⑴ MATLAB中有RSana函数吗
MATLAB中没有RSana函数,该函数是自定义函数,不歼凯是软件自带的。如要判断软件中有没有该函数,可以用type命令来查找,如出现错误用 type,未找到文件 'RSana'.数滑则说明函数不存在。
>>type薯改腊RSana
⑵ 公钥密码系统及RSA公钥算法
公钥密码系统及RSA公钥算法
本文简单介绍了公开密钥密码系统的思想和特点,并具体介绍了RSA算法的理论基础,工作原理和具体实现过程,并通过一个简单例子说明了该算法是如何实现。在本文的最后,概括说明了RSA算法目前存在的一些缺点和解决方法。
关键词:公钥密码体制 , 公钥 ,私钥 ,RSA
§1引言
随着计算机联网的逐步实现,Internet前景越来越美好,全球经济发展正在进入信息经济时代,知识经济初见端倪。计算机信息的保密问题显得越来越重要,无论是个人信息通信还是电子商务发展,都迫切需要保证Internet网上信息传输的安全,需要保证信息安全。信息安全技术是一门综合学科,它涉及信息论、计算机科学和密码学等多方面知识,它的主要任务是研究计算机系统和通信网络内信息的保护方法以实现系统内信息的安全、保密、真实和完整。其中,信息安全的核心是密码技术。密码技术是集数学、计算机科学、电子与通信等诸多学科于一身的交叉学科。它不仅能够保证机密性信息的加密,而且能够实现数字签名、身份验证、系统安全等功能。是现代化发展的重要科学之一。本文将对公钥密码系统及该系统中目前最广泛流行的RSA算法做一些简单介绍。
§2公钥密码系统
要说明公钥密码系统,首先来了解一下不同的加密算法:目前的加密算法按密钥方式可分为单钥密码算法和公钥密码算法。
2.1.单钥密码
又称对称式密码,是一种比较传统的加密方式,其加密运算、解密运算使用的是同样的密钥,信息的发送者和信息的接收者在进行信息的传输与处理时,必须共同持有该密码(称为对称密码)。因此,通信双方都必须获得这把钥匙,并保持钥匙的秘密。
单钥密码系统的安全性依赖于以下两个因素:第一,加密算法必须是足够强的,仅仅基于密文本身去解密信息在实践上是不可能的;第二,加密方法的安全性依赖于密钥的秘密性,而不是算法的秘密性,因此,我们没有必要确保算法的秘密性(事实上,现实中使用的很多单钥密码系统的算法都是公开的),但是我们一定要保证密钥的秘密性。
从单钥密码的这些特点我们容易看出它的主要问题有两点:第一,密钥量问题。在单钥密码系统中,每一对通信者就需要一对密钥,当用户增加时,必然会带来密钥量的成倍增长,因此在网络通信中,大量密钥的产生﹑存放和分配将是一个难以解决的问题。第二,密钥分发问题。单钥密码系统中,加密的安全性完全依赖于对密钥的保护,但是由于通信双方使用的是相同的密钥,人们又不得不相互交流密钥,所以为了保证安全,人们必须使用一些另外的安全信道来分发密钥,例如用专门的信使来传送密钥,这种做法的代价是相当大的,甚至可以说是非常不现实的,尤其在计算机网络环境下,人们使用网络传送加密的文件,却需要另外的安全信道来分发密钥,显而易见,这是非常不智是甚至是荒谬可笑的。
2.2公钥密码
正因为单钥密码系统存在如此难以解决的缺点,发展一种新的﹑更有效﹑更先进的密码体制显得更为迫切和必要。在这种情况下,出现了一种新的公钥密码体制,它突破性地解决了困扰着无数科学家的密钥分发问题,事实上,在这种体制中,人们甚至不用分发需要严格保密的密钥,这次突破同时也被认为是密码史上两千年来自单码替代密码发明以后最伟大的成就。
这一全新的思想是本世纪70年代,美国斯坦福大学的两名学者Diffie和Hellman提出的,该体制与单钥密码最大的不同是:
在公钥密码系统中,加密和解密使用的是不同的密钥(相对于对称密钥,人们把它叫做非对称密钥),这两个密钥之间存在着相互依存关系:即用其中任一个密钥加密的信息只能用另一个密钥进行解密。这使得通信双方无需事先交换密钥就可进行保密通信。其中加密密钥和算法是对外公开的,人人都可以通过这个密钥加密文件然后发给收信者,这个加密密钥又称为公钥;而收信者收到加密文件后,它可以使用他的解密密钥解密,这个密钥是由他自己私人掌管的,并不需要分发,因此又成称为私钥,这就解决了密钥分发的问题。
