导航:首页 > 源码编译 > 分治算法的基本框架是

分治算法的基本框架是

发布时间:2023-04-06 16:00:14

⑴ 最通俗、简单的分治算法思想

分治算法的基本思想是将一个计算复杂的问题分为规模较小,计算简单的小问题求解 ,然后综合各个小问题,而得到最终问题的答案。分治算法的执行过程如下:
♦对于一个规模为N的问题,若该问题可以容易地解决(比如说规模N较小),则直接解决,否则执行下面的步骤。
♦将该分解为M个规模较小的子问题,这些子问题互相独立,并且与原问题形式相同。
♦递归地解这些子问题。
♦然后,将各子问题的解合并得到原问题的解。

问:一个袋子里有30个硬币,其中一枚是假币,并且假币和真币一模一样,肉眼很难分辨,目前只知道假币比真币重量轻一点。请问如何区分出假币呢? 可以采用递归分治的思想来求解这个问题:
♦首先为每个银币编号,然后可以将所有的银币等分为两分,放在天平的两边。这样就将区分30个硬币的问题,变为区别两堆硬币的问题。
♦因为假银币的分量较轻,因此天平较轻的一侧中一定包含假银币。
♦再将较轻的一侧中的硬银币等分为两分,重复上述的做法。郑念绝
♦直到剩下2枚高拆硬银币,可用天平直接找出假银币来。

运行结果
分治喊姿算法求解假的银币问题!
请输入硬币的数量:13
请输入每个硬币的质量:
第1个:2
第2个:2
第3个:2
第4个:2
第5个:2
第6个:2
第7个:2
第8个:2
第9个:2
第10个:1
第11个:2
第12个:2
第13个:2
第10个为假币!!

⑵ 分治法的基本思想

对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否或运则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫誉团脊做分治法。

如果原问题可分割成k个子问题,1<k≤n ,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。

分治法所能解决的问题一般具有庆渗以下几个特征:

1、该问题的规模缩小到一定的程度就可以容易地解决

2、该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。

3、利用该问题分解出的子问题的解可以合并为该问题的解;

4、该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。

⑶ 分治法指的是什么呢

分治法指的是将原问题递归地分成若干个子问题,直到子问题满足边界条件,停止递归,将子问题逐个解决(一般是同种方法),将已经解决的子问题合并,最后,算法会层层合并得到原问题的答案

分治算法步骤:

分:递归地将问题分解为各个的子问题(性质相同的,相互独立的子问题)。

治:将这些规模更小的子问题逐个击破。

合:将已解决的问题逐层合并,最终得出原问题的解。

分治法适用条件

1、问题的规模缩小到一定的规模就可以较容易地解决。

2、问题可以分解为若干个规模较小的模式相同的子问题,即该问题具有最优子结构性质。

3、合并问题分解出的子问题的解可以得到问题的解。

4、问题所分解出的各个子问题之间是独立的,即子问题之间不存在公共的子问题。

⑷ 分治法的步骤

分治法在每一层递归上都有三个步骤:
分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;
解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;
合并:将各个子问题的解合并为原问题的解。
它的一般的算法设计模式如下:
Divide-and-Conquer(P)
1. if |P|≤n0
2. then return(ADHOC(P))
3. 将P分解为较小的子问题 P1 ,P2 ,...,Pk
4. for i←1 to k
5. do yi ← Divide-and-Conquer(Pi) △ 递归解决Pi
6. T ← MERGE(y1,y2,...,yk) △ 合并子问题
7. return(T)
其中|P|表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。ADHOC(P)是该分治法中的基本子算法,用于直接解小规模的问题P。因此,当P的规模不超过n0时直接用算法ADHOC(P)求解。算法MERGE(y1,y2,...,yk)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,...,Pk的相应的解y1,y2,...,yk合并为P的解。
根据分治法的分割原则,原问题应该分为多少个子问题才较适宜?
各个子问题的规模应该怎样才为适当?
答: 但人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。换句话说,将一个问题分成大小相等的k个子问题的处理方法是行之有效的。许多问题可以取 k = 2。这种使子问题规模大致相等的做法是出自一种平衡(balancing)子问题的思想,它几乎总是比子问题规模不等的做法要好。
出处:网络
实践题目:
给定一个顺序表,编写一个求出其最大值和最小值的分治算法。
分析:
由于顺序表的结构没有给出,作为演示分治法这里从简顺序表取一整形数组数组大小由用户定义,数据随机生成。我们知道如果数组大小为 1 则可以直接给出结果,如果大小为 2则一次比较即可得出结果,于是我们找到求解该问题的子问题即: 数组大小 <= 2。到此我们就可以进行分治运算了,只要求解的问题数组长度比 2 大就继续分治,否则求解子问题的解并更新全局解
以下是代码。
*/
/*** 编译环境TC ***/
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#define M 40
/* 分治法获取最优解 */
void PartionGet(int s,int e,int *meter,int *max,int *min){
/* 参数:
* s 当前分治段的开始下标
* e 当前分治段的结束下标
* meter 表的地址
* max 存储当前搜索到的最大值
* min 存储当前搜索到的最小值
*/
int i;
if(e-s <= 1){ /* 获取局部解,并更新全局解 */
if(meter[s] > meter[e]){
if(meter[s] > *max)
*max = meter[s];
if(meter[e] < *min)
*min = meter[e];
}
else{
if(meter[e] > *max)
*max = meter[e];
if(meter[s] < *min)
*min = meter[s];
}
return ;
}
i = s + (e-s)/2; /* 不是子问题继续分治,这里使用了二分,也可以是其它 */
PartionGet(s,i,meter,max,min);
PartionGet(i+1,e,meter,max,min);
}
int main(){
int i,meter[M];
int max = INT_MIN; /* 用最小值初始化 */
int min = INT_MAX; /* 用最大值初始化 */
printf(The array's element as followed: );
rand(); /* 初始化随机数发生器 */
for(i = 0; i < M; i ++){ /* 随机数据填充数组 */
meter[i] = rand()%10000;
if(!((i+1)%10)) /* 输出表的随机数据 */
printf(%-6d ,meter[i]);
else
printf(%-6d,meter[i]);
}
PartionGet(0,M - 1,meter,&max,&min); /* 分治法获取最值 */
printf( Max : %d Min : %d ,max,min);
system(pause);
return 0;
}

