导航:首页 > 源码编译 > dk算法

dk算法

发布时间:2023-04-08 14:21:02

1. 对称加密算法有哪些

对称加密算法是应用较早的加密算法,技术成熟。
主要有DES算法,3DES算法,TDEA算法,Blowfish算法,RC5算法,IDEA算法。

2. 常见密码算法原理

PBKDF2(Password-Based Key Derivation Function)是一个用来导出密钥的函数,用来生成加密的密码,增加破解的难度,类似bcrypt/scrypt等,可以用来进行密码或者口令的加密存储。主要是盐值+pwd,经过多轮HMAC算法的计算,产生的密文。
PBKDF2函数的定义
DK = PBKDF2(PRF, Password, Salt, c, dkLen)
• PRF是一个伪随机函数,例如HASH_HMAC函数,它会输出长度为hLen的结果。
• Password是用来生成密钥的原文密码。
• Salt是一个加密用的盐值。
• c是进行重复计算的次数。
• dkLen是期望得到的密钥的长度。
• DK是最后产生的密钥。
https://segmentfault.com/a/1190000004261009

下面我们以Alice和Bob为例叙述Diffie-Hellman密钥交换的原理。
1,Diffie-Hellman交换过程中涉及到的所有参与者定义一个组,在这个组中定义一个大质数p,底数g。
2,Diffie-Hellman密钥交换是一个两部分的过程,Alice和Bob都需要一个私有的数字a,b。
下面是DH交换的过程图:
本图片来自wiki
下面我们进行一个实例
1.爱丽丝与鲍伯协定使用p=23以及g=5.
2.爱丽丝选择一个秘密整数a=6, 计算A = g^a mod p并发送给鲍伯。
A = 5^6 mod 23 = 8.
3.鲍伯选择一个秘密整数b=15, 计算B = g^b mod p并发送给爱丽丝。
B = 5^15 mod 23 = 19.
4.爱丽丝计算s = B a mod p
19^6 mod 23 = 2.
5.鲍伯计算s = A b mod p
8^15 mod 23 = 2.

ECDH:
ECC算法和DH结合使用,用于密钥磋商,这个密钥交换算法称为ECDH。交换双方可以在不共享任何秘密的情况下协商出一个密钥。ECC是建立在基于椭圆曲线的离散对数问题上的密码体制,给定椭圆曲线上的一个点P,一个整数k,求解Q=kP很容易;给定一个点P、Q,知道Q=kP,求整数k确是一个难题。ECDH即建立在此数学难题之上。密钥磋商过程:
假设密钥交换双方为Alice、Bob,其有共享曲线参数(椭圆曲线E、阶N、基点G)。

来自 http://www.cnblogs.com/fishou/p/4206451.html

https://zh.wikipedia.org/wiki/SHA%E5%AE%B6%E6%97%8F

exponent1 INTEGER, -- d mod (p-1)
exponent2 INTEGER, -- d mod (q-1)
coefficient INTEGER, -- (inverse of q) mod p
otherPrimeInfos OtherPrimeInfos OPTIONAL
}
-----END RSA PRIVATE KEY-----
while a RSA public key contains only the following data:
-----BEGIN RSA PUBLIC KEY-----
RSAPublicKey ::= SEQUENCE {
molus INTEGER, -- n
publicExponent INTEGER -- e
}
-----END RSA PUBLIC KEY-----
and this explains why the private key block is larger.
Note that a more standard format for non-RSA public keys is
-----BEGIN PUBLIC KEY-----
PublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
PublicKey BIT STRING
}
AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL
}
-----END PUBLIC KEY-----
More info here.
BTW, since you just posted a screenshot of the private key I strongly hope it was just for tests :)

密钥的长度
C:\herong>java RsaKeyGenerator 128
p: 17902136406704537069
q: 17902136406704537077
m:
Molus:
Key size: 128
Public key:
Private key:
C:\herong>java RsaKeyGenerator 256
p:
q:
m: ...
Molus: ...
Key size: 256
Public key: ...
Private key: ...

