax,%eax,2), %eax
retl
.Ltmp0:
.size arith, .Ltmp0-arith

.ident "ecc 0.1.10 based on clang version 3.7.0 (trunk) (based on LLVM 3.7.0svn)"
.section ".note.GNU-stack","",@progbits

GCC 4.9.2 x86-64:

arith(int, int, int):
leal (%rdx,%rdx,2), %eax
addl %edi, %esi
movzwl %si, %esi
sall $4, %eax
imull %esi, %eax
ret

Zing VM Server Compiler x86-64:

# edi: x
# esi: y
# edx: z
movl %edx, %eax
shll $0x4, %eax
leal (%rsi, %rdi, 1), %ecx
shll $0x5, %edx
addl %edx, $eax
movzwl %ecx, %edx
imull %edx, %eax

2. 通过编译器对程序优化来改进cache性能的方法有哪几种

你的程序可能太短,看不出区别来,你比对一下她们生成的汇编码就知道了


CPU 缓存是为了提高程序运行的性能,CPU 在很多处理上内部架构做了很多调整,比如 CPU 高速缓存,大家都知道因为硬盘很慢,可以通过缓存把数据加载到内存里面,提高访问速度,而 CPU 处理也有这个机制,尽可能把处理器访问主内存时间开销放在 CPU 高速缓存上面,CPU 访问速度相比内存访问速度又要快好多倍,这就是目前大多数处理器都会去利用的机制,利用处理器的缓存以提高性能。


就算优化带来的效果非常有限,但是经过长年累月的持续优化,效果也是非常明显的,比如当年的Chrome浏览器就是靠打开网页非常快从而打败微软系统自带的IE浏览器。电脑手机等硬件的性能是有限的,不同的算法会产生不同的效率,今天我们就简单说一个选择问题,开发程序时是节省内存还是节省计算量。

3. 什么是编译器

编译器

编译器是一种特殊的程序,它可以把以特定编程语言写成的程序变为机器可以运行的机器码。我们把一个程序写好,这时我们利用的环境是文本编辑器。这时我程序把程序称为源程序。在此以后程序员可以运行相应的编译器,通过指定需要编译的文件的名称就可以把相应的源文件(通过一个复杂的过程)转化为机器码了。

[编辑]编译器工作方法
首先编译器进行语法分析,也就是要把那些字符串分离出来。然后进行语义分析,就是把各个由语法分析分析出的语法单元的意义搞清楚。最后生成的是目标文件,我们也称为obj文件。再经过链接器的链接就可以生成最后的可执行代码了。有些时候我们需要把多个文件产生的目标文件进行链接,产生最后的代码。我们把一过程称为交叉链接。

一个现代编译器的主要工作流程如下:

* 源程序(source code)→预处理器(preprocessor)→编译器(compiler)→汇编程序(assembler)→目标程序(object code)→连接器(链接器,Linker)→可执行程序(executables)

工作原理

编译是从源代码(通常为高级语言)到能直接被计算机或虚拟机执行的目标代码(通常为低级语言或机器言)。然而,也存在从低级语言到高级语言的编译器,这类编译器中用来从由高级语言生成的低级语言代码重新生成高级语言代码的又被叫做反编译器。也有从一种高级语言生成另一种高级语言的编译器,或者生成一种需要进一步处理的的中间代码的编译器(又叫级联)。

典型的编译器输出是由包含入口点的名字和地址以及外部调用(到不在这个目标文件中的函数调用)的机器代码所组成的目标文件。一组目标文件,不必是同一编译器产生,但使用的编译器必需采用同样的输出格式,可以链接在一起并生成可以由用户直接执行的可执行程序。

编译器种类

编译器可以生成用来在与编译器本身所在的计算机和操作系统(平台)相同的环境下运行的目标代码,这种编译器又叫做“本地”编译器。另外,编译器也可以生成用来在其它平台上运行的目标代码,这种编译器又叫做交叉编译器。交叉编译器在生成新的硬件平台时非常有用。“源码到源码编译器”是指用一种高级语言作为输入,输出也是高级语言的编译器。例如: 自动并行化编译器经常采用一种高级语言作为输入,转换其中的代码,并用并行代码注释对它进行注释(如OpenMP)或者用语言构造进行注释(如FORTRAN的DOALL指令)。

预处理器(preprocessor)

作用是通过代入预定义等程序段将源程序补充完整。

编译器前端(frontend)