为了说明这一思想,我们可以考虑如下的类比:
两个在不安全信道中通信的人,假设为Alice(收信者)和Bob(发信者),他们希望能够安全的通信而不被他们的敌手Oscar破坏。Alice想到了一种办法,她使用了一种锁(相当于公钥),这种锁任何人只要轻轻一按就可以锁上,但是只有Alice的钥匙(相当于私钥)才能够打开。然后Alice对外发送无数把这样的锁,任何人比如Bob想给她寄信时,只需找到一个箱子,然后用一把Alice的锁将其锁上再寄给Alice,这时候任何人(包括Bob自己)除了拥有钥匙的Alice,都不能再打开箱子,这样即使Oscar能找到Alice的锁,即使Oscar能在通信过程中截获这个箱子,没有Alice的钥匙他也不可能打开箱子,而Alice的钥匙并不需要分发,这样Oscar也就无法得到这把“私人密钥”。
从以上的介绍可以看出,公钥密码体制的思想并不复杂,而实现它的关键问题是如何确定公钥和私钥及加/解密的算法,也就是说如何找到“Alice的锁和钥匙”的问题。我们假设在这种体制中, PK是公开信息,用作加密密钥,而SK需要由用户自己保密,用作解密密钥。加密算法E和解密算法D也都是公开的。虽然SK与PK是成对出现,但却不能根据PK计算出SK。它们须满足条件:
①加密密钥PK对明文X加密后,再用解密密钥SK解密,即可恢复出明文,或写为:DSK(EPK(X))=X
②加密密钥不能用来解密,即DPK(EPK(X))≠X
③在计算机上可以容易地产生成对的PK和SK。
④从已知的PK实际上不可能推导出SK。
⑤加密和解密的运算可以对调,即:EPK(DSK(X))=X
从上述条件可看出,公开密钥密码体制下,加密密钥不等于解密密钥。加密密钥可对外公开,使任何用户都可将传送给此用户的信息用公开密钥加密发送,而该用户唯一保存的私人密钥是保密的,也只有它能将密文复原、解密。虽然解密密钥理论上可由加密密钥推算出来,但这种算法设计在实际上是不可能的,或者虽然能够推算出,但要花费很长的时间而成为不可行的。所以将加密密钥公开也不会危害密钥的安全。
这种体制思想是简单的,但是,如何找到一个适合的算法来实现这个系统却是一个真正困扰密码学家们的难题,因为既然Pk和SK是一对存在着相互关系的密钥,那么从其中一个推导出另一个就是很有可能的,如果敌手Oscar能够从PK推导出SK,那么这个系统就不再安全了。因此如何找到一个合适的算法生成合适的Pk和SK,并且使得从PK不可能推导出SK,正是迫切需要密码学家们解决的一道难题。这个难题甚至使得公钥密码系统的发展停滞了很长一段时间。
为了解决这个问题,密码学家们考虑了数学上的陷门单向函数,下面,我们可以给出它的非正式定义:
Alice的公开加密函数应该是容易计算的,而计算其逆函数(即解密函数)应该是困难的(对于除Alice以外的人)。许多形式为Y=f(x)的函数,对于给定的自变量x值,很容易计算出函数Y的值;而由给定的Y值,在很多情况下依照函数关系f (x)计算x值十分困难。这样容易计算但难于求逆的函数,通常称为单向函数。在加密过程中,我们希望加密函数E为一个单项的单射函数,以便可以解密。虽然目前还没有一个函数能被证明是单向的,但是有很多单射函数被认为是单向的。
例如,有如下一个函数被认为是单向的,假定n为两个大素数p和q的乘积,b为一个正整数,那么定义f:
f (x )= x b mod n
(如果gcd(b,φ(n))=1,那么事实上这就是我们以下要说的RSA加密函数)
如果我们要构造一个公钥密码体制,仅给出一个单向的单射函数是不够的。从Alice的观点来看,并不需要E是单向的,因为它需要用有效的方式解密所收到的信息。因此,Alice应该拥有一个陷门,其中包含容易求出E的你函数的秘密信息。也就是说,Alice可以有效解密,因为它有额外的秘密知识,即SK,能够提供给你解密函数D。因此,我们称一个函数为一个陷门单向函数,如果它是一个单向函数,并在具有特定陷门的知识后容易求出其逆。
