导航:首页 > 源码编译 > c语言编译文件缺省扩展名

c语言编译文件缺省扩展名

发布时间:2023-04-06 08:20:48

Ⅰ C语言源程序文件、目标文件和可执行文件的扩展名是什么

C语言源程序文件扩展名:.c

目标文件扩展名:.obj

可执行文件扩展名:档正.exe

源程序:程序可以用高级语言或汇编语言编写,用高级语言或汇编语言编写的程序称为源程序。C语言源程序的扩展名为“.c”。源程序不能直接在计算机上执行,需要用“编译程序”将源程序编译为二进制形式的代行慎悔码。

目标程序:源程序经过“编译程序”编译所得到的二进制代码称为目标程序。目标程序
的扩展名为“.obj”。
目标代码尽管已经是机器指令,但是还不能运行,因为目标程序还没有解决函数调用问题,需要将各个目标程序与库函数连接,才能形成完孝册整的可执行程序。

可执行程序:目标程序与库函数连接,形成的完整的可在操作系统下独立执行的程序
称为可执行程序。可执行程序的扩展名为“.exe“。

(1)c语言编译文件缺省扩展名扩展阅读:

C语言创建程序的步骤:

编辑:就是创建和修改C程序的源代码-我们编写的程序称为源代码。

编译:就是将源代码转换为机器语言。编译器的输出结果成为目标代码,存放它们的文件称为目标文件。扩展名为.o或者.obj。(该部分编译是指汇编器编译汇编语言或者编译器编译高级语言)

链接:链接器将源代码由编译器产生的各种模块组合起来,再从C语言提供的程序库中添加必要的代码模块,将它们组成一个可执行的文件。在windows下扩展名为.exe,Unix下无扩展名。

执行:运行程序。

IT专家网——C语言编程程序编译全过程剖析

Ⅱ c语言在哪里运行,怎么保存,后缀名是什么。

C 是一种在 UNIX 操作系统的早期就被广泛使用的通用编程语言. 它最早是由贝尔实验室的 Dennis Ritchie 为了 UNIX 的辅助开发而写的, 开始时 UNIX 是用汇编语言和一种叫 B 的语言编写的. 从那时候起, C 就成为世界上使用最广泛计算机语言.

C 能在编程领域里得到如此广泛支持的原因有以下一些:
它是一种非常通用的语言. 几乎你所能想到的任何一种计算机上都有至少一种能用的 C 编译器. 并且它的语法和函数库在不同的平台上都是统一的, 这个特性对开发者来说很有吸引力.
用 C 写的程序执行速度很快.
C 是所有版本的UNIX上的系统语言.
C 在过去的二十年中有了很大的发展. 在80年代末期美国国家标准协会(American National Standards Institute)发布了一个被称为 ANSI C 的 C 语言标准.这更加保证了将来在不同平台上的 C 的一致性. 在80年代还出现了一种 C 的面向对象的扩展称为 C++. C++ 将在另一篇文章 "C++ 编程"中描述.
linux 上可用的 C 编译器是 GNU C 编译器, 它建立在自由软件基金会的编程许可证的基础上, 因此可以自由发布. 你能在 Linux 的发行光盘上找到它.

GNU C 编译器
随 Slackware Linux 发行的 GNU C 编译器(GCC)是一个全功能的 ANSI C 兼容编译器. 如果你熟悉其他操作系统或硬件平台上的一种 C 编译器, 你将能很快地掌握 GCC. 本节将介绍如何使用 GCC 和一些 GCC 编译器最常用的选项.

使用 GCC
通常后跟一些选项和文件名来使用 GCC 编译器. gcc 命令的基本用法如下:
gcc [options] [filenames]
命令行选项指定的操作将在命令行上每个给出的文件上执行. 下一小节将叙述一些你会最常用到的选项.

GCC 选项
GCC 有超过100个的编译选项可用. 这些选项中的许多你可能永远都不会用到, 但一些主要的选项将会频繁用到. 很多的 GCC 选项包括一个以上的字符. 因此你必须为每个选项指定各自的连字符, 并且就象大多数 Linux 命令一样你不能在一个单独的连字符后跟一组选项. 例如, 下面的两个命令是不同的:
gcc -p -g test.c

gcc -pg test.c
第一条命令告诉 GCC 编译 test.c 时为 prof 命令建立剖析(profile)信息并且把调试信息加入到可执行的文件里. 第二条命令只告诉 GCC 为 gprof 命令建立剖析信息.