前端主要负责解析(parse)输入的源程序,由词法分析器和语法分析器协同工作。词法分析器负责把源程序中的‘单词’(Token)找出来,语法分析器把这些分散的单词按预先定义好的语法组装成有意义的表达式,语句 ,函数等等。 例如“a = b + c;”前端词法分析器看到的是“a, =, b , +, c;”,语法分析器按定义的语法,先把他们组装成表达式“b + c”,再组装成“a = b + c”的语句。 前端还负责语义(semantic checking)的检查,例如检测参与运算的变量是否是同一类型的,简单的错误处理。最终的结果常常是一个抽象的语法树(abstract syntax tree,或 AST),这样后端可以在此基础上进一步优化,处理。

编译器后端(backend)

编译器后端主要负责分析,优化中间代码(Intermediate representation)以及生成机器代码(Code Generation)。

一般说来所有的编译器分析,优化,变型都可以分成两大类: 函数内(intraproceral)还是函数之间(interproceral)进行。很明显,函数间的分析,优化更准确,但需要更长的时间来完成。

编译器分析(compiler analysis)的对象是前端生成并传递过来的中间代码,现代的优化型编译器(optimizing compiler)常常用好几种层次的中间代码来表示程序,高层的中间代码(high level IR)接近输入的源程序的格式,与输入语言相关(language dependent),包含更多的全局性的信息,和源程序的结构;中层的中间代码(middle level IR)与输入语言无关,低层的中间代码(Low level IR)与机器语言类似。 不同的分析,优化发生在最适合的那一层中间代码上。

常见的编译分析有函数调用树(call tree),控制流程图(Control flow graph),以及在此基础上的变量定义-使用,使用-定义链(define-use/use-define or u-d/d-u chain),变量别名分析(alias analysis),指针分析(pointer analysis),数据依赖分析(data dependence analysis)等等。

上述的程序分析结果是编译器优化(compiler optimization)和程序变形(compiler transformation)的前提条件。常见的优化和变新有:函数内嵌(inlining),无用代码删除(Dead code elimination),标准化循环结构(loop normalization),循环体展开(loop unrolling),循环体合并,分裂(loop fusion,loop fission),数组填充(array padding),等等。优化和变形的目的是减少代码的长度,提高内存(memory),缓存(cache)的使用率,减少读写磁盘,访问网络数据的频率。更高级的优化甚至可以把序列化的代码(serial code)变成并行运算,多线程的代码(parallelized,multi-threaded code)。

机器代码的生成是优化变型后的中间代码转换成机器指令的过程。现代编译器主要采用生成汇编代码(assembly code)的策略,而不直接生成二进制的目标代码(binary object code)。即使在代码生成阶段,高级编译器仍然要做很多分析,优化,变形的工作。例如如何分配寄存器(register allocatioin),如何选择合适的机器指令(instruction selection),如何合并几句代码成一句等等。

4. 学C语言现在最好用的编程软件

GNU编译器套装
开发 The GNU Project
最新版本 4.4.2 / 2009-10-15(2个月前)
操作系统 跨平台
类型 编译器
许可协议 GPL
网站 gcc.gnu.org

GCC(GNU Compiler Collection,GNU编译器套装),是一套由GNU开发的编程语言编译器。它是一套以GPL及LGPL许可证所发行的自由软件,也是GNU计划的关键部分,亦是自由的类Unix及苹果计算机Mac OS X 操作系统的标准编译器。GCC(特别是其中的C语言编译器)也常被认为是跨平台编译器的事实标准。

GCC原名为GNU C语言编译器(GNU C Compiler),因为它原本只能处理C语言。GCC很快地扩展,变得可处理C++。之后也变得可处理Fortran、Pascal、Objective-C、Java,以及Ada与其他语言。
目录
[隐藏]

* 1 概观
* 2 目前支持的语言
o 2.1 内嵌OpenMP支持
* 3 支持的处理器架构
* 4 结构
o 4.1 前端接口
o 4.2 中介接口
o 4.3 后端接口
* 5 替GCC程序除错
* 6 参考书目及注释
* 7 参阅
* 8 更多阅读
* 9 外部链接

[编辑] 概观

GCC是由理乍得·马修·斯托曼在1985年开始的。他首先扩增一个旧有的编译器,使它能编译C,这个编译器一开始是以Pastel语言所写的。Pastel是一个不可移植的Pascal语言特殊版,这个编译器也只能编译Pastel语言。为了让自由软件有一个编译器,后来此编译器由斯托曼和Len Tower在1987年[1]以C语言重写[2]并成为GNU项目的编译器。GCC的建立者由自由软件基金会直接管理[3]。