https://security.stackexchange.com/questions/90169/rsa-public-key-and-private-key-lengths
https://stackoverflow.com/questions/2921508/trying-to-understand-java-rsa-key-size >

http://www.herongyang.com/Cryptography/RSA-BigInteger-Keys-Generated-by-RsaKeyGenerator-java.html

update() adds data to the Cipher’s internal buffer, then returns all currently completely encoded blocks. If there are any encoded blocks left over, they remain in the Cipher’s buffer until the next call, or a call to doFinal(). This means that if you call update() with a four byte array to encrypt, and the buffer size is eight bytes, you will not receive encoded data on the return (you’ll get a null instead). If your next call to update() passes five bytes of data in, you will get an 8 byte (the block size) array back, containing the four bytes passed in on the previous call, the first four bytes from the current call – the remaining byte from the current call is left in the Cipher’s buffer.
doFinal() on the other hand is much simpler: it encrypts the passed data, pads it out to the necessary length, and then returns it. The Cipher is essentially stateless.

来自 https://segmentfault.com/a/1190000006931511

DH算法的中间人攻击
在最初的描述中,迪菲-赫尔曼密钥交换本身并没有提供通讯双方的身份验证服务,因此它很容易受到中间人攻击。 一个中间人在信道的中央进行两次迪菲-赫尔曼密钥交换,一次和Alice另一次和Bob,就能够成功的向Alice假装自己是Bob,反之亦然。而攻击者可以解密(读取和存储)任何一个人的信息并重新加密信息,然后传递给另一个人。因此通常都需要一个能够验证通讯双方身份的机制来防止这类攻击。

优缺点:
1、 仅当需要时才生成密钥,减小了将密钥存储很长一段时间而致使遭受攻击的机会。
2、 除对全局参数的约定外,密钥交换不需要事先存在的基础结构。
然而,该技术也存在许多不足:
1、 没有提供双方身份的任何信息。
2、 它是计算密集性的,因此容易遭受阻塞性攻击,即对手请求大量的密钥。受攻击者花费了相对多的计算资源来求解无用的幂系数而不是在做真正的工作。
3、 没办法防止重演攻击。
4、 容易遭受中间人的攻击。第三方C在和A通信时扮演B;和B通信时扮演A。A和B都与C协商了一个密钥,然后C就可以监听和传递通信量。中间人的攻击按如下进行:
(1) B在给A的报文中发送他的公开密钥。
(2) C截获并解析该报文。C将B的公开密钥保存下来并给A发送报文,该报文具有B的用户ID但使用C的公开密钥YC,仍按照好像是来自B的样子被发送出去。A收到C的报文后,将YC和B的用户ID存储在一块。类似地,C使用YC向B发送好像来自A的报文。
(3) B基于私有密钥XB和YC计算秘密密钥K1。A基于私有密钥XA和YC计算秘密密钥K2。C使用私有密钥XC和YB计算K1,并使用XC和YA计算K2。
(4) 从现在开始,C就可以转发A发给B的报文或转发B发给A的报文,在途中根据需要修改它们的密文。使得A和B都不知道他们在和C共享通信。

3. 加密:EkM=C 解密:DkC=M是什么加密算法

正常来说 都使用P来取代你数念所给出的关系中的M,除非M是宴毕高取自汉语“明文”的拼音(Mingwen)
P——明文(Plaintext),表示全体可能出现的明文集合
C——密文(Ciphertext),表示全体可能出现的密文集合
K——密钥(Key),密钥是加密算法中的可变参数
E——加密算法(Encryption algorithm),由公式、法则或者程序构成
D——解密算法(Decryption algorithm),它是E的逆算法。

当给定密钥K时,
C = Ek(P), 对明文P进行加密(E操作)后得到密文C
P = Dk(C) = Dk(Ek(P)), 对密文C解密(D操作)后得明文P
加密设计主要是确定E,D,K。

根据E和D的对称与非对称关系,加密算晌尺法又分为对称加密算法和非对称加密算法,其代表性算法分别为DES(Data Encryption Standard)和RSA

4. K均值算法

代价函数可以定义为各个样本距离所属簇中心点的误差平方和

K均值算法有一些缺点,例如受初值和离群点的影响每次的结果不稳定、结果 通常不是全局最优而是局部最优解、无法很好地解决数据簇分布差别比较大的情 况(比如一类是另一类样本数量的100倍)、不太适用于离散分类等。但是瑕不掩 瑜,K均值聚类的优点也是很明显和突出的,主要体现在:对于大数据集,K均值 聚类算法相对是可伸缩和高效的,它的计算复杂度是O(NKt)接近于线性,其中N是 数据对象的数目,K是聚类的簇数,t是迭代的轮数。尽管算法经常以局部最优结 束,但一般情况下达到的局部最优已经可以满足聚类的需求。
其实书中也少讲了缺点,那就是关于k的选择,当维度很高的时候,你很难判断选择k多少比较合适。
不过书中在算法调优中说了。所谓的调优其是也是变相的说那些缺点。