当你不用任何选项编译一个程序时, GCC 将会建立(假定编译成功)一个名为 a.out 的可执行文件. 例如, 下面的命令将在当前目录下产生一个叫 a.out 的文件:
gcc test.c
你能用 -o 编译选项来为将产生的可执行文件指定一个文件名来代替 a.out. 例如, 将一个叫 count.c 的 C 程序编译为名叫 count 的可执行文件, 你将输入下面的命令:
gcc -o count count.c

--------------------------------------------------------------------------------
注意: 当你使用 -o 选项时, -o 后面必须跟一个文件名.
--------------------------------------------------------------------------------

GCC 同样有指定编译器处理多少的编译选项. -c 选项告诉 GCC 仅把源代码编译为目标代码而跳过汇编和连接的步骤. 这个选项使用的非常频繁因为它使得编译多个 C 程序时速度更快并且更易于管理. 缺省时 GCC 建立的目标代码文件有一个 .o 的扩展名.
-S 编译选项告诉 GCC 在为 C 代码产生了汇编语言文件后停止编译. GCC 产生的汇编语言文件的缺省扩展名是 .s . -E 选项指示编译器仅对输入文件进行预处理. 当这个选项被使用时, 预处理器的输出被送到标准输出而不是储存在文件里.

优 化 选 项
当你用 GCC 编译 C 代码时, 它会试着用最少的时间完成编译并且使编译后的代码易于调试. 易于调试意味着编译后的代码与源代码有同样的执行次序, 编译后的代码没有经过优化. 有很多选项可用于告诉 GCC 在耗费更多编译时间和牺牲易调试性的基础上产生更小更快的可执行文件. 这些选项中最典型的是-O 和 -O2 选项.
-O 选项告诉 GCC 对源代码进行基本优化. 这些优化在大多数情况下都会使程序执行的更快. -O2 选项告诉 GCC 产生尽可能小和尽可能快的代码. -O2 选项将使编译的速度比使用 -O 时慢. 但通常产生的代码执行速度会更快.

除了 -O 和 -O2 优化选项外, 还有一些低级选项用于产生更快的代码. 这些选项非常的特殊, 而且最好只有当你完全理解这些选项将会对编译后的代码产生什么样的效果时再去使用. 这些选项的详细描述, 请参考 GCC 的指南页, 在命令行上键入 man gcc .

调试和剖析选项
GCC 支持数种调试和剖析选项. 在这些选项里你会最常用到的是 -g 和 -pg 选项.
-g 选项告诉 GCC 产生能被 GNU 调试器使用的调试信息以便调试你的程序. GCC 提供了一个很多其他 C 编译器里没有的特性, 在 GCC 里你能使 -g 和 -O (产生优化代码)联用. 这一点非常有用因为你能在与最终产品尽可能相近的情况下调试你的代码. 在你同时使用这两个选项时你必须清楚你所写的某些代码已经在优化时被 GCC 作了改动. 关于调试 C 程序的更多信息请看下一节"用 gdb 调试 C 程序" .
-pg 选项告诉 GCC 在你的程序里加入额外的代码, 执行时, 产生 gprof 用的剖析信息以显示你的程序的耗时情况. 关于 gprof 的更多信息请参考 "gprof" 一节.

用 gdb 调试 GCC 程序
Linux 包含了一个叫 gdb 的 GNU 调试程序. gdb 是一个用来调试 C 和 C++ 程序的强力调试器. 它使你能在程序运行时观察程序的内部结构和内存的使用情况. 以下是 gdb 所提供的一些功能:
它使你能监视你程序中变量的值.
它使你能设置断点以使程序在指定的代码行上停止执行.
它使你能一行行的执行你的代码.

在命令行上键入 gdb 并按回车键就可以运行 gdb 了, 如果一切正常的话, gdb 将被启动并且你将在屏幕上看到类似的内容:
GDB is free software and you are welcome to distribute copies of it

under certain conditions; type "show ing" to see the conditions.

There is absolutely no warranty for GDB; type "show warranty" for details.

GDB 4.14 (i486-slakware-linux), Copyright 1995 Free Software Foundation, Inc.

(gdb)
当你启动 gdb 后, 你能在命令行上指定很多的选项. 你也可以以下面的方式来运行 gdb :
gdb <fname>
当你用这种方式运行 gdb , 你能直接指定想要调试的程序. 这将告诉gdb 装入名为 fname 的可执行文件. 你也可以用 gdb 去检查一个因程序异常终止而产生的 core 文件, 或者与一个正在运行的程序相连. 你可以参考 gdb 指南页或在命令行上键入 gdb -h 得到一个有关这些选项的说明的简单列表.

为调试编译代码(Compiling Code for Debugging)
为了使 gdb 正常工作, 你必须使你的程序在编译时包含调试信息. 调试信息包含你程序里的每个变量的类型和在可执行文件里的地址映射以及源代码的行号. gdb 利用这些信息使源代码和机器码相关联.
在编译时用 -g 选项打开调试选项.

gdb 基本命令
gdb 支持很多的命令使你能实现不同的功能. 这些命令从简单的文件装入到允许你检查所调用的堆栈内容的复杂命令, 表27.1列出了你在用 gdb 调试时会用到的一些命令. 想了解 gdb 的详细使用请参考 gdb 的指南页.