考虑上面的函数f (x) = xb mod n。我们能够知道其逆函数f -1有类似的形式f (x ) = xa mod n,对于合适的取值a。陷门就是利用n的因子分解,有效的算出正确的指数a(对于给定的b)。
为方便起见,我们把特定的某类陷门单向函数计为?。那么随机选取一个函数f属于?,作为公开加密函数;其逆函数f-1是秘密解密函数。那么公钥密码体制就能够实现了。
根据以上关于陷门单向函数的思想,学者们提出了许多种公钥加密的方法,它们的安全性都是基于复杂的数学难题。根据所基于的数学难题,至少有以下三类系统目前被认为是安全和有效的:大整数因子分解系统(代表性的有RSA)、椭园曲线离散对数系统(ECC)和离散对数系统(代表性的有DSA)。
§3 RSA算法
3.1简介
当前最着名、应用最广泛的公钥系统RSA是在1978年,由美国麻省理工学院(MIT)的Rivest、Shamir和Adleman在题为《获得数字签名和公开钥密码系统的方法》的论文中提出的。它是一个基于数论的非对称(公开钥)密码体制,是一种分组密码体制。其名称来自于三个发明者的姓名首字母。它的安全性是基于大整数素因子分解的困难性,而大整数因子分解问题是数学上的着名难题,至今没有有效的方法予以解决,因此可以确保RSA算法的安全性。RSA系统是公钥系统的最具有典型意义的方法,大多数使用公钥密码进行加密和数字签名的产品和标准使用的都是RSA算法。
RSA算法是第一个既能用于数据加密也能用于数字签名的算法,因此它为公用网络上信息的加密和鉴别提供了一种基本的方法。它通常是先生成一对RSA密钥,其中之一是保密密钥,由用户保存;另一个为公开密钥,可对外公开,甚至可在网络服务器中注册,人们用公钥加密文件发送给个人,个人就可以用私钥解密接受。为提高保密强度,RSA密钥至少为500位长,一般推荐使用1024位。
该算法基于下面的两个事实,这些事实保证了RSA算法的安全有效性:
1)已有确定一个数是不是质数的快速算法;
2)尚未找到确定一个合数的质因子的快速算法。
3.2工作原理
1)任意选取两个不同的大质数p和q,计算乘积r=p*q;
2)任意选取一个大整数e,e与(p-1)*(q-1)互质,整数e用做加密密钥。注意:e的选取是很容易的,例如,所有大于p和q的质数都可用。
3)确定解密密钥d:d * e = 1 molo(p - 1)*(q - 1) 根据e、p和q可以容易地计算出d。
4)公开整数r和e,但是不公开d;
5)将明文P (假设P是一个小于r的整数)加密为密文C,计算方法为:
C = Pe molo r
6)将密文C解密为明文P,计算方法为:
P = Cd molo r
然而只根据r和e(不是p和q)要计算出d是不可能的。因此,任何人都可对明文进行加密,但只有授权用户(知道d)才可对密文解密。
3.3简单实例
为了说明该算法的工作过程,我们下面给出一个简单例子,显然我们在这只能取很小的数字,但是如上所述,为了保证安全,在实际应用上我们所用的数字要大的多得多。
例:选取p=3, q=5,则r=15,(p-1)*(q-1)=8。选取e=11(大于p和q的质数),通过d * 11 = 1 molo 8,计算出d =3。
假定明文为整数13。则密文C为
C = Pe molo r
= 1311 molo 15
= 1,792,160,394,037 molo 15
= 7
复原明文P为:
P = Cd molo r
= 73 molo 15
= 343 molo 15
= 13
因为e和d互逆,公开密钥加密方法也允许采用这样的方式对加密信息进行"签名",以便接收方能确定签名不是伪造的。
