1. C语言文件的编译与执行的四个阶段并分别描述
开发C程序有四个步骤:编辑、编译、连接和运行。
任何一个体系结构处理器上都可以使用C语言程序,只要该体系结构处理器有相应的C语言编译器和库,那么C源代码就可以编译并连接到目标二进制文件上运行。
1、预处理:导入源程序并保存(C文件)。
2、编译:将源程序转换为目标文件(Obj文件)。
3、链接:将目标文件生成为可执行文件(EXE文件)。
4、运行:执行,获取运行结果的EXE文件。
(1)c执行的编译标准扩展阅读:
将C语言代码分为程序的几个阶段:
1、首先,源代码文件测试。以及相关的头文件,比如stdio。H、由预处理器CPP预处理为.I文件。预编译的。文件不包含任何宏定义,因为所有宏都已展开,并且包含的文件已插入。我归档。
2、编译过程是对预处理文件进行词法分析、语法分析、语义分析和优化,生成相应的汇编代码文件。这个过程往往是整个程序的核心部分,也是最复杂的部分之一。
3、汇编程序不直接输出可执行文件,而是输出目标文件。汇编程序可以调用LD来生成可以运行的可执行程序。也就是说,您需要链接大量的文件才能获得“a.out”,即最终的可执行文件。
4、在链接过程中,需要重新调整其他目标文件中定义的函数调用指令,而其他目标文件中定义的变量也存在同样的问题。
2. C文件如何成为可执行文件(编译、链接、执行)——摘自《程序员的自我修养》
本文算是我阅读《程序员的自我修养》(俞甲子等着)相关章节的笔记,文中直接引用了原书中的叙述,强烈建议大家去看原书,本文只做概要介绍而用。——注:文中有很多引用图的地方,请大家自己去找原书看,支持正版!我遇到一个问题,linux C编程中的问题:.. char *p; unsigned int i = 0xcccccccc; unsigned int j; p = (char *) &i; printf("%.2x %.2x %.2x %.2x\n", *p, p[1], p[2], p[3]); memcpy(&j, p, sizeof(unsigned int)); printf("%x\n", j); ... Output: ffffffcc ffffffcc ffffffcc ffffffcc 0xcccccccc My questions are: 1. Why it prints "ffffffcc ffffffcc ffffffcc ffffffcc"? (if p is unsigned char* then it will print correctly "cc cc cc cc") 2. Why pointer to char p copied to j correctly, why not every member in p overflow? since it is a signed char. 这是别人在邮件列表中提出的问题,在试图回答这个问题的过程中,突然发现,自己对连接器的工作并不熟悉,因此拿来好书《程序员的自我修养》来看,并做如下汇报,强烈推荐《程序员的自我修养》!!!写好的C语言文件,最终能够执行,大致要经过预处理、编译、汇编、链接、装载五个过程。预编译完成的工作: (1)将所有的"#define"删除,并展开所有的宏定义 (2)处理所有条件预编译指令 (3)处理#include预编译指令,将被包含的文件插入到预编译指令的位置,这个过程是递归进行的。 (4)删除所有的注释 (5)添加行号和文件名标识,以便调试 (6)保留所有的#pragma编译器命令,因为编译器需要使用它们。编译完成的工作: (1)词法分析 扫描源代码序列,并将其分割为一系列的记号(Token)。 (2)语法分析 用语法分析器生成语法树,确定运算符号的优先级和含义、报告语法错误。 (3)语义分析 静态语义分析包括生命和类型的匹配,类型的转换;动态语义分析一般是在运行期出现的与语义相关性的问题,如除0错。 (4)源代码生成 源代码级优化器在源代码级别进行优化:如将如(6+2)之类的表达式,直接优化为(8)等等。将语法书转换为中间代码,如三地址码、P-代码等。 (5)代码生成 将源代码转换为目标代码,依赖于目标机器。 (6)目标代码优化汇编完成的工作: 将汇编代码变成机器可以执行的指令链接完成的工作: 链接完成的工作主要是将各个模块之间相互引用的部分处理好,使得各个模块之间正确衔接。链接过程包括:地址和空间分配、符号决议和重定位。 