表 27.1. 基本 gdb 命令.

命 令 描 述
file 装入想要调试的可执行文件.
kill 终止正在调试的程序.
list 列出产生执行文件的源代码的一部分.
next 执行一行源代码但不进入函数内部.
step 执行一行源代码而且进入函数内部.
run 执行当前被调试的程序
quit 终止 gdb
watch 使你能监视一个变量的值而不管它何时被改变.
break 在代码里设置断点, 这将使程序执行到这里时被挂起.
make 使你能不退出 gdb 就可以重新产生可执行文件.
shell 使你能不离开 gdb 就执行 UNIX shell 命令.

gdb 支持很多与 UNIX shell 程序一样的命令编辑特征. 你能象在 bash 或 tcsh里那样按 Tab 键让 gdb 帮你补齐一个唯一的命令, 如果不唯一的话 gdb 会列出所有匹配的命令. 你也能用光标键上下翻动历史命令.

gdb 应用举例
本节用一个实例教你一步步的用 gdb 调试程序. 被调试的程序相当的简单, 但它展示了 gdb 的典型应用.

下面列出了将被调试的程序. 这个程序被称为 greeting , 它显示一个简单的问候, 再用反序将它列出.
#include <stdio.h>

main ()

{

char my_string[] = "hello there";

my_print (my_string);

my_print2 (my_string);

}

void my_print (char *string)

{

printf ("The string is %s\n", string);

}

void my_print2 (char *string)

{

char *string2;

int size, i;

size = strlen (string);

string2 = (char *) malloc (size + 1);

for (i = 0; i < size; i++)

string2[size - i] = string[i];

string2[size+1] = `\0';

printf ("The string printed backward is %s\n", string2);

}
用下面的命令编译它:

gcc -o test test.c
这个程序执行时显示如下结果:
The string is hello there

The string printed backward is
输出的第一行是正确的, 但第二行打印出的东西并不是我们所期望的. 我们所设想的输出应该是:
The string printed backward is ereht olleh
由于某些原因, my_print2 函数没有正常工作. 让我们用 gdb 看看问题究竟出在哪儿, 先键入如下命令:

gdb greeting

--------------------------------------------------------------------------------
注意: 记得在编译 greeting 程序时把调试选项打开.
--------------------------------------------------------------------------------

如果你在输入命令时忘了把要调试的程序作为参数传给 gdb , 你可以在 gdb 提示符下用 file 命令来载入它:

(gdb) file greeting
这个命令将载入 greeting 可执行文件就象你在 gdb 命令行里装入它一样.
这时你能用 gdb 的 run 命令来运行 greeting 了. 当它在 gdb 里被运行后结果大约会象这样:

(gdb) run

Starting program: /root/greeting

The string is hello there

The string printed backward is

Program exited with code 041
这个输出和在 gdb 外面运行的结果一样. 问题是, 为什么反序打印没有工作? 为了找出症结所在, 我们可以在 my_print2 函数的 for 语句后设一个断点, 具体的做法是在 gdb 提示符下键入 list 命令三次, 列出源代码:
(gdb) list

(gdb) list

(gdb) list

--------------------------------------------------------------------------------
技巧: 在 gdb 提示符下按回车健将重复上一个命令.
--------------------------------------------------------------------------------

第一次键入 list 命令的输出如下:

1 #include <stdio.h>

2

3 main ()

4 {

5 char my_string[] = "hello there";

6

7 my_print (my_string);

8 my_print2 (my_string);

9 }

10
如果按下回车, gdb 将再执行一次 list 命令, 给出下列输出:

11 my_print (char *string)

12 {

13 printf ("The string is %s\n", string);

14 }

15

16 my_print2 (char *string)

17 {

18 char *string2;

19 int size, i;

20
再按一次回车将列出 greeting 程序的剩余部分:
21 size = strlen (string);

22 string2 = (char *) malloc (size + 1);

23 for (i = 0; i < size; i++)

24 string2[size - i] = string[i];

25 string2[size+1] = `\0';

26 printf ("The string printed backward is %s\n", string2);

27 }
根据列出的源程序, 你能看到要设断点的地方在第24行, 在 gdb 命令行提示符下键入如下命令设置断点:
(gdb) break 24
gdb 将作出如下的响应:
Breakpoint 1 at 0x139: file greeting.c, line 24

(gdb)

现在再键入 run 命令, 将产生如下的输出:

Starting program: /root/greeting

The string is hello there

Breakpoint 1, my_print2 (string = 0xbfffdc4 "hello there") at greeting.c :24

24 string2[size-i]=string[i]
你能通过设置一个观察 string2[size - i] 变量的值的观察点来看出错误是怎样产生的, 做法是键入:

(gdb) watch string2[size - i]
gdb 将作出如下回应:
Watchpoint 2: string2[size - i]
现在可以用 next 命令来一步步的执行 for 循环了:

(gdb) next
经过第一次循环后, gdb 告诉我们 string2[size - i] 的值是 `h`. gdb 用如下的显示来告诉你这个信息:

Watchpoint 2, string2[size - i]

Old value = 0 `\000'

New value = 104 `h'

my_print2(string = 0xbfffdc4 "hello there") at greeting.c:23

23 for (i=0; i<size; i++)
这个值正是期望的. 后来的数次循环的结果都是正确的. 当 i=10 时, 表达式 string2[size - i] 的值等于 `e`, size - i 的值等于 1, 最后一个字符已经拷到新串里了.
如果你再把循环执行下去, 你会看到已经没有值分配给 string2[0] 了, 而它是新串的第一个字符, 因为 malloc 函数在分配内存时把它们初始化为空(null)字符. 所以 string2 的第一个字符是空字符. 这解释了为什么在打印 string2 时没有任何输出了.

现在找出了问题出在哪里, 修正这个错误是很容易的. 你得把代码里写入 string2 的第一个字符的的偏移量改为 size - 1 而不是 size. 这是因为 string2 的大小为 12, 但起始偏移量是 0, 串内的字符从偏移量 0 到 偏移量 10, 偏移量 11 为空字符保留.

为了使代码正常工作有很多种修改办法. 一种是另设一个比串的实际大小小 1 的变量. 这是这种解决办法的代码:

#include <stdio.h>

main ()

{

char my_string[] = "hello there";

my_print (my_string);

my_print2 (my_string);

}

my_print (char *string)

{

printf ("The string is %s\n", string);

}

my_print2 (char *string)

{

char *string2;

int size, size2, i;

size = strlen (string);

size2 = size -1;

string2 = (char *) malloc (size + 1);

for (i = 0; i < size; i++)

string2[size2 - i] = string[i];

string2[size] = `\0';

printf ("The string printed backward is %s\n", string2);

}
另外的 C 编程工具
Slackware Linux 的发行版中还包括一些我们尚未提到的 C 开发工具. 本节将介绍这些工具和它们的典型用法.
xxgdb
xxgdb 是 gdb 的一个基于 X Window 系统的图形界面. xxgdb 包括了命令行版的 gdb 上的所有特性. xxgdb 使你能通过按按钮来执行常用的命令. 设置了断点的地方也用图形来显示.

你能在一个 Xterm 窗口里键入下面的命令来运行它:
xxgdb
你能用 gdb 里任何有效的命令行选项来初始化 xxgdb . 此外 xxgdb 也有一些特有的命令行选项, 表 27.2 列出了这些选项.

表 27.2. xxgdb 命令行选项.

选 项 描 述
db_name 指定所用调试器的名字, 缺省是 gdb.
db_prompt 指定调试器提示符, 缺省为 gdb.
gdbinit 指定初始化 gdb 的命令文件的文件名, 缺省为 .gdbinit.
nx 告诉 xxgdb 不执行 .gdbinit 文件.
bigicon 使用大图标.

calls
你可以在 sunsite.unc.e FTP 站点用下面的路径:
/pub/Linux/devel/lang/c/calls.tar.Z

来取得 calls , 一些旧版本的 Linux CD-ROM 发行版里也附带有. 因为它是一个有用的工具, 我们在这里也介绍一下. 如果你觉得有用的话, 从 BBS, FTP, 或另一张CD-ROM 上弄一个拷贝. calls 调用 GCC 的预处理器来处理给出的源程序文件, 然后输出这些文件的里的函数调用树图.

--------------------------------------------------------------------------------
注意: 在你的系统上安装 calls , 以超级用户身份登录后执行下面的步骤: 1. 解压和 untar 文件. 2. cd 进入 calls untar 后建立的子目录. 3. 把名叫 calls 的文件移动到 /usr/bin 目录. 4. 把名叫 calls.1 的文件移动到目录 /usr/man/man1 . 5. 删除 /tmp/calls 目录. 这些步骤将把 calls 程序和它的指南页安装载你的系统上.
--------------------------------------------------------------------------------

当 calls 打印出调用跟踪结果时, 它在函数后面用中括号给出了函数所在文件的文件名:
main [test.c]
如果函数并不是向 calls 给出的文件里的, calls 不知道所调用的函数来自哪里, 则只显示函数的名字:
printf
calls 不对递归和静态函数输出. 递归函数显示成下面的样子:
fact <<< recursive in factorial.c >>>
静态函数象这样显示:
total [static in calculate.c]
作为一个例子, 假设用 calls 处理下面的程序:

#include <stdio.h>

main ()

{

char my_string[] = "hello there";

my_print (my_string);

my_print2(my_string);

}

my_print (char *string)

{

printf ("The string is %s\n", string);

}

my_print2 (char *string)

{

char *string2;

int size, size2, i;

size = strlen (string);

size2 = size -1;

string2 = (char *) malloc (size + 1);

for (i = 0; i < size; i++)

string2[size2 - i] = string[i];

string2[size] = `\0';

printf ("The string printed backward is %s\n", string2);