假设A和B希望通过公开密钥加密方法进行数据传输,A和B分别公开加密算法和相应的密钥,但不公开解密算法和相应的密钥。A和B的加密算法分别是ECA和ECB,解密算法分别是DCA和DCB,ECA和DCA互逆,ECB和DCB互逆。 若A要向B发送明文P,不是简单地发送ECB(P),而是先对P施以其解密算法DCA,再用加密算法ECB对结果加密后发送出去。
密文C为:
C = ECB(DCA(P))
B收到C后,先后施以其解密算法DCB和加密算法ECA,得到明文P:
ECA(DCB(C))
= ECA(DCB(ECB(DCA(P))))
= ECA(DCA(P))/*DCB和ECB相互抵消*/
=
P /*DCB和ECB相互抵消*/
这样B就确定报文确实是从A发出的,因为只有当加密过程利用了DCA算法,用ECA才能获得P,只有A才知道DCA算法,没 有人,即使是B也不能伪造A的签名。
3.4优缺点
3.4.1优点
RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。该算法的加密密钥和加密算法分开,使得密钥分配更为方便。它特别符合计算机网络环境。对于网上的大量用户,可以将加密密钥用电话簿的方式印出。如果某用户想与另一用户进行保密通信,只需从公钥簿上查出对方的加密密钥,用它对所传送的信息加密发出即可。对方收到信息后,用仅为自己所知的解密密钥将信息脱密,了解报文的内容。由此可看出,RSA算法解决了大量网络用户密钥管理的难题,这是公钥密码系统相对于对称密码系统最突出的优点。
3.4.2缺点
1)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。
2)安全性, RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价,而且密码学界多数人士倾向于因子分解不是NPC问题。目前,人们已能分解140多个十进制位的大素数,这就要求使用更长的密钥,速度更慢;另外,目前人们正在积极寻找攻击RSA的方法,如选择密文攻击,一般攻击者是将某一信息作一下伪装(Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构:
( XM )d = Xd *Md mod n
前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公钥协议,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用One-Way Hash Function对文档作HASH处理,或同时使用不同的签名算法。除了利用公共模数,人们还尝试一些利用解密指数或φ(n)等等攻击.
3)速度太慢,由于RSA的分组长度太大,为保证安全性,n至少也要600 bitx以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET(Secure Electronic Transaction)协议中要求CA采用2048比特长的密钥,其他实体使用1024比特的密钥。为了速度问题,目前人们广泛使用单,公钥密码结合使用的方法,优缺点互补:单钥密码加密速度快,人们用它来加密较长的文件,然后用RSA来给文件密钥加密,极好的解决了单钥密码的密钥分发问题。
§4结束语
目前,日益激增的电子商务和其它因特网应用需求使公钥体系得以普及,这些需求量主要包括对服务器资源的访问控制和对电子商务交易的保护,以及权利保护、个人隐私、无线交易和内容完整性(如保证新闻报道或股票行情的真实性)等方面。公钥技术发展到今天,在市场上明显的发展趋势就是PKI与操作系统的集成,PKI是“Public
Key Infrastructure”的缩写,意为“公钥基础设施”。公钥体制广泛地用于CA认证、数字签名和密钥交换等领域。