K均值算法的调优一般可以从以下几个角度出发。

(1)数据归一化和离群点处理。
K均值聚类本质上是一种基于欧式距离度量的数据划分方法,均值和方差大的 维度将对数据的聚类结果产生决定性的影响,所以未做归一化处理和统一单位的 数据是无法直接参与运算和比较的。同时,离群点或者少量的噪声数据就会对均 值产生较大的影响,导致中心偏移,因此使用K均值聚类算法之前通常需要对数据 做预处理。

(2)合理选择K值。
K值的选择是K均值聚类最大的问题之一,这也是K均值聚类算法的主要缺 点。实际上,我们希望能够找到一些可行的办法来弥补这一缺点,或者说找到K值 的合理估计方法。但是,K值的选择一般基于经验和多次实验结果。例如采用手肘 法,我们可以尝试不同的K值,并将不同K值所对应的损失函数画成折线,横轴 为K的取值,纵轴为误差平方和所定义的损失函数,如图5.3所示

由图可见,K值越大,距离和越小;并且,当K=3时,存在一个拐点,就像人 的肘部一样;当K (1,3)时,曲线急速下降;当K>3时,曲线趋于平稳。手肘法认 为拐点就是K的最佳值。
手肘法是一个经验方法,缺点就是不够自动化,因此研究员们又提出了一些 更先进的方法,其中包括比较有名的Gap Statistic方法[5]。Gap Statistic方法的优点 是,不再需要肉眼判断,而只需要找到最大的Gap statistic所对应的K即可,因此该 方法也适用于批量化作业。在这里我们继续使用上面的损失函数,当分为K簇时, 对应的损失函数记为Dk。Gap Statistic定义为
Gap(K)=E(logDk)−logDk

内按照均匀分布随机地产生和原始样本数一样多的随机样本,并对这个随机样本
做K均值,得到一个Dk;重复多次就可以计算出E(logDk)的近似值。那么Gap(K)有
什么物理含义呢?它可以视为随机样本的损失与实际样本的损失之差。试想实际 样本对应的最佳簇数为K,那么实际样本的损失应该相对较小,随机样本损失与实 际样本损失之差也相应地达到最小值,从而Gap(K)取得最大值所对应的K值就是最 佳的簇数。根据式(5.4)计算K =1,2,...,9所对应的Gap Statistic

(3)采用核函数。
采用核函数是另一种可以尝试的改进方向。传统的欧式距离度量方式,使得K 均值算法本质上假设了各个数据簇的数据具有一样的先验概率,并呈现球形或者 高维球形分布,这种分布在实际生活中并不常见。面对非凸的数据分布形状时, 可能需要引入核函数来优化,这时算法又称为核K均值算法,是核聚类方法的一种 [6]。核聚类方法的主要思想是通过一个非线性映射,将输入空间中的数据点映射到 高位的特征空间中,并在新的特征空间中进行聚类。非线性映射增加了数据点线 性可分的概率,从而在经典的聚类算法失效的情况下,通过引入核函数可以达到 更为准确的聚类结果。

K均值算法的主要缺点如下。
(1)需要人工预先确定初始K值,且该值和真实的数据分布未必吻合。
(2)K均值只能收敛到局部最优,效果受到初始值很大。
(3)易受到噪点的影响。
(4)样本点只能被划分到单一的类中。

■ K-means++算法
K均值的改进算法中,对初始值选择的改进是很重要的一部分。而这类算法 中,最具影响力的当属K-means++算法。原始K均值算法最开始随机选取数据集中 K个点作为聚类中心,而K-means++按照如下的思想选取K个聚类中心。假设已经 选取了n个初始聚类中心(0<n<K),则在选取第n+1个聚类中心时,距离当前n个 聚类中心越远的点会有更高的概率被选为第n+1个聚类中心。在选取第一个聚类中 心(n=1)时同样通过随机的方法。可以说这也符合我们的直觉,聚类中心当然是 互相离得越远越好。当选择完初始点后,K-means++后续的执行和经典K均值算法 相同,这也是对初始值选择进行改进的方法等共同点。