在1997年,一群不满GCC缓慢且封闭的创作环境者,组织了一个名为EGCS《Experimental/Enhanced GNU Compiler System》的项目,此项目汇整了数项实验性的分支进入某个GCC项目的分支中。EGCS比起GCC的建构环境更有活力,且EGCS最终也在1999年四月成为GCC的官方版本。

GCC目前由世界各地不同的数个程序设计师小组维护。它是移植到中央处理器架构以及操作系统最多的编译器。

由于GCC已成为GNU系统的官方编译器(包括GNU/Linux家族),它也成为编译与建立其他操作系统的主要编译器,包括BSD家族、Mac OS X、NeXTSTEP与BeOS。

GCC通常是跨平台软件的编译器首选。有别于一般局限于特定系统与运行环境的编译器,GCC在所有平台上都使用同一个前端处理程序,产生一样的中介码,因此此中介码在各个其他平台上使用GCC编译,有很大的机会可得到正确无误的输出程序。
[编辑] 目前支持的语言

以2006年5月24日释出的4.1.1版为准,本编译器版本可处理下列语言:

* Ada 《GNAT》
* C 《GCC》
* C++(G++)
* Fortran 《Fortran 77: G77,Fortran 90: GFORTRAN》

* Java 《编译器:GCJ;解释器:GIJ》
* Objective-C 《GOBJC》
* Objective-C++

先前版本纳入的CHILL前端由于缺乏维护而被废弃。

Fortran前端在4.0版之前是G77,此前端仅支持Fortran 77。在本版本中,G77被废弃而采用更新的GFortran,因为此前端支持Fortran 95。

下列前端依然存在:

* Mola-2
* Mola-3
* Pascal
* PL/I

* D语言
* Mercury
* VHDL

[编辑] 内嵌OpenMP支持

OpenMP是一种跨语言的对称多处理器(SMP)多线程并行程序的编程工具,也非常适合当今越来越流行的单CPU多核硬件环境,因此从gcc4.2开始,OpenMP成为其内嵌支持的并行编程规范,可以直接编译内嵌 OpenMP语句的C/C++/Fortran95的源代码。gcc4.2之前如果想在C/C++/Fortran中嵌入OpenMP语句的话,需要额外安装库和预处理器才能识别和正确处理这些语句。

* gcc 4.2.0开始支持OpenMP v2.5
* gcc 4.4.0开始支持OpenMP v2.5及v3.0

参见GNU的GOMP计划
[编辑] 支持的处理器架构

GCC目前支持下列处理器架构(以4.1版为准):

* Alpha
* ARM
* Atmel AVR
* Blackfin
* H8/300
* IA-32(x86)与x86-64
* IA-64例如:Itanium

* MorphoSys家族
* Motorola 68000
* Motorola 88000
* MIPS
* PA-RISC
* PDP-11
* PowerPC

* System/370,System/390
* SuperH
* HC12
* SPARC
* VAX
* Renesas R8C/M16C/M32C家族

较不知名的处理器架构也在官方释出版本中支持:

* A29K
* ARC
* C4x
* CRIS
* D30V
* DSP16xx
* FR-30
* FR-V

* Intel i960
* IP2000
* M32R
* 68HC11
* MCORE
* MMIX

* MN10200
* MN10300
* NS32K
* ROMP
* Stormy16
* V850
* Xtensa

由FSF个别维护的GCC处理器架构:

* D10V
* MicroBlaze

* PDP-10
* MSP430

* Z8000

当GCC需要移植到一个新平台上,通常使用此平台固有的语言来撰写其初始阶段。
[编辑] 结构

GCC的外部接口长得像一个标准的Unix编译器。用户在命令行下键入gcc之程序名,以及一些命令参数,以便决定每个输入文件使用的个别语言编译器,并为输出代码使用适合此硬件平台的汇编语言编译器,并且选择性地运行连接器以制造可运行的程序。

每个语言编译器都是独立程序,此程序可处理输入的源代码,并输出汇编语言码。全部的语言编译器都拥有共通的中介架构:一个前端解析符合此语言的源代码,并产生一抽象语法树,以及一翻译此语法树成为GCC的寄存器转换语言《RTL》的后端。编译器优化与静态代码解析技术(例如FORTIFY_SOURCE[1],一个试图发现缓存溢出《buffer overflow》的编译器)在此阶段应用于代码上。最后,适用于此硬件架构的汇编语言代码以Jack Davidson与Chris Fraser发明的算法产出。