公钥加密算法中使用最广的是RSA。RSA算法研制的最初理念与目标是努力使互联网安全可靠,旨在解决DES算法秘密密钥的利用公开信道传输分发的难题。而实际结果不但很好地解决了这个难题;还可利用RSA来完成对电文的数字签名以抗对电文的否认与抵赖;同时还可以利用数字签名较容易地发现攻击者对电文的非法篡改,以保护数据信息的完整性。目前为止,很多种加密技术采用了RSA算法,该算法也已经在互联网的许多方面得以广泛应用,包括在安全接口层(SSL)标准(该标准是网络浏览器建立安全的互联网连接时必须用到的)方面的应用。此外,RSA加密系统还可应用于智能IC卡和网络安全产品。
但目前RSA算法的专利期限即将结束,取而代之的是基于椭圆曲线的密码方案(ECC算法)。较之于RSA算法,ECC有其相对优点,这使得ECC的特性更适合当今电子商务需要快速反应的发展潮流。此外,一种全新的量子密码也正在发展中。
至于在实际应用中应该采用何种加密算法则要结合具体应用环境和系统,不能简单地根据其加密强度来做出判断。因为除了加密算法本身之外,密钥合理分配、加密效率与现有系统的结合性以及投入产出分析都应在实际环境中具体考虑。加密技术随着网络的发展更新,将有更安全更易于实现的算法不断产生,为信息安全提供更有力的保障。今后,加密技术会何去何从,我们将拭目以待。
参考文献:
[1] Douglas R.Stinson.《密码学原理与实践》.北京:电子工业出版社,2003,2:131-132
[2]西蒙.辛格.《密码故事》.海口:海南出版社,2001,1:271-272
[3]嬴政天下.加密算法之RSA算法.http://soft.winzheng.com/infoView/Article_296.htm,2003
[4]加密与数字签名.http://www.njt.cn/yumdq/dzsw/a2.htm
[5]黑客中级教程系列之十.http://www.qqorg.i-p.com/jiaocheng/10.html
⑶ 密码学 RSA算法
明文,密文,密钥
明文,密文,公钥,私钥
(n,e1)(n,e2)就是密钥对。其中(n,e1)为公钥,(n,e2)为私钥。
1、找到两个质数p,q
2、n=p q 欧拉函数:φ(N) =(p-1) (q-1)
3、选择一个小于φ(N)随机整数数e :1<e<φ(N)的整数 e和φ(N)互质
4、计算出e与φ(N)的模反元素d:
所谓"模反元素"就是指有一个整数d,可以使得ed被φ(n)除的余数为1。
ed ≡ 1 (mod φ(n))
这个式子等价于
ed - 1 = kφ(n)
于是,找到模反元素d,实质上就是对下面这个二元一次方程求解。
ex + φ(n)y = 1
这个方程可以用 "扩展欧几里得算法" 求解,
5、将n和e封装成公钥,n和d封装成私钥。
私钥d:e*d/F(n)余数为1
6、加密: 加密要用公钥 (n,e) me ≡ c (mod n) 即m^e/n余数为c
7、解密:解密要用私钥(n,d) cd ≡ m (mod n) 即 c^d/n的余数为m
1、取p=103,q=349
2、计算n=p q=103 349=35947
3、计算欧拉函数φ(N) =(p-1) (q-1)=35496
4、取随机整数 e小于φ(N)且互质e=773
5、 e 关于 r的模反元素 e d(mod φ(n))=1 d=45
6、公钥就是 (35496 ,773),私钥就是(35496 , 45)
传播:n,e,c
解密:n,d,c
那么,有无可能在已知n和e的情况下,推导出d?
(1)ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。
(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。
(3)n=pq。只有将n因数分解,才能算出p和q。
结论:如果n可以被因数分解,d就可以算出,也就意味着私钥被破解。
可是,大整数的因数分解,是一件非常困难的事情。目前,除了暴力破解,还没有发现别的有效方法。
⑷ RSA加密算法,求大神帮解答
如果用一段已经知道的明文,经过公钥加密,得到密文。现在已知明文密文和n, 是不是就可以通过解密的公式不断的幂运算求出私钥d呢?