}
将产生如下的输出:
1 main [test.c]

2 my_print [test.c]

3 printf

4 my_print2 [test.c]

5 strlen

6 malloc

7 printf
calls 有很多命令行选项来设置不同的输出格式, 有关这些选项的更多信息请参考 calls 的指南页. 方法是在命令行上键入 calls -h .

cproto
cproto 读入 C 源程序文件并自动为每个函数产生原型申明. 用 cproto 可以在写程序时为你节省大量用来定义函数原型的时间.
如果你让 cproto 处理下面的代码:
#include <stdio.h>

main ()

{

char my_string[] = "hello there";

my_print (my_string);

my_print2(my_string);

}

my_print (char *string)

{

printf ("The string is %s\n", *string);

}

my_print2 (char *string)

{

char *string2;

int size, size2, i;

size = strlen (string);

size2 = size -1;

string2 = (char *) malloc (size + 1);

for (i = 0; i < size; i++)

string2[size2 - i] = string[i];

string2[size] = `\0';

printf ("The string printed backward is %s\n", string2);

}
你将得到下面的输出:
/* test.c */

int main(void);

int my_print(char *string);

int my_print2(char *string);
这个输出可以重定向到一个定义函数原型的包含文件里.
indent
indent 实用程序是 Linux 里包含的另一个编程实用工具. 这个工具简单的说就为你的代码产生美观的缩进的格式. indent 也有很多选项来指定如何格式化你的源代码.这些选项的更多信息请看indent 的指南页, 在命令行上键入 indent -h .

下面的例子是 indent 的缺省输出:

运行 indent 以前的 C 代码:

#include <stdio.h>

main () {

char my_string[] = "hello there";

my_print (my_string);

my_print2(my_string); }

my_print (char *string)

{

printf ("The string is %s\n", *string);

}

my_print2 (char *string) {

char *string2;

int size, size2, i;

size = strlen (string);

size2 = size -1;

string2 = (char *) malloc (size + 1);

for (i = 0; i < size; i++)

string2[size2 - i] = string[i];

string2[size] = `\0';

printf ("The string printed backward is %s\n", string2);

}
运行 indent 后的 C 代码:
#include <stdio.h>

main ()

{

char my_string[] = "hello there";

my_print (my_string);

my_print2 (my_string);

}

my_print (char *string)

{

printf ("The string is %s\n", *string);

}

my_print2 (char *string)

{

char *string2;

int size, size2, i;

size = strlen (string);

size2 = size -1;

string2 = (char *) malloc (size + 1);

for (i = 0; i < size; i++)

string2[size2 - i] = string[i];

string2[size] = `\0';

printf ("The string printed backward is %s\n", string2);

}
indent 并不改变代码的实质内容, 而只是改变代码的外观. 使它变得更可读, 这永远是一件好事.
gprof
gprof 是安装在你的 Linux 系统的 /usr/bin 目录下的一个程序. 它使你能剖析你的程序从而知道程序的哪一个部分在执行时最费时间.
gprof 将告诉你程序里每个函数被调用的次数和每个函数执行时所占时间的百分比. 你如果想提高你的程序性能的话这些信息非常有用.

为了在你的程序上使用 gprof, 你必须在编译程序时加上 -pg 选项. 这将使程序在每次执行时产生一个叫 gmon.out 的文件. gprof 用这个文件产生剖析信息.

在你运行了你的程序并产生了 gmon.out 文件后你能用下面的命令获得剖析信息:

gprof <program_name>
参数 program_name 是产生 gmon.out 文件的程序的名字.

--------------------------------------------------------------------------------
技巧: gprof 产生的剖析数据很大, 如果你想检查这些数据的话最好把输出重定向到一个文件里.
--------------------------------------------------------------------------------

f2c 和 p2c
f2c 和 p2c 是两个源代码转换程序. f2c 把 FORTRAN 代码转换为 C 代码, p2c 把 Pascal 代码转换为 C 代码. 当你安装 GCC 时这两个程序都会被安装上去.
如果你有一些用 FORTRAN 或 Pascal 写的代码要用 C 重写的话, f2c 和 p2c 对你非常有用. 这两个程序产生的 C 代码一般不用修改就直接能被 GCC 编译.

如果要转换的 FORTRAN 或 Pascal 程序比较小的话可以直接使用 f2c 或 p2c 不用加任何选项. 如果要转换的程序比较庞大, 包含很多文件的话你可能要用到一些命令行选项.

在一个 FORTRAN 程序上使用 f2c , 输入下面的命令:

f2c my_fortranprog.f

--------------------------------------------------------------------------------
注意: f2c 要求被转换的程序的扩展名为 .f 或 a .F .
--------------------------------------------------------------------------------

要把一个Pascal 程序装换为 C 程序, 输入下面的命令:
p2c my_pascalprogram.pas
这两个程序产生的 C 源代码的文件名都和原来的文件名相同, 但扩展名由 .f 或 .pas 变为 .c.