■ ISODATA算法
当K值的大小不确定时,可以使用ISODATA算法。ISODATA的全称是迭代自 组织数据分析法。在K均值算法中,聚类个数K的值需要预先人为地确定,并且在 整个算法过程中无法更改。而当遇到高维度、海量的数据集时,人们往往很难准 确地估计出K的大小。ISODATA算法就是针对这个问题进行了改进,它的思想也 很直观。当属于某个类别的样本数过少时,把该类别去除;当属于某个类别的样 本数过多、分散程度较大时,把该类别分为两个子类别。ISODATA算法在K均值 算法的基础之上增加了两个操作,一是分裂操作,对应着增加聚类中心数;二是 合并操作,对应着减少聚类中心数。ISODATA算法是一个比较常见的算法,其缺 点是需要指定的参数比较多,不仅仅需要一个参考的聚类数量Ko,还需要制定3个
阈值。下面介绍ISODATA算法的各个输入参数。
(1)预期的聚类中心数目Ko。在ISODATA运行过程中聚类中心数可以变 化,Ko是一个用户指定的参考值,该算法的聚类中心数目变动范围也由其决定。 具体地,最终输出的聚类中心数目常见范围是从Ko的一半,到两倍Ko。
(2)每个类所要求的最少样本数目Nmin。如果分裂后会导致某个子类别所包 含样本数目小于该阈值,就不会对该类别进行分裂操作。
(3)最大方差Sigma。用于控制某个类别中样本的分散程度。当样本的分散 程度超过这个阈值时,且分裂后满足(1),进行分裂操作。
(4)两个聚类中心之间所允许最小距离Dmin。如果两个类靠得非常近(即这 两个类别对应聚类中心之间的距离非常小),小于该阈值时,则对这两个类进行
合并操作。
如果希望样本不划分到单一的类中,可以使用模糊C均值或者高斯混合模型, 高斯混合模型会在下一节中详细讲述。

K均值聚类的迭代算法实际上是一种最大期望算法 (Expectation-Maximization algorithm),简称EM算法。EM算法解决的是在概率模 型中含有无法观测的隐含变量情况下的参数估计问题。
EM算法只保证收敛到局部最优解

5. DK纠结的免伤算法

第一、现在法系在PVP中都会去堆200左右的穿抗,这个属性会无视你200左右的抗性,实际效果就罩穗粗是除了NQ开精通光环能够多出180+的抗性,减免那物镇么近10秒,或者是开了 监狱饰品 也是多180+抗性族败外,你是无法在平时就保持这么高的法术减免的,所以在PVP中抗性这一项是可以忽略不计的。
第二、抗性减免现在的为
减伤 10% 15% 20% 25% 30% 35% 40% 45%
抗性 80 128 181 241 310 483 592 724
这些从随即计算变成了固定值,(BOSS没有命中属性,所以在PVE中除了某些移除生命类的法术,都有1%的抵抗概率,同等级人物的话,会有4%的未命中概率,这也是PVP中为什么法系要补齐4%命中的原因) 如果你的抗性一直是 592,且对方的穿抗是0,那么一个10000伤害的法术作于到你身上首先会被抗性减免 10000*(1-0.4)剩余 6000伤害,然后被韧性30%减免
6000*(1-0.3)实际你只受到4200的伤害。

阅读全文

与dk算法相关的资料

热点内容
母亲节的文案怎么写app 浏览:982
加密协议aes找不到 浏览:248
java服务器端开发源码 浏览:545
编译器编译运行快捷键 浏览:331
住房app怎么快速选房 浏览:172
怎么在电脑上编译成功 浏览:214
单片机可调时钟设计方案 浏览:192
qq文件夹密码忘记怎么找回 浏览:683
php扩展插件 浏览:608
解压视频厕所抽纸 浏览:952
app减脂怎么用 浏览:452
pythonwebpdf 浏览:639
单片机的功能模块 浏览:771
安卓手机如何录制视频长时间 浏览:285
安全问题app哪个好 浏览:445
压缩水会变冰吗 浏览:526
小说配音app哪个靠谱 浏览:820
编译iso 浏览:944
照片生成pdf格式 浏览:194
病历转pdf 浏览:835