⑸ RSA 加密算法(原理篇)
前几天看到一句话,“我们中的很多人把一生中最灿烂的笑容大部分都献给了手机和电脑屏幕”。心中一惊,这说明了什么?手机和电脑已经成为了我们生活中的一部分,所以才会有最懂你的不是你,也不是你男朋友,而是大数据。
如此重要的个人数据,怎样才能保证其在互联网上的安全传输呢?当然要靠各种加密算法。说起加密算法,大家都知道有哈希、对称加密和非对称加密了。哈希是一个散列函数,具有不可逆操作;对称加密即加密和解密使用同一个密钥,而非对称加密加密和解密自然就是两个密钥了。稍微深入一些的,还要说出非对称加密算法有DES、3DES、RC4等,非对称加密算法自然就是RSA了。那么当我们聊起RSA时,我们又在聊些什么呢?今天笔者和大家一起探讨一下,有不足的地方,还望各位朋友多多提意见,共同进步。
RSA简介:1976年由麻省理工学院三位数学家共同提出的,为了纪念这一里程碑式的成就,就用他们三个人的名字首字母作为算法的命名。即 罗纳德·李维斯特 (Ron Rivest)、 阿迪·萨莫尔 (Adi Shamir)和 伦纳德·阿德曼 (Leonard Adleman)。
公钥:用于加密,验签。
私钥:解密,加签。
通常知道了公钥和私钥的用途以后,即可满足基本的聊天需求了。但是我们今天的主要任务是来探究一下RSA加解密的原理。
说起加密算法的原理部分,肯定与数学知识脱不了关系。
我们先来回忆几个数学知识:
φn = φ(A*B)=φ(A)*φ(B)=(A-1)*(B-1)。
这个公式主要是用来计算给定一个任意的正整数n,在小于等于n的正整数中,有多少个与n构成互质的关系。
其中n=A*B,A与B互为质数,但A与B本身并不要求为质数,可以继续展开,直至都为质数。
在最终分解完成后,即 φ(N) = φ(p1)*φ(p2)*φ(p3)... 之后,p1,p2,p3都是质数。又用到了欧拉函数的另一个特点,即当p是质数的时候,φp = p - 1。所以有了上面给出的欧拉定理公式。
举例看一下:
计算15的欧拉函数,因为15比较小,我们可以直接看一下,小于15的正整数有 1、2、3、4、5、6、7、8、9、10、11、12、13、14。和15互质的数有1、2、4、7、8、11、13、14一共四个。
对照我们刚才的欧拉定理: 。
其他感兴趣的,大家可以自己验证。
之所以要在这里介绍欧拉函数,我们在计算公钥和私钥时候,会用到。
如果两个正整数m 和 n 互质,那么m 的 φn 次方减1,可以被n整除。
其中 .
其中当n为质数时,那么 上面看到的公式就变成了
mod n 1.
这个公式也就是着名的 费马小定理 了。
如果两个正整数e和x互为质数,那么一定存在一个整数d,不止一个,使得 e*d - 1 可以被x整除,即 e * d mode x 1。则称 d 是 e 相对于 x的模反元素。
了解了上面所讲的欧拉函数、欧拉定理和模反元素后,就要来一些化学反应了,请看图:
上面这幅图的公式变化有没有没看明白的,没看明白的咱们评论区见哈。
最终我们得到了最重要的第5个公式的变形,即红色箭头后面的:
mod n m。
其中有几个关系,需要搞明白,m 与 n 互为质数,φn = x,d 是e相对于x的模反元素。
有没有看到一些加解密的雏形。
从 m 到 m。 这中间涵盖了从加密到解密的整个过程,但是缺少了我们想要的密文整个过程。
OK,下面引入本文的第四个数学公式:
我们来看一下整个交换流程:
1、客户端有一个数字13,服务端有一个数字15;
2、客户端通过计算 3的13次方 对 17 取余,得到数字12; 将12发送给服务端;同时服务端通过计算3的15次方,对17取余,得到数字6,将6发送给客户端。至此,整个交换过程完成。
3、服务端收到数字12以后,继续计算,12的15次方 对 17取余,得到 数字10。
4、客户端收到数字 6以后,继续计算,6的13次方 对 17 取余,得到数字 10。
有没有发现双方,最终得到了相同的内容10。但是这个数字10从来没有在网络过程中出现过。
好,讲到这里,可能有些人已经恍然大悟,这就是加密过程了,但是也有人会产生疑问,为什么要取数字3 和 17 呢,这里还牵涉到另一个数学知识,原根的问题。即3是17的原根。看图
有没有发现规律,3的1~16次方,对17取余,得到的整数是从1~16。这时我们称3为17的原根。也就是说上面的计算过程中有一组原根的关系。这是最早的迪菲赫尔曼秘钥交换算法。
解决了为什么取3和17的问题后,下面继续来看最终的RSA是如何产生的:
还记得我们上面提到的欧拉定理吗,其中 m 与 n 互为质数,n为质数,d 是 e 相对于 φn的模反元素。
当迪菲赫尔曼密钥交换算法碰上欧拉定理会产生什么呢?
我们得到下面的推论:
好,到这里我们是不是已经看到了整个的加密和解密过程了。
其中 m 是明文;c 是密文; n 和 e 为公钥;d 和 n 为私钥 。
其中几组数字的关系一定要明确:
1、d是e 相对于 φn 的模反元素,φn = n-1,即 e * d mod n = 1.