首先讲静态链接,基本的静态链接如下: 我们可能在main函数中调用到定义在另一个文件中的函数foo(),但是由于每个模块式单独编译的,因此main并不知道foo的地址,所以它暂时把这些调用foo的指令的目标地址搁置,等到最后链接的时候让连接器去修正这些地址(重定位),这就是静态链接最基本的过程和作用;对于定义在其他文件中的变量,也存在相同的问题。具体过程如下: (1)空间和地址分配 1)空间与地址分配:扫描所有输入目标文件,获得各个段的属性、长度和位置,并且将目标文件中的符号表中所有的符号定义和符号引用收集起来,放到一个全局符号表中。 2)符号解析和重定位:使用第一步收集到的信息,读取输入文件中段的数据、重定位信息,并进行符号解析与重定位、调整代码中的地址等。 动态链接的过程更为复杂,但是完成的工作类似。 动态链接的初衷是为了解决空间浪费和更新困难的问题,把链接过程推迟到运行时进行 首先介绍一个重要的概念——地址无关代码。为了解决固定装载地址冲突的问题,我们希望对所有绝对地址的引用不作重定位,而把这一步推迟到装载的时候再完成,一旦模块装载地址确定,即目标地址确定,那么系统对程序中所有的绝对地址引用进行重定位。同时我们希望,模块中共享的指令部分在装载时不需要因为装载地址的改变而改变,所以把指令中那些需要被修改的部分分离出来,跟数据放在一起,这样指令部分就可以保持不变,而数据部分可以在每个进程中拥有一个副本,这种方案目前被称为地址无关代码(PIC,Position-independent Code)。 我们需要解决如下四种引用中的重定位问题: 1)模块内部调用或者跳转:这个可以用相对地址调用或者基于寄存器的相对调用,所以不需要重定位2)模块内部数据的访问:用相对寻址的方法,不过链接器实现得十分巧妙: call494 <__i686.get_pc_thunk.cx> add$0x188c, %ecx mov$0x1, 0x28(%ecx) //a=1 调用一个叫做__i686.get_pc_thunk.cx的函数,把call的下一条指令的地址放到ecx寄存器中,接着执行一条mov指令和一个add指令3)模块间数据的访问:在数据段里建立一个指向全局变量的指针数组,也成全局便宜表(GOT),当要引用全局变量时,可以通过GOT相对应的项间接引用: GOT是做到指令无关的重要的一环:在编译时可以确定GOT相对于当前指令的偏移,根据变量地址在GOT中的偏移就可以得到变量的地址,当然GOT中哪个每个地址对应于哪个变量是由编译器决定的。4)模块间的调用、跳转:采用上面类似的方法,不同的是GOT中相应的项存储的是目标函数的地址,当模块需要调用目标函数时,可以通过GOT中的项进行间接跳转。 地址无关代码小结: 现在,来看动态链接中的另一个重要问题——延迟绑定(PLT)。当函数第一次被用到时才进行绑定,否则不绑定。PLT为了实现延迟绑定,增加了一层间接跳转。调用函数并不是通过GOT跳转的,而是通过一个叫PLT项的结构进行跳转的,每个外部函数在PLT中都有对应的项,如函数bar,其在PLT对应的项的地址记为bar@plt,实现方式如下: bar@plt: jmp* (bar@GOT) pushn pushmoleID jump_dl_runtime_resolve 链接器的这个实现至为巧妙: 如果在连接器初始化阶段,已经正确的初始化了bar@GOT,那么这个跳转指令的结果正是我们所期望的,但是,为了实现PLT,一般在连接器初始化时,将"pushn"的地址放入到bar@GOT中,这样就直接跳转到第二条指令,相当于没有进行任何操作。第二条指令“pushn”,n是bar这个符号引用在重定位表“.rel.plt”中的下标。接着将模块的ID压栈,跳转到_dl_runtime_resolve完成符号解析和重定位工作,然后将bar的地址填入到bar@GOT中。下次再调用到bar时,则bar@GOT中存储的是一个正确的地址,这样就完成了整个过程。 在链接完成之后,就生成了你要的可执行文件了,如ELF文件,至于这个文件的详细的信息,可以参考相关的文档。 现在,你要运行你的可执行文件,这是如何做到的呢? 我们从操作系统的角度来看可执行文件的装载过程。操作系统主要做如下三件事情:(1)创建一个独立的虚拟地址空间,但由于采用了COW机制,这里只是复制了父进程的页目录和页表,甚至不设置映射关系(参考操作系统相关书籍)。(2)读取可执行文件头,并且建立虚拟空间与可执行文件的映射关系。(3)将CPU的指令寄存器设置成可执行文件的入口地址,启动运行。我们来看一下执行过程中,进程虚拟空间的分布。 首先我们来区分Section和Segment,都可以翻译为“段”,那么有什么不同呢?从链接的角度来讲,elf文件是按照Section存储的,从装载的角度讲,elf文件是按照Segment存储的。”Segment”实际上是从装载的角度重新划分了ELF的各个段,将其中属性相似的Section合并为一个Segment,而系统是按照Segment来映射可执行文件的。