Ⅲ C语言的源程序的扩展名是什么

C语言源程序后缀为.c
,在windows平台上,编译后的后缀为.obj,连接后的后缀为.exe。在Linux平台上,预处理后的文件扩展名一般为.i,C语言编译器编译后的文件扩展名一般为.S,是一个汇编代码文件,汇编器编译后的文件扩展一般为.o,链接器生成的可执行文件默认为.out。

Ⅳ C语言执行过程生成的三种文件和扩展名

  1. 用C语言编写的程序成为C语言源程序,源程序文件的扩展名为“.c”。

  2. 源程序经编译生成目标文件(".obj")。

  3. 把目标文件与各种库函数连接起来,生成可执行文件(“.exe”).

C语言程序可以使用在任意架构的处理器上,只要那种架构的处理器具有对应的C语言编译器和库,然后将C源代码编译、连接成目标二进制文件之后即可运行。

(4)c语言编译文件缺省扩展名扩展阅读:

C语言是面向过程的编程语言,用户只需要关注所被解决问题的本身,而不需要花费过多的精力去了解相关硬件,且针对不同的硬件环境,在用C语言实现相同功能时的代码基本一致,不需或仅需进行少量改动便可完成移植。

这就意味着,对于一台计算机编写的C程序可以在另一台计算机上轻松地运行,从而极大的减少了程序移植的工作强度。

C语言既有高级语言的特点,又具有汇编语言的特点;既是一个成功的系统设计语言,又是一个实用的程序设计语言;既能用来编写不依赖计算机硬件的应用程序,又能用来编写各种系统程序;是一种受欢迎、应用广泛的程序设计语言。

Ⅳ 系统约定c语言源程序文件名的缺省的扩展名为 。 A.cpp B.prg C.c D.obj

系统约定c语言源程序文件名的缺省的扩展名为 C.c

Ⅵ c语言源程序文件,目标文件,和可执行文件的扩展名是什么

根据平台不同,扩展名也有所不同:
1、源程序。
在各个平台上,C语言的源程序扩展名都是相同的,即c。 比如test.c等。
C++的源程序则是cpp。
2、目标文件。
目标文件是源程序经过编译生成的文件,平台不同,编译工具不同生成的目标文件扩展名也不同。 在windows上比较常见的为obj, 在Linux下比较常见的为o。另外还有一些比较少见的扩展名,如oo, tco等。
3、可执行文件。
可执行文件是目标文件经过链接后,产生的用于运行的文件。
在windows下可执行文件扩展名为exe。
在Linux下可执行文件没有固定的扩展名,在编译时默认为out,但实际上可以是任意扩展名甚至没有扩展名,只要有执行权限即可。

Ⅶ C语言中的源程序文件和目标文件的扩展名分别是

C语言源代码文件一般扩展名为.c,目标文件扩展名一般为.obj,生成的可执行文件扩展名一般为.exe。

不同平台的C源代码扩展名都为.c,但目标文件扩展名不同,例如:在Linux平台上,生成的可执行文件一般扩展为.out。

源文件:这是指由源程序和数据构成的文件。通常由终端或输入设备输入的源程序和数据所形成的文件都属于源文件。它通常是由 ASCII 码或汉字所组成的。

目标文件:这是指把源程序经过相应语言的编译程序编译过,但尚未经过链接程序链接的目标代码所构成的文件。它属于二进制文件。

可执行文件:这是指把编译后所产生的目标代码再经过链接程序链接后所形成的文件。

(7)c语言编译文件缺省扩展名扩展阅读:

源文件,目标文件,可执行文件的联系:

源文件就是用汇编语言或高级语言写出来的代码保存为文件,目标文件是指源文件经过编译程序产生的能被cpu直接识别二进制文件。将目标文件链接起来就成了可执行文件。

源代码与源文件:

源代码(也称源程序)是指未编译的按照一定的程序设计语言规范书写的文本文件,是一系列人类可读的计算机语言指令。 在现代程序语言中,源代码可以是以书籍或者磁带的形式出现,但最为常用的格式是文本文件,这种典型格式的目的是为了编译出计算机程序。

计算机源代码的最终目的是将人类可读的文本翻译成为计算机可以执行的二进制指令,这种过程叫做编译,通过编译器完成。在大多数情况下,源代码等于源文件。

参考资料来源:网络-源文件



Ⅷ c语言源程序的扩展名是什么

C语言源程序后缀为.c,编译后的后缀为.obj 或 .o,连接后生成的可执行文件的后缀为.exe。

C语言是一门面向过程的、抽象化的通用程序设计语言,广泛应用于底层开发。C语言能以简易的方式编漏碧译、处理低级存储器。C语言是仅产生少量的机器语言以及不需要任何运行环境支持便能运行的高效率程序设计语言。