2、m 小于 n,上面在讲迪菲赫尔曼密钥交换算法时,提到原根的问题,在RSA加密算法中,对m和n并没有原根条件的约束。只要满足m与n互为质数,n为质数,且m < n就可以了。
OK,上面就是RSA加密算法的原理了,经过上面几个数学公式的狂轰乱炸,是不是有点迷乱了,给大家一些时间理一下,后面会和大家一起来验证RSA算法以及RSA为什么安全。
⑹ 请较为详细地描述rsa加密算法的全过程
RSA算法非常简单,概述如下:
找两素数p和q
取n=p*q
取t=(p-1)*(q-1)
取任何一个数e,要求满足e<t并且e与t互素(就是最大公因数为1)
取d*e%t==1
这样最终得到三个数: n d e
设消息为数M (M <n)
设c=(M**d)%n就得到了加密后的消息c
设m=(c**e)%n则 m == M,从而完成对c的解密。
注:**表示次方,上面两式中的d和e可以互换。
在对称加密中:
n d两个数构成公钥,可以告诉别人;
n e两个数构成私钥,e自己保留,不让任何人知道。
给别人发送的信息使用e加密,只要别人能用d解开就证明信息是由你发送的,构成了签名机制。
别人给你发送信息时使用d加密,这样只有拥有e的你能够对其解密。
rsa的安全性在于对于一个大数n,没有有效的方法能够将其分解
从而在已知n d的情况下无法获得e;同样在已知n e的情况下无法
求得d。
rsa简洁幽雅,但计算速度比较慢,通常加密中并不是直接使用rsa 来对所有的信息进行加密,
最常见的情况是随机产生一个对称加密的密钥,然后使用对称加密算法对信息加密,之后用
RSA对刚才的加密密钥进行加密。
最后需要说明的是,当前小于1024位的N已经被证明是不安全的
自己使用中不要使用小于1024位的RSA,最好使用2048位的。
⑺ 关于matlab语句RSA算法加密解密的解释(具体到步骤)
真相是这个RSA加密是假的。。。数字加密就没了
⑻ RSA算法详解
总括: 本文详细讲述了RSA算法详解,包括内部使用数学原理以及产生的过程。
相濡以沫。到底需要爱淡如水。
之前写过一篇文章 SSL协议之数据加密过程 ,里面详细讲述了数据加密的过程以及需要的算法。SSL协议很巧妙的利用对称加密和非对称加密两种算法来对数据进行加密。这篇文章主要是针对一种最常见的非对称加密算法——RSA算法进行讲解。其实也就是对私钥和公钥产生的一种方式进行描述。首先先来了解下这个算法的历史:
RSA是1977年由 罗纳德·李维斯特 (Ron Rivest)、 阿迪·萨莫尔 (Adi Shamir)和 伦纳德·阿德曼 (Leonard Adleman)一起提出的。当时他们三人都在 麻省理工学院 工作。RSA就是他们三人姓氏开头字母拼在一起组成的。
但实际上,在1973年,在英国政府通讯总部工作的数学家 克利福德·柯克斯 (Clifford Cocks)在一个内部文件中提出了一个相同的算法,但他的发现被列入机密,一直到1997年才被发表。
所以谁是RSA算法的发明人呢?不好说,就好像贝尔并不是第一个发明电话的人但大家都记住的是贝尔一样,这个地方我们作为旁观者倒不用较真,重要的是这个算法的内容:
RSA算法用到的数学知识特别多,所以在中间介绍这个算法生成私钥和公钥的过程中会穿插一些数学知识。生成步骤如下:
随意选择两个大的质数p和q,p不等于q,计算N=p*q;
什么是质数?我想可能会有一部分人已经忘记了,定义如下:
比如2,3,5,7这些都是质数,9就不是了,因为3*3=9了
r = φ(N) = φ(p)φ(q) = (p-1)(q-1) 。
这里的数学概念就是什么是欧拉函数了,什么是欧拉函数呢?