几乎全部的GCC都由C写成,除了Ada前端大部分以Ada写成。
[编辑] 前端接口

前端的功能在于产生一个可让后端处理之语法树。此语法解析器是手写之递回语法解析器。

直到最近,程序的语法树结构尚无法与欲产出的处理器架构脱钩。而语法树的规则有时在不同的语言前端也不一样,有些前端会提供它们特别的语法树规则。

在2005年,两种与语言脱钩的新型态语法树纳入GCC中。它们称为GENERIC与GIMPLE。语法解析变成产生与语言相关的暂时语法树,再将它们转成GENERIC。之后再使用"gimplifier"技术降低GENERIC的复杂结构,成为一较简单的静态唯一形式(Static Single Assignment form,SSA)基础的GIMPLE形式。此形式是一个与语言和处理器架构脱钩的全局优化通用语言,适用于大多数的现代编程语言。
[编辑] 中介接口

一般编译器作者会将语法树的优化放在前端,但其实此步骤并不看语言的种类而有不同,且不需要用到语法解析器。因此GCC作者们将此步骤归入通称为中介阶段的部分里。此类的优化包括消解死码、消解重复计算与全局数值重编码等。许多优化技巧也正在实现中。
[编辑] 后端接口

GCC后端的行为因不同的前处理器宏和特定架构的功能而不同,例如不同的字符尺寸、调用方式与大小尾序等。后端接口的前半部利用这些消息决定其RTL的生成形式,因此虽然GCC的RTL理论上不受处理器影响,但在此阶段其抽象指令已被转换成目标架构的格式。

GCC的优化技巧依其释出版本而有很大不同,但都包含了标准的优化算法,例如循环优化、线程跳跃、共通程序子句消减、指令调度等等。而RTL的优化由于可用的情形较少,且缺乏较高级的信息,因此比较起近来增加的GIMPLE语法树形式[2],便显得比较不重要。

后端经由一重读取步骤后,利用描述目标处理器的指令集时所取得的信息,将抽象寄存器替换成处理器的真实寄存器。此阶段非常复杂,因为它必须关照所有GCC可移植平台的处理器指令集的规格与技术细节。

后端的最后步骤相当公式化,仅仅将前一阶段得到的汇编语言码借由简单的副函数转换其寄存器与存储器位置成相对应的机器码。
[编辑] 替GCC程序除错

为GCC除错的首选工具当然是GNU除错器。其他特殊用途的除错工具是Valgrind,用以发现存储器泄漏 (Memory leak)。而GNU测量器(gprof)可以得知程序中某些函数花费多少时间,以及其调用频率;此功能需要用户在编译时选定测量《profiling》选项。
[编辑] 参考书目及注释

* Richard M. Stallman:Using and Porting the GNU Compiler Collection, Free Software Foundation,ISBN 0-595-10035-X
* Richard M. Stallman: Using Gcc: The Gnu Compiler Collection Reference, Free Software Foundation, ISBN 1-882114-39-6
* Brian J. Gough:An Introction to GCC, Network Theory Ltd., ISBN 0-9541617-9-3

1. ^ Tower, Leonard (1987) "GNU C编译器beta测试版释出" comp.lang.misc USENET新闻组;参阅http://gcc.gnu.org/releases.html#timeline
2. ^ Stallman, Richard M.(1986年2月1日).GNU状态.GNU的公告版,1(1).自由软件基金会.
3. ^ Stallman, Richard M. (2001) "GCC贡献者名单"于使用及移植GCC 2.95版(Cambridge, Mass.: Free Software Foundation)

[编辑] 参阅
[[File:|36x32px|自由软件主题]] 自由软件主题首页

GCC目前包含了Boehm GC,一个为C/C++ 所设计的垃圾回收器。

* distcc - 为分布式编译所设计的软件,以GCC为协同软件。
* LLVM - 低层虚拟机编译器架构。
* MinGW - 将GNU开发工具移植到Win32平台下的计划
* Cygwin - 在Windows上运行GNU程序的模拟软件。
* GCC Summit
* OpenWatcom - 另一个开放原码的C++/Fortran编译器。
* Code Sourcery - 一个GCC顾问公司。
* ggcc - 全球化GCC项目。

[编辑] 更多阅读

* Arthur Griffith, GCC: The Complete Reference. McGrawHill/Osborne. ISBN 0-07-222405-3.
* Kerner, Sean Michael.Open Source GCC 4.0: Older, Faster,internetnews.com,2005年4月22日.
* Kerner, Sean Michael.New GCC Heavy on Optimization,internetnews.com,2006年3月2日.