尽管C语言提供了许多低级处理的功能,但仍然保持着跨平台的特性,以一个标准规格写出的C语言程序可在包括类似嵌入式处理器以及超级计算机等作业平台的许多计算机平台上进行编译。


主要特点:

C语言是一种结构化语言,它有着清晰的层次,可按照模块的方式对程序进行编写,十分有利于程序的差神调试,且c语言的处理和表现能力都非常的强大,依靠非常全面的运算符和多样的数据类型。

可以轻易完成各种数据结构的构建虚搜亏,通过指针类型更可对内存直接寻址以及对硬件进行直接操作,因此既能够用于开发系统程序,也可用于开发应用软件。

Ⅸ C语言源程序的文件扩展名为

在Windows平台上,C语言源代码文件一般扩展名为.c。

在Linux平台上,C语言源代码文件一般扩展名为.c,预处理操作后的文件名扩展名一般为.i,编译器生成的汇编代码一般扩展名为.s,生成的可执行文件一般扩展为.out,它是有汇编器生成的,所以默认gcc生成的程序名为a.out意思即为Assembler output 。

拓展资料

C是一种通用的编程语言,广泛用于系统软件与应用软件的开发。于1969年至1973年间,为了移植与开发UNIX操作系统,由丹尼斯·里奇与肯·汤普逊,以B语言为基础,在贝尔实验室设计、开发出来。

C语言具有高效、灵活、功能丰富、表达力强和较高的可移植性等特点,在程序设计中备受青睐,成为最近25年使用最为广泛的编程语言。目前,C语言编译器普遍存在于各种不同的操作系统中,例如Microsoft Windows、macOS、Linux、Unix等。C语言的设计影响了众多后来的编程语言,例如C++、Objective-C、Java、C#等。

二十世纪八十年代,为了避免各开发厂商用的C语言语法产生差异,由美国国家标准局为C语言订定了一套完整的国际标准语法,称为ANSI C,作为C语言的标准。二十世纪八十年代至今的有关程序开发工具,一般都支持匹配ANSI C的语法。

Ⅹ c++目标文件链接而成的可执行文件的缺省扩展名为什么

扩展名为什么怎么了?

给你gcc的编译参数
gcc 和 g++分别是gnu的c和c++编译器 gcc/g++在执行编译工作的时候,总共需要4步

1.预处理,生成.i的文件[预处理器cpp]
2.将预处理后的文件不转换成汇编语言,生成文件.s[编译器egcs]
3.有汇编变为目标代码(机器代码)生成.o的文件[汇编器as]
4.连接目标代码,生成可执行程序[链接器ld]
[参数详解]
-x language filename
设定文件所使用的语言,使后缀名无效,对以后的多个有效.也就是根据约定C语言的后
缀名称是.c的,而C++的后缀名是.C或者.cpp,如果你很个性,决定你的C代码文件的后缀
名是.pig 哈哈,那你就要用这个参数,这个参数对他后面的文件名都起作用,除非到了
下一个参数的使用。
可以使用的参数吗有下面的这些
`c', `objective-c', `c-header', `c++', `cpp-output', `assembler', and `a
ssembler-with-cpp'.
看到英文,应该可以理解的。
例子用法:
gcc -x c hello.pig

-x none filename
关掉上一个选项,也就是让gcc根据文件名后缀,自动识别文件类型
例子用法:
gcc -x c hello.pig -x none hello2.c

-c
只激活纳碧岩预处理,编译,和汇编,也就是他只把程序做成obj文件
例子用法:
gcc -c hello.c
他将生成.o的obj文件
-S
只激活预处理和编译,就是指把文件编译成为汇编代码。
例子用法
gcc -S hello.c
他将生成.s的汇编代码,你可以用文本编辑器察看
-E
只激活预处理,这个不生成文件,你需要把它重定向到一个输出文件里面.
例子用法:
gcc -E hello.c > pianoapan.txt
gcc -E hello.c | more
慢慢看吧,一个hello word 也要与处理成800行的代码
-o
制定目标名称,缺省的时候,gcc 编译出来的文件是a.out,很难听,如果你和我有同感
,改掉它,哈哈
例子用法
gcc -o hello.exe hello.c (哦,windows用习惯了)
gcc -o hello.asm -S hello.c
-pipe
使用管道代替编译中临时文件,在使用非gnu汇编工具的时候,可能有些问题
gcc -pipe -o hello.exe hello.c
-ansi
关闭gnu c中与ansi c不兼容的特性,激活ansi c的专有特性(包括禁止一些asm inl
ine typeof关键字慧仿,以及UNIX,vax等预处理宏,
-fno-asm
此选项实现ansi选项的功能的一部分,它禁止将asm,inline和typeof用作关键字。

-fno-strict-prototype
只对g++起作洞御用,使用这个选项,g++将对不带参数的函数,都认为是没有显式的对参数
的个数和类型说明,而不是没有参数.
而gcc无论是否使用这个参数,都将对没有带参数的函数,认为城没有显式说明的类型

-fthis-is-varialble
就是向传统c++看齐,可以使用this当一般变量使用.