欧拉函数 的定义:
互质 的定义:
例如: φ(8) = 4 ,因为 1,3,5,7 均和 8 互质。
推导欧拉函数:
(1)如果 n = 1 , φ(1) = 1 ;(小于等于1的正整数中唯一和1互质的数就是1本身);
(2)如果 n 为质数, φ(n) = n - 1 ;因为质数和每一个比它小的数字都互质。比如5,比它小的正整数1,2,3,4都和他互质;
(3) 如果 n 是 a 的 k 次幂,则 φ(n) = φ(a^k) = a^k - a^(k-1) = (a-1)a^(k-1) ;
(4) 若 m , n 互质,则 φ(mn) = φ(m)φ(n)
证明: 设 A , B , C 是跟 m , n , mn 互质的数的集,据 中国剩余定理 (经常看数学典故的童鞋应该了解,剩余定理又叫韩信点兵,也叫孙子定理), A * B 和 C 可建立双射一一对应)的关系。(或者也可以从初等代数角度给出 欧拉函数积性的简单证明 ) 因此的φ(n)值使用 算术基本定理 便知。(来自维基网络)
选择一个小于r并与r互质的整数e,求得e关于r的模反元素,命名为 d ( ed = 1(mod r) 模反元素存在,当且仅当e与r互质), e 我们通常取65537。
模反元素:
比如 3 和 5 互质, 3 关于 5 的模反元素就可能是2,因为 3*2-1=5 可以被5整除。所以很明显模反元素不止一个,2加减5的整数倍都是3关于5的模反元素 {...-3, 2,7,12…} 放在公式里就是 3*2 = 1 (mod 5)
上面所提到的欧拉函数用处实际上在于欧拉定理:
欧拉定理:
欧拉定理就可以用来证明模反元素必然存在。
由模反元素的定义和欧拉定理我们知道, a 的 φ(n) 次方减去1,可以被n整除。比如,3和5互质,而 5 的欧拉函数 φ(5) 等于4,所以 3 的 4 次方 (81) 减去1,可以被 5 整除( 80/5=16 )。
小费马定理:
此时我们的 (N , e) 是公钥, (N, d) 为私钥,爱丽丝会把公钥 (N, e) 传给鲍勃,然后将 (N, d) 自己藏起来。一对公钥和私钥就产生了,然后具体的使用方法呢?请看: SSL协议之数据加密过程详解
我们知道像RSA这种非对称加密算法很安全,那么到底为啥子安全呢?
我们来看看上面这几个过程产生的几个数字:
N 和 e 我们都会公开使用,最为重要的就是私钥中的 d , d 一旦泄露,加密也就失去了意义。那么得到d的过程是如何的呢?如下:
所以得出了在上篇博客说到的结论,非对称加密的原理:
将a和b相乘得出乘积c很容易,但要是想要通过乘积c推导出a和b极难。即对一个大数进行因式分解极难
目前公开破译的位数是768位,实际使用一般是1024位或是2048位,所以理论上特别的安全。
RSA算法的核心就是欧拉定理,根据它我们才能得到私钥,从而保证整个通信的安全。
⑼ rsa加密算法
rsa加密算法如下:
算法原理:
RSA公开密钥密码体制的原理是:根据数论,寻求两个大素数比较简单,而将它们的乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥
⑽ Matlab RSA算法
function y=powermod(a,z,n)
%1:这个函数计算y=a^z mod n
%2:其中要求a,z,n均为整数
%3:需要考虑a为让逗负数或者比n大很多时,将其划归到0~n-1之间,即a=mod(a,n);
%注意3中所涉及到的数学原理
%4:z为负数时,需要先求a关于n的乘法逆元素,然后z取相反数
%提示销滑塌:大家编程序时,要遵循有简单到复杂的思路,先考虑z为正整数的情形,
%可以先考虑z与2的关系,即z是偶数亏圆还是奇数,若z是偶数,先算a^2 mod n
%特例:当a为16位以上时,需先求a=mod(a,n)
if z<0
z=-z;
a=invmod(a,n);%求a关于n的乘法逆元素
end
x=1;
a1=a;
z1=z;
while (z1~=0),
while(mod(z1,2)==0),
z1=z1/2;
a1=mod(a1^2,n);
end;
z1=z1-1;
x=x*a1;
x=mod(x,n);
end
disp('y=')
disp(x)