3. c语言有哪几种编译环境
C语言的编译环境可以使用VC 6.0,Turbo C,GCC,Visual Studio等。其中较好用的软件为VC 6.0++。
Microsoft Visual C++ 6.0,简称VC6.0,是微软推出的一款C++编译器,将“高级语言”翻译为“机器语言(低级语言)”的程序。Visual C++是一个功能强大的可视化软件开发工具。自1993年Microsoft公司推出Visual C++1.0后,随着其新版本的不断问世,Visual C++已成为专业程序员进行软件开发的首选工具。虽然微软公司推出了 Visual C++.NET(Visual C++7.0),但它的应用的很大的局限性,只适用于Windows 2000、Windows XP和Windows NT4.0。所以实际中,更多的是以Visual C++6.0为平台。Visual C++6.0不仅是一个C++ 编译器,而且是一个基于Windows操作系统的可视化集成开发环境(integrated development environment,IDE)。Visual C++6.0由许多组件组成,包括编辑器、调试器以及程序向导AppWizard、类向导Class Wizard等开发工具。 这些组件通过一个名为Developer Studio的组件集成为和谐的开发环境。
4. c语言编译流程(c语言是如何变成可执行文件的)
1.预编译,把源代码中的宏展开并把包含的文件的源代码插入程序的源代码中.
2.编译,把源代码编译成二进制的目标文件.但是此时目标文件还是不可执行的.
3.汇编,这一步主要是处理源代码中的汇编代码
4.连接,把目标代码和二进制的库文件以及其它内容合并成最终的可执行文件.
5. c语言是怎样编译成可执行文件的
c语言运行方式如下:
上机输入和编译源程序。通过键盘向计算唯羡机输入程序,最后将此源程序以文件形式存放在文件夹内,文件用.c作为后缀,生成源程序文件。对源程序进行编译,侍山察先用c编译系统提供的“预处理器”对程序中的预处理指令进行编译预处理。例如,对于#include
编译的作用是对源程序进行检查,判定程序有无语法的错误。直到没有错误时,编译程序自动把源程序转换为二进制形式的目标程序进行连接处理。经过编译后所得到的二进制目标文件还不能供计算机直接执行。一个程序可能包含若干个源程序文件,而一次编译只能得到与一个源程序文件相对应的目标文件,
只是程序的一部分,必须把所有编译后得到的目标文件链接装配起来,再与函数库相连接成一个整体,生成一个可供计算机执行的目标程序,称为可执行程序,即使一个程序只包含一个源文件,编译后得到的目标程序也不能直接运行,也要经过连接阶段,因为要和函数库进行连接,才能生成可执行程序。运行可执行程序,得到运行结果。把f.exe输入计算机,并老茄使之运行,得到结果。
6. c语言程序编译过程包括哪四个
C语言编译过程分成四个步骤:
1,由.c文件到.i文件,这个过程叫预处理
2,由.i文件到.s文件,这个过程叫编译
3,由.s文件到.o文件,这个过程叫汇编
4,由.o文件到可执行文件,这个过程叫链接
用gcc查看预处理过程(假设源文件叫hello.c)
gcc -o hello.i hello.c -E
然后用 vi hello.i 即可查看生成的预处理文件
按ESC 输入:$ 跳到预处理文件 可看到hello.c源码
宏的本质:预处理阶段的单纯的字符串替换
预处理阶段,不考虑C语法
7. C语言编译执行的全过程是怎样的
预处理阶断:这个就是那些#include啥的。
编译阶断:把C语言的代码转成汇编语言代码,比如 int a = 2; 它会生成mov a, 2;
汇编阶断:把汇编代码转换成机器码,比如把mov a , 2 ; 转成 cd07 (mov指令的机器码中的一种机器码)
链接阶断:制作成一个可执行文件,比如windows是PE的可执行文件,linux是elf的可执行文件,要制作成可以运行的程序。