⑸ 简述分治法的基本思想

分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。递归地解这些子问题,然后将各个子问题的解合并得到原问题的解。它的一般的算法设计模式如下:
divide-and-conquer(P)
{
if(|P|<=n0)
adhoc(P);
divide
P
into
smaller
subinstances
P1,P2,...,Pk;
for(i=1;i<=k;i++)
yi=divide-and-conquer(Pi);
return
merge(y1,...,yk);
}
其中,|P|表示问题P的规模。n0为一阀值,表示当问题P的规模不超过n0时,问题已容易解出,不必再继续分解。adhoc(P)是该分治法中的基本子算法,用于直接解小规模的问题P。当P的规模不超过n0时,直接算法adhoc(P)求解。算法merge(y1,y2,...,yk)是该分治法中的合并子算法,用于将P的子问题P1,P2,...,Pk的解y1,y2,...,yk合并为P的解。
根据分治法的分割原则,应把原问题分为多少个子问题才比较适宜?每个子问题是否规模相同或怎样才为适当?这些问题很难给予肯定的回答。但人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。即将一个问题分成大小相等的k个子问题的处理方法是行之有效的。许多问题可以取k=2。这种使子问题规模大致相等的做法是出自一种平衡(banlancing)子问题的思想,它几乎总是比子问题规模不等的做法要好。
从分治法的一般设计模式可以看出,用它设计出的算法一般是递归算法。因此,分治法的计算效率通常可以用递归方程来进行分析。一个分治法将规模为n的问题分成m个规模为n/m的子问题,其中k(k<=m)个子问题需要求解。为方便起见,设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。另外再设将原问题分解为k个问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。如果用T(n)表示该分治法divide-and-conquer(P)解规模为|P|=n的问题所需的计算时间,则有:
http://image211.poco.cn/mypoco/myphoto/20090409/00/_002.jpg
下面来讨论如何解这个与分治法有密切关系的递归方程。通常可以用展开递归式的方法来解这类递归方程,反复代入求解得:
http://image211.poco.cn/mypoco/myphoto/20090409/00/_001.jpg
注意,递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果T(n)足够平滑,由n等于m的方幂时T(n)的值估计T(n)的增长速度。通常,可以假定T(n)单调上升。
另一个需要注意的问题是,在分析分治法的计算效率是,通常得到的是递归不等式:
http://image211.poco.cn/mypoco/myphoto/20090409/00/_000.jpg
在讨论最坏情况下的计算时间复杂度,用等号(=)还是用小于等于号(<=)是没有本质区别的。

⑹ 分治算法是什么呢

分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解。即一种分目标完成程序算法,简单问题可用二分法完成。

解题步骤

分治法解题的一般步骤:

(1)分解,将要解决的问题划分成若干规模较小的同类问题;

(2)求解,当子问题划分得足够小时,用较简单的方法解决;

(3)合并,按原问题的要求,将子问题的解逐层合并构成原问题的解。

⑺ 分治策略的基本思想

分治策略的基本思想如下:

分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解。即一种分目标完成程序算法,简单问题可用二分法完成。

当我们求解某些问题时,由于这些问题要处理的数据相当多,或求解过程相当复杂,使得直接求解法在时间上相当长,或者根本无法直接求出。

对于这类问题,我们往往先把它分解成几个子问题,找到求出这几个子问题的解法后,再找到合适的方法,把它们组合成求整个问题的解法。

分治法解题的一般步骤(如图1):

(1)分解,将要解决的问题划分成若干规模较小的同类问题;

(2)求解,当子问题划分得足够小时,用较简单的方法解决;祥灶

(3)合并,按原问题的要求,将子问题的解逐层合并构成原问题的解。

阅读全文

与分治算法的基本框架是相关的资料

热点内容
股票选股器源码公式如何弄 浏览:29
服务器如何使用在微信上 浏览:326
app登不了是怎么回事 浏览:252
dd命令u盘 浏览:568
单片机生日快乐程序 浏览:891
安卓手机连车载的叫什么 浏览:223
怎么让自己的手机键盘变得好看app 浏览:53
能看qq的文件夹 浏览:515
android二维码生成代码 浏览:567
焦炉气压缩机 浏览:402
imap接收邮件服务器地址 浏览:291
小乔肖恩解压密码 浏览:645
php网页网盘源码 浏览:181
签到任务源码 浏览:814
母亲节的文案怎么写app 浏览:984
加密协议aes找不到 浏览:250
java服务器端开发源码 浏览:551
编译器编译运行快捷键 浏览:333
住房app怎么快速选房 浏览:174
怎么在电脑上编译成功 浏览:215