[编辑] 外部链接

* GCC官方网站
* GCC Forum - 由Nabble维持,整理所有gcc通信讨论串,并集成入一个可搜索接口中。

5. c语言防止优化

编译器编译命令里有设置选项,通过设置,你可以要求 不优化,也可以要求用哪种优化。
具体选项有哪些,要查自己编译器的帮助文件。
例如,MS VC++ 6.0 编译器编
优化选项:
/O1:优化使产生的可执行代码最小
/O2:优化使产生的可执行代码速度最快
/Oa:指示编译器程序里没有使用别名,可以提高程序的执行速度
/Ob:控制内联(inline)函数的展开
/Od:禁止代码优化
/Og:使用全局优化
/Oi:用内部函数去代替程序里的函数调用,可以使程序运行的更快,但程序的长度变长
/Op:提高浮点数比较运算的一致性
/Os:产生尽可能小的可执行代码
/Ot:产生尽可能块的可执行代码
/Ow:指示编译器在函数体内部没有使用别名
/Ox:组合了几个优化开关,达到尽可能多的优化
/Oy:阻止调用堆栈里创建帧指针

/O2 为了加速,会优化掉。 选 /Od 不优化。

6. 编译前端和后端各有什么特点,各自包含编译过程的哪几个部分

编译前端主要包括词法分析、语法分析、语义分析、中间代码生成这几个部分,后端则包含代码优化和目标代码生成部分。前端的特点是仅与编译的源语言有关,而后端则仅与编译的目标语言及运行环境有关。

将编译过程划分成前端和后端,主要目的是在多种源语言和多种目标语言的开发过程中,可以灵活搭配组合,消除重复开发的工作量,提高编译系统的开发效率。

7. 本科独立用C语言完成没有优化的C语言编译器属于什么水平

我觉得水平还是很高的,但意义恐怕不大。编译器技术是非常成熟的领域,而且由于应用场景的限
制实时,复杂的算法已经自动出局了,你可选的东西是有限的。编译器可能有很多实现的形
式,虚拟机/解释器/静态编译器 等,也有成熟的开源实现。作为本科生,而非专门研究该分支的学生,应该合理分配自己学习的时间,如果做这个编译器就干
掉了大半年,那计网和OS这些课程该咋办? 

我知道很多人会认为没有做编译器优化特指中段优化,不考虑机器码上的优化比较划水。但编
译器优化是一个很复杂的东西:首先它和你用的IR表示有关而且是强烈耦合,SSA IR基本还
好,有开源代码和文献记载,你想要的都能在网上挖到但这怎么体现你的水平是吧。你
要考虑编译器的性能,尽管编译器的后端优化基本上可以纳入到某种PEabstract interpretation的
范畴中。

要不然你可以通过编写插件的方式白嫖例如visual studio code这类软
件的强大编辑功能,如果你写的不是c compiler,你也可以尽量把语法设计得很像c,这样你又能进一步
白嫖其强大的intellisense code,当然仍然有不少人或者应该说团队达到了这一步,到这里,应该卷死
了99.99%的同行应该毫无问题。

阅读全文

与编译器后端优化技巧相关的资料

热点内容
app登不了是怎么回事 浏览:250
dd命令u盘 浏览:568
单片机生日快乐程序 浏览:891
安卓手机连车载的叫什么 浏览:223
怎么让自己的手机键盘变得好看app 浏览:53
能看qq的文件夹 浏览:515
android二维码生成代码 浏览:567
焦炉气压缩机 浏览:402
imap接收邮件服务器地址 浏览:291
小乔肖恩解压密码 浏览:645
php网页网盘源码 浏览:181
签到任务源码 浏览:814
母亲节的文案怎么写app 浏览:984
加密协议aes找不到 浏览:250
java服务器端开发源码 浏览:551
编译器编译运行快捷键 浏览:333
住房app怎么快速选房 浏览:174
怎么在电脑上编译成功 浏览:214
单片机可调时钟设计方案 浏览:193
qq文件夹密码忘记怎么找回 浏览:683