-fcond-mismatch
允许条件表达式的第二和第三参数类型不匹配,表达式的值将为void类型

-funsigned-char
-fno-signed-char
-fsigned-char
-fno-unsigned-char
这四个参数是对char类型进行设置,决定将char类型设置成unsigned char(前两个参
数)或者 signed char(后两个参数)

-include file
包含某个代码,简单来说,就是便以某个文件,需要另一个文件的时候,就可以用它设
定,功能就相当于在代码中使用#include<filename>
例子用法:
gcc hello.c -include /root/pianopan.h

-imacros file
将file文件的宏,扩展到gcc/g++的输入文件,宏定义本身并不出现在输入文件中

-Dmacro
相当于C语言中的#define macro

-Dmacro=defn
相当于C语言中的#define macro=defn

-Umacro
相当于C语言中的#undef macro
-undef
取消对任何非标准宏的定义

-Idir
在你是用#include"file"的时候,gcc/g++会先在当前目录查找你所制定的头文件,如
果没有找到,他回到缺省的头文件目录找,如果使用-I制定了目录,他
回先在你所制定的目录查找,然后再按常规的顺序去找.
对于#include<file>,gcc/g++会到-I制定的目录查找,查找不到,然后将到系统的缺
省的头文件目录查找

-I-
就是取消前一个参数的功能,所以一般在-Idir之后使用

-idirafter dir
在-I的目录里面查找失败,讲到这个目录里面查找.

-iprefix prefix
-iwithprefix dir
一般一起使用,当-I的目录查找失败,会到prefix+dir下查找

-nostdinc
使编译器不再系统缺省的头文件目录里面找头文件,一般和-I联合使用,明确限定头
文件的位置

-nostdin C++
规定不在g++指定的标准路经中搜索,但仍在其他路径中搜索,.此选项在创libg++库
使用

-C
在预处理的时候,不删除注释信息,一般和-E使用,有时候分析程序,用这个很方便的

-M
生成文件关联的信息。包含目标文件所依赖的所有源代码你可以用gcc -M hello.c
来测试一下,很简单。

-MM
和上面的那个一样,但是它将忽略由#include<file>造成的依赖关系。

-MD
和-M相同,但是输出将导入到.d的文件里面

-MMD
和-MM相同,但是输出将导入到.d的文件里面

-Wa,option
此选项传递option给汇编程序;如果option中间有逗号,就将option分成多个选项,然
后传递给会汇编程序

-Wl.option
此选项传递option给连接程序;如果option中间有逗号,就将option分成多个选项,然
后传递给会连接程序.

-llibrary
制定编译的时候使用的库
例子用法
gcc -lcurses hello.c
使用ncurses库编译程序

-Ldir
制定编译的时候,搜索库的路径。比如你自己的库,可以用它制定目录,不然
编译器将只在标准库的目录找。这个dir就是目录的名称。

-O0
-O1
-O2
-O3
编译器的优化选项的4个级别,-O0表示没有优化,-O1为缺省值,-O3优化级别最高

-g
只是编译器,在编译的时候,产生调试信息。

-gstabs
此选项以stabs格式声称调试信息,但是不包括gdb调试信息.

-gstabs+
此选项以stabs格式声称调试信息,并且包含仅供gdb使用的额外调试信息.

-ggdb
此选项将尽可能的生成gdb的可以使用的调试信息.
-static
此选项将禁止使用动态库,所以,编译出来的东西,一般都很大,也不需要什么
动态连接库,就可以运行.
-share
此选项将尽量使用动态库,所以生成文件比较小,但是需要系统由动态库.
-traditional
试图让编译器支持传统的C语言特性

阅读全文

与c语言编译文件缺省扩展名相关的资料

热点内容
安卓手机连车载的叫什么 浏览:223
怎么让自己的手机键盘变得好看app 浏览:53
能看qq的文件夹 浏览:515
android二维码生成代码 浏览:567
焦炉气压缩机 浏览:402
imap接收邮件服务器地址 浏览:291
小乔肖恩解压密码 浏览:645
php网页网盘源码 浏览:181
签到任务源码 浏览:814
母亲节的文案怎么写app 浏览:984
加密协议aes找不到 浏览:250
java服务器端开发源码 浏览:551
编译器编译运行快捷键 浏览:333
住房app怎么快速选房 浏览:174
怎么在电脑上编译成功 浏览:214
单片机可调时钟设计方案 浏览:192
qq文件夹密码忘记怎么找回 浏览:683
php扩展插件 浏览:608
解压视频厕所抽纸 浏览:952
app减脂怎么用